解析几何李养成答案
(仅供参考)线性代数与解析几何-课后答案-(代万基-廉庆荣)第6章习题答案

2 0
,基础解系为
1
,
2
。
1 0
0
1
0
1
(2)注:将该方程组化简,得 2x4x10x2 x3 0 ,让 x1, x2 为自由未知数。
1 0
1 0
通解为
k1
0
2
k2
1
1
,基础解系为 0
,
1
。
2 1
0
0
0
0
1
1
(3) 通解为 k 2 ,基础解系为 2 。
1
1
思考题 6-1
1)正确。
x1 x2 0
x1 x2 1
2)不正确。
Ax
b
有可能无解,例如,
x1
x2
0
有唯一解,但
x1
x2
2
无
3x1 x2 0
3x1 x2 1
解。
3)正确。因为 m r A r(A,b) m ,r(A,b) r A ,所以 Ax b 一定有解.
4)正确。因为 r A m n ,所以 Ax 0 有非零解.
两式相减,得
b s1a1 s2a2 snan,
(l1 s1)a1 (l2 s2 )a2 (ln sn )an 0 .
由于向量组 a1,a2, ,an 线性无关,因此
li si 0 (i 1,2, , n) ,即 li si (i 1,2, , n).
故向量 b 由 a1,a2, ,an 线性表示的表达式是唯一的。
0
0 0
1 3
0 a2 1
a 1 0 0 0
1 0
0 a2 1
a 1
3a 3
0 1 a 1
高一解析几何试题及答案

高一解析几何试题及答案一、选择题(每题5分,共20分)1. 若点P(3, -4)在直线2x - 3y + 6 = 0上,则该直线的斜率是:A. 2/3B. -2/3C. 3/2D. -3/2答案:B2. 已知圆C的方程为x^2 + y^2 - 6x - 8y + 25 = 0,圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)答案:A3. 直线x + y = 1与圆x^2 + y^2 = 1相交于点A和点B,若AB的中点为(a, b),则a + b的值为:A. 0B. 1C. -1D. 2答案:B4. 椭圆x^2/4 + y^2 = 1的焦点坐标为:A. (±1, 0)B. (±2, 0)C. (0, ±1)D. (0, ±2)答案:B二、填空题(每题5分,共20分)1. 已知直线l的方程为y = 2x + 1,且与x轴交于点A,与y轴交于点B,则AB的长度为______。
答案:√52. 抛物线y^2 = 4x的准线方程为______。
答案:x = -13. 双曲线x^2/9 - y^2/16 = 1的实轴长为______。
答案:64. 圆x^2 + y^2 - 6x - 8y + 25 = 0的半径为______。
答案:5三、解答题(每题15分,共30分)1. 已知直线l:y = -2x + 3与圆C:x^2 + y^2 - 6x - 8y + 25 = 0相交于点P和Q,求线段PQ的长度。
答案:首先求出圆心C(3, 4)到直线l的距离d,使用点到直线距离公式,得到d = |-2*3 + 4 - 3| / √((-2)^2 + 1^2) = √5。
由于圆的半径r = 5,线段PQ的长度为2√(r^2 - d^2) = 2√(5^2 - (√5)^2) = 4√5。
2. 已知椭圆E:x^2/a^2 + y^2/b^2 = 1(a > b > 0)的焦点在x轴上,且离心率e = √3/2,椭圆与y轴交于点(0, b)和(0, -b),求椭圆的方程。
几何组成分析习题答案

几何组成分析答案
3.图中链杆1和2的交点O 可视为虚铰。
( )
O
答案 (X)
4.图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。
( )
答案 ( X )
5.图示体系为几何不变有多余约束。
( )
答案 ( √ )
6.图示体系为几何瞬变。
( )
答案 ( X )
答案 ( X )
8.几何可变体系在任何荷载作用下都不能平衡。
( ) 答案 ( X )
9.三个刚片由三个铰相联的体系一定是静定结构。
( ) 答案 ( X )
10.无多余约束的体系一定是静定结构。
( )
答案 ( X )
二、选择题
1.三个刚片用三个铰两两相互联结而成的体系是:
a.几何不变;
b.几何常变;
c.几何瞬变;
d.几何不变几何常变或几何瞬变。
( ) 答案 ( d )
2.联结三个刚片的铰结点,相当的约束个数为:
a.2个;
b.3个;
c.4个;
d.5个。
( )
答案 (c)
3.两个刚片,用三根链杆联结而成的体系是:
a.几何常变;
b.几何不变;
c.几何瞬变;
d.几何不变或几何常变或几何瞬变。
( ) 答案 (d)
4.图示体系是:
a.几何瞬变有多余约束;
b.几何不变;
c.几何常变;
d.几何瞬变无多余约束。
( )
答案(a)。
向量代数与空间解析几何习题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z u u u r∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面. 7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影.解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以 B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n ρ }12,2,3{2-=n ρ取法向量},5,15,10{21=⨯=n n n ϖϖρ所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥-rQ 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), 、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x .(2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-.解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x Θ 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ;(3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1)Θ0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2)Θ0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-,Θ0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-,Θ097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直. 复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C)⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z 解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=$a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()$a,bπ2=2,=⋅b a b a cos()$a,bπ2=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为⎩⎨⎧==+.0,1222z y x 解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解:(1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P ο.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d ϖ垂直于向量]1,3,2[-=a ϖ和]3,2,1[-=b ϖ,且与]1,1,2[-=c ϖ的数量积为6-,求向量d ϖ解: d ϖ垂直于a ϖ与b ϖ,故d ϖ平行于b a ϖϖ⨯,存在数λ使()b a d ϖϖϖ⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d ϖϖ,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d ϖ.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。
近五年(2017-2021)高考数学真题分类汇编12 解析几何【含答案】

近五年(2017-2021)高考数学真题分类汇编十二、解析几何一、单选题1.(2021·全国(文))点(3,0)到双曲线x216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·全国(文))设B是椭圆C:x25+y2=1的上顶点,点P在C上,则|PB|的最大值为()A.52B.√6C.√5D.23.(2021·全国)已知F1,F2是椭圆C:x29+y24=1的两个焦点,点M在C上,则|MF1|⋅|MF2|的最大值为()A.13 B.12 C.9 D.6 4.(2021·浙江)已知a,b∈R,ab>0,函数f(x)=ax2+b(x∈R).若f(s−t),f(s),f(s+ t)成等比数列,则平面上点(s,t)的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线5.(2021·全国(理))已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2= 60°,|PF1|=3|PF2|,则C的离心率为()A B.√132C.√7D.√136.(2021·全国(理))设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.√22,1)B.12,1)C.0,√22D.0,127.(2020·天津)设双曲线C的方程为22221(0,0)x ya ba b-=>>,过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24−y24=1B.x2−y24=1C.2214xy-=D.221x y-=8.(2020·北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线().A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP9.(2020·北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4B .5C .6D .710.(2020·浙江)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =3√4−x 2图像上的点,则|OP |=( ) A .√222B .4√105C .√7D .√1011.(2020·全国(文))设F 1,F 2是双曲线C:x 2−y 23=1的两个焦点,O 为坐标原点,点P在C 上且|OP|=2,则△PF 1F 2的面积为( ) A .72B .3C .52D .212.(2020·全国(理))若直线l 与曲线y =√x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +1213.(2020·全国(理))设双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为√5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .814.(2020·全国(文))点(0,﹣1)到直线y =k (x +1)距离的最大值为( ) A .1B .√2C .√3D .215.(2020·全国(文))设O 为坐标原点,直线x =2与抛物线C :y 2=2px(p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A .(14,0)B .(12,0)C .(1,0)D .(2,0)16.(2020·全国(文))在平面内,A ,B 是两个定点,C 是动点,若AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线17.(2020·全国(文))已知圆x 2+y 2−6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .418.(2020·全国(理))已知⊙M :x 2+y 2−2x −2y −2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA,PB ,切点为A,B ,当|PM|⋅|AB|最小时,直线AB的方程为( ) A .2x −y −1=0B .2x +y −1=0C .2x −y +1=0D .2x +y +1=019.(2020·全国(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .920.(2020·全国(理))若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x −y −3=0的距离为( ) A .√55B .2√55C .3√55D .4√5521.(2020·全国(理))设O 为坐标原点,直线x =a 与双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于D,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .3222.(2019·北京(文))已知双曲线x 2a 2−y 2=1(a >0)的离心率是√5 则a =A .√6B .4C .2D .1223.(2019·全国(文))已知F 是双曲线C:x 24−y 25=1的一个焦点,点P 在C 上,O 为坐标原点,若|OP |=|OF |,则△OPF 的面积为 A .32B .52C .72D .9224.(2019·北京(理))已知直线l 的参数方程为{x =1+3t,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是 A .15B .25C .45D .6525.(2019·全国(理))双曲线C :x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为 A .3√24B .3√22C .2√2D .3√226.(2019·天津(文))已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2−y 2b 2=1 (a >0,b >0)的两条渐近线分别交于点A 和点B ,且||4||AB OF (O 为原点),则双曲线的离心率为 A .√2B .√3C .2D .√527.(2019·全国(文))设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.√2B.√3C.2 D.√528.(2019·全国(文))已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若│AF2│=2│F2B│,│AB│=│BF1│,则C的方程为A.2212xy+=B.x23+y22=1C.x24+y23=1D.x25+y24=129.(2019·全国(文))双曲线C:22221(0,0)x ya ba b-=>>的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40°B.2cos40°C.1sin50°D.1cos50°30.(2019·上海)以(a1,0),(a2,0)为圆心的两圆均过(1,0),与y轴正半轴分别交于(0,y1),(0,y2),且满足ln y1+ln y2=0,则点(1a1,1a2)的轨迹是A.直线B.圆C.椭圆D.双曲线31.(2018·北京(理))在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x−my−2= 0的距离,当θ、m变化时,d的最大值为A.1B.2C.3D.432.(2018·全国(理))设F1,F2是双曲线2222:1x yCa b-=()的左、右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=√6|OP|,则C的离心率为A.√5B.√3C.2D.√2 33.(2018·全国(理))直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x−2)2+y2=2上,则△ABP面积的取值范围是A.[2 , 6]B.[4 , 8]C.[√2 , 3√2]D.[2√2 , 3√2] 34.(2018·全国(文))已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为A.1−√32B.2−√3C.√3−12D.√3−135.(2018·全国(理))已知F1,F2是椭圆C: x2a2+y2b2=1 (a>b>0)的左,右焦点,A是C的左顶点,点P在过A且斜率为√36的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A .23B .12C .13D .1436.(2017·全国(理))已知双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)的一条渐近线方程为y =√52x ,且与椭圆x 212+y 23=1有公共焦点.则C 的方程为( )A .x 28−y 210=1 B .x 24−y 25=1 C .x 25−y 24=1 D .x 24−y 23=137.(2017·全国(文))过抛物线C :y 2=4x 的焦点F ,且斜率为√3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( ) A .√5 B .2√2 C .2√3 D .3√3二、多选题38.(2021·全国)在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( ) A .当λ=1时,△AB 1P 的周长为定值 B .当μ=1时,三棱锥P −A 1BC 的体积为定值 C .当λ=12时,有且仅有一个点P ,使得A 1P ⊥BP D .当μ=12时,有且仅有一个点P ,使得1A B 平面AB 1P39.(2021·全国)已知点P 在圆(x −5)2+(y −5)2=16上,点A (4,0)、B (0,2),则( ) A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2 C .当∠PBA 最小时,|PB |=3√2 D .当∠PBA 最大时,|PB |=3√240.(2020·海南)已知曲线C:mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为√nC .若mn <0,则C 是双曲线,其渐近线方程为y =±√−mn xD .若m =0,n >0,则C 是两条直线未命名未命名三、填空题41.(2021·全国)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP ,若|FQ |=6,则C 的准线方程为______. 42.(2021·全国(文))已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________. 43.(2021·全国(理))已知双曲线C:x 2m−y 2=1(m >0)的一条渐近线为√3x +my =0,则C 的焦距为_________. 44.(2021·全国(文))双曲线x 24−y 25=1的右焦点到直线x +2y −8=0的距离为________.45.(2020·天津)已知直线x −√3y +8=0和圆x 2+y 2=r 2(r >0)相交于A,B 两点.若||6AB =,则r 的值为_________.46.(2020·江苏)在平面直角坐标系xOy 中,若双曲线x 2a2﹣y 25=1(a >0)的一条渐近线方程为y=√52x ,则该双曲线的离心率是____.47.(2020·全国(理))已知F 为双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的右焦点,A 为C的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.48.(2019·江苏)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.49.(2019·北京(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.50.(2019·全国(理))设F 1,F 2为椭圆C:x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为___________. 51.(2019·浙江)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是_______.52.(2019·全国(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为____________.53.(2018·上海)已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则11√2+22√2的最大值为______.54.(2018·江苏)在平面直角坐标系xOy 中,A 为直线l:y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为________.55.(2018·江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点F(c,0)到一条渐近线的距离为√32c ,则其离心率的值是________.56.(2018·北京(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为_________.57.(2018·全国(理))已知点M(−1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.58.(2018·浙江)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m =___________时,点B 横坐标的绝对值最大.四、解答题59.(2021·全国(文))已知抛物线C:y 2=2px(p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.60.(2021·全国(文))抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切. (1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.61.(2021·浙江)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线MA,MB,AB ,x 轴依次交于点P ,Q ,R ,N ,且|RN |2=|PN |⋅|QN |,求直线l 在x 轴上截距的范围. 62.(2021·全国(理))在直角坐标系xOy 中,⊙C 的圆心为()2,1C ,半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.63.(2021·全国(理))已知抛物线C:x 2=2py (p >0)的焦点为F ,且F 与圆M:x 2+(y +4)2=1上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,PA,PB 是C 的两条切线,A,B 是切点,求△PAB 面积的最大值. 64.(2021·全国)在平面直角坐标系xOy 中,已知点F 1(−√17,0)、F 2(√17,0)|MF 1|−|MF 2|=2,点M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且|TA |⋅|TB |=|TP |⋅|TQ |,求直线AB 的斜率与直线PQ 的斜率之和. 65.(2020·海南)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 66.(2020·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,−3),右焦点为F ,且|OA|=|OF|,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 67.(2020·北京)已知椭圆C:x 2a 2+y 2b 2=1过点A(−2,−1),且a =2b . (Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B 的直线l 交椭圆C 于点M,N ,直线MA,NA 分别交直线x =−4于点P,Q .求|PB||BQ|的值.68.(2020·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.69.(2020·江苏)在平面直角坐标系xOy 中,已知椭圆E:x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.70.(2020·全国(理))已知A 、B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD过定点.71.(2020·全国(文))已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.72.(2019·江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.73.(2019·江苏)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x−1)2+y2= 4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.74.(2019·北京(理))已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.75.(2019·全国(文))已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B 且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径.(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.76.(2019·上海)已知抛物线方程y2=4x,F为焦点,P为抛物线准线上一点,Q为线段PF与抛物线的交点,定义:d(P)=|PF|.|FQ|)时,求d(P);(1)当P(−1,−83(2)证明:存在常数a,使得2d(P)=|PF|+a;(3)P1,P2,P3为抛物线准线上三点,且|P1P2|=|P2P3|,判断d(P1)+d(P3)与2d(P2)的关系.77.(2018·上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t 表示点B 到点F 距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP ,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 78.(2018·北京(文))已知椭圆M:x 2a 2+y 2b2=1(a >b >0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B . (Ⅰ)求椭圆M 的方程; (Ⅱ)若k =1,求|AB|的最大值;(Ⅲ)设P (−2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点Q (−74,14) 共线,求k .79.(2018·江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点(√3,12),焦点F 1(−√3,0),F 2(√3,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A,B 两点.若△OAB 的面积为2√67,求直线l 的方程.80.(2018·北京(理))已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM ⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,QN ⃗⃗⃗⃗⃗⃗ =μQO ⃗⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值. 81.(2018·全国(文))在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ−3=0. (1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程. 82.(2018·全国(理))已知斜率为k 的直线l 与椭圆C : x 24+y 23=1交于A ,B 两点,线段AB 的中点为M(1 , m)(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ +FB ⃗⃗⃗⃗⃗ =0.证明:|FA ⃗⃗⃗⃗⃗ |,|FP ⃗⃗⃗⃗⃗ |,|FB ⃗⃗⃗⃗⃗ |成等差数列,并求该数列的公差.83.(2018·全国(文))已知斜率为k 的直线l 与椭圆C : x 24+y 23=1交于A ,B 两点.线段AB 的中点为M(1,m)(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ +FB ⃗⃗⃗⃗⃗ =0⃗ .证明:2|FP ⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ |+|FB ⃗⃗⃗⃗⃗ |. 84.(2018·全国(理))在平面直角坐标系xOy 中,⊙O 的参数方程为{x =cos θ,y =sin θ(θ为参数),过点(0 , −√2)且倾斜角为α的直线l 与⊙O 交于A , B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.85.(2018·浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+y 24=1(x<0)上的动点,求△PAB 面积的取值范围.86.(2018·全国(文))设抛物线C : y 2=2x ,点A(2 , 0),B(−2 , 0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN . 87.(2018·天津(理))设椭圆x 2a2+y 2b 2=1 (a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为√53,点A 的坐标为(b,0),且|FB |⋅|AB |=6√2.(I )求椭圆的方程;(II )设直线l :y =kx(k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若|AQ ||PQ |=5√24sin∠AOQ (O 为原点) ,求k 的值.88.(2018·全国(文))设抛物线C : y 2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线l 与C 交于A ,B 两点,|AB| =8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 89.(2018·天津(文))设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为√53,|AB |=√13.(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.五、双空题90.(2021·浙江)已知椭圆x 2a 2+y 2b 2=1(a >b >0),焦点1(,0)Fc -,2(,0)F c (c >0),若过F 1的直线和圆(x −12c)2+y 2=c 2相切,与椭圆在第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是___________,椭圆的离心率是___________.91.(2020·浙江)设直线l:y =kx +b(k >0)与圆x 2+y 2=1和圆(x −4)2+y 2=1均相切,则k =_______;b =______.92.(2019·浙江)已知圆C 的圆心坐标是(0,m),半径长是r .若直线2x −y +3=0与圆相切于点A(−2,−1),则m =_____,r =______. 93.(2018·北京(理))已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2−y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.近五年(2017-2021)高考数学真题分类汇编十二、解析几何(答案解析)1.A 【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可. 【解析】由题意可知,双曲线的渐近线方程为:x 216−y 29=0,即3x ±4y =0,结合对称性,不妨考虑点(3,0)到直线3x +4y =0的距离:d =√9+16=95. 故选:A. 2.A 【分析】设点P (x 0,y 0),由依题意可知,B (0,1),220015x y +=,再根据两点间的距离公式得到2PB ,然后消元,即可利用二次函数的性质求出最大值. 【解析】设点P (x 0,y 0),因为B (0,1),220015x y +=,所以|PB |2=x 02+(y 0−1)2=5(1−y 02)+(y 0−1)2=−4y 02−2y 0+6=−4(y 0−12)2+254,而−1≤y 0≤1,所以当y 0=12时,|PB |的最大值为52. 故选:A . 【小结】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出. 3.C 【分析】本题通过利用椭圆定义得到|MF 1|+|MF 2|=2a =6,借助基本不等式|MF 1|⋅|MF 2|≤(|MF 1|+|MF 2|2)2即可得到答案.【解析】由题,a 2=9,b 2=4,则|MF 1|+|MF 2|=2a =6,所以|MF 1|⋅|MF 2|≤(|MF 1|+|MF 2|2)2=9(当且仅当|MF 1|=|MF 2|=3时,等号成立).故选:C . 【小结】椭圆上的点与椭圆的两焦点的距离问题,常常从椭圆的定义入手,注意基本不等式得灵活运用,或者记住定理:两正数,和一定相等时及最大,积一定,相等时和最小,也可快速求解. 4.C 【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程. 【解析】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦,对其进行整理变形:(as 2+at 2−2ast +b )(as 2+at 2+2ast +b )=(as 2+b )2,()()222222(2)0asat b ast as b++--+=,()2222222240asat b at a s t ++-=,222242220a s t a t abt -++=,所以22220as at b -++=或t =0,其中2212s t b b a a-=为双曲线,t =0为直线.故选:C. 【小结】关键点小结:本题考查轨迹方程,关键之处在于由题意对所得的等式进行恒等变形,提现了核心素养中的逻辑推理素养和数学运算素养,属于中等题. 5.A 【分析】根据双曲线的定义及条件,表示出|PF 1|,|PF 2|,结合余弦定理可得答案.【解析】因为|PF1|=3|PF2|,由双曲线的定义可得|PF1|−|PF2|=2|PF2|=2a,所以|PF2|=a,|PF1|=3a;因为1260F PF∠=︒,由余弦定理可得4c2=9a2+a2−2×3a⋅a⋅cos60°,整理可得4c2=7a2,所以e2=c2a2=74,即e=√72.故选:A【小结】关键小结:双曲线的定义是入手点,利用余弦定理建立a,c间的等量关系是求解的关键. 6.C【分析】设P(x0,y0),由B(0,b),根据两点间的距离公式表示出|PB|,分类讨论求出|PB|的最大值,再构建齐次不等式,解出即可.【解析】设P(x0,y0),由B(0,b),因为x02a2+y02b2=1,a2=b2+c2,所以|PB|2=x02+(y0−b)2=a2(1−y02b2)+(y0−b)2=−c2b2(y0+b3c2)2+b4c2+a2+b2,因为−b≤y0≤b,当−b3c2≤−b,即b2≥c2时,|PB|max22,即|PB|max,符合题意,由b2≥c2可得a2≥2c2,即0<e≤√22;当−b3c2>−b,即b2<c2时,|PB|max2b4c222,即b4c2+a2+b2≤4b2,化简得,(c2−b2)2≤0,显然该不等式不成立.故选:C.【小结】本题解题关键是如何求出|PB|的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.7.D【分析】由抛物线的焦点(1,0)可求得直线l的方程为x+yb=1,即得直线的斜率为−b,再根据双曲线的渐近线的方程为y=±ba x,可得−b=−ba,−b×ba=−1即可求出a,b,得到双曲线的方程.【解析】由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线的斜率为−b,又双曲线的渐近线的方程为y=±ba x,所以−b=−ba,−b×ba=−1,因为0,0a b>>,解得a=1,b=1.故选:D.【小结】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.8.B【分析】依据题意不妨作出焦点在x轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ的垂直平分线经过点P,即求解.【解析】如图所示:.因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故选:B.【小结】本题主要考查抛物线的定义的应用,属于基础题.9.A【分析】求出圆心C的轨迹方程后,根据圆心M到原点O的距离减去半径1可得答案.【解析】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C在线段OM上时取得等号,故选:A.【小结】本题考查了圆的标准方程,属于基础题.10.D【分析】根据题意可知,点P既在双曲线的一支上,又在函数234y x=-即可求出点P的坐标,得到|OP|的值.【解析】因为|PA|−|PB|=2<4,所以点P在以A,B为焦点,实轴长为2,焦距为4的双曲线的右支上,由c=2,a=1可得,b2=c2−a2=4−1=3,即双曲线的右支方程为x2−y23=1(x>0),而点P还在函数234y x=-的图象上,所以,由{y=3√4−x2x2−y23=1(x>0),解得{x=√132y=3√32,即|OP|=√134+274=√10.故选:D.【小结】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.11.B 【分析】由△F 1F 2P 是以P 为直角直角三角形得到|PF 1|2+|PF 2|2=16,再利用双曲线的定义得到||PF 1|−|PF 2||=2,联立即可得到12||||PF PF ,代入12F F P S =△12|PF 1||PF 2|中计算即可.【解析】由已知,不妨设F 1(−2,0),F 2(2,0), 则a =1,c =2,因为|OP |=2=12|F 1F 2|, 所以点P 在以F 1F 2为直径的圆上,即△F 1F 2P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即|PF 1|2+|PF 2|2=16,又||PF 1|−|PF 2||=2a =2,所以4=||PF 1|−|PF 2||2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|=16−212||||PF PF ,解得|PF 1||PF 2|=6,所以12F F P S =△12|PF 1||PF 2|=3故选:B 【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题. 12.D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【解析】设直线l 在曲线y =√x 上的切点为(x 0,√x 0),则x 0>0,函数y =√x 的导数为y ′=2√x ,则直线l 的斜率k =2√x ,设直线l 的方程为y −√x 0=2√x x −x 0),即x −2√x 0y +x 0=0, 由于直线l 与圆x 2+y 2=15相切,则0√1+4x =√5,两边平方并整理得5x 02−4x 0−1=0,解得x 0=1,x 0=−15(舍),则直线l 的方程为210x y -+=,即y =12x +12. 故选:D. 【小结】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 13.A 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【解析】∵ca =√5,5c a ∴,根据双曲线的定义可得||PF 1|−|PF 2||=2a , S △PF 1F 2=12|PF 1|⋅|PF 2|=4,即|PF 1|⋅|PF 2|=8,∵F 1P ⊥F 2P ,∴|PF 1|2+|PF 2|2=(2c )2,∴(|PF 1|−|PF 2|)2+2|PF 1|⋅|PF 2|=4c 2,即a 2−5a 2+4=0,解得1a =, 故选:A. 【小结】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题. 14.B 【分析】首先根据直线方程判断出直线过定点P(−1,0),设A(0,−1),当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【解析】由(1)y k x =+可知直线过定点P(−1,0),设A(0,−1),当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大, 即为|AP|=√2. 故选:B. 【小结】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.15.B【分析】,从而可以根据题中所给的条件OD⊥OE,结合抛物线的对称性,可知∠DOx=∠EOx=π4确定出点D的坐标,代入方程求得p的值,进而求得其焦点坐标,得到结果.【解析】因为直线x=2与抛物线y2=2px(p>0)交于E,D两点,且OD⊥OE,,所以D(2,2),根据抛物线的对称性可以确定∠DOx=∠EOx=π4,0),代入抛物线方程4=4p,求得p=1,所以其焦点坐标为(12故选:B.【小结】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.16.A【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【解析】设AB=2a(a>0),以AB中点为坐标原点建立如图所示的平面直角坐标系,则:A(−a,0),B(a,0),设C(x,y),可得:AC→=(x+a,y),BC→=(x−a,y),从而:AC→⋅BC→=(x+a)(x−a)+y2,结合题意可得:(x+a)(x−a)+y2=1,整理可得:x2+y2=a2+1,即点C的轨迹是以AB中点为圆心,√a2+1为半径的圆.故选:A.【小结】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.17.B【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【解析】圆x2+y2−6x=0化为(x−3)2+y2=9,所以圆心C坐标为C(3,0),半径为3,设P(1,2),当过点P的直线和直线CP垂直时,圆心到过点P的直线的距离最大,所求的弦长最短,此时|CP|=√(3−1)2+(−2)2=2√2根据弦长公式得最小值为2√9−|CP|2=2√9−8=2.故选:B.【小结】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.18.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点A,P,B,M共圆,且AB⊥MP,根据|PM|⋅|AB|=4S△PAM=4|PA|可知,当直线MP⊥l时,|PM|⋅|AB|最小,求出以MP为直径的圆的方程,根据圆系的知识即可求出直线AB的方程.【解析】圆的方程可化为(x−1)2+(y−1)2=4,点M到直线l的距离为d=√22+12=√5>2,所以直线l与圆相离.依圆的知识可知,四点A,P,B,M四点共圆,且AB⊥MP,所以|PM|⋅|AB|=4S△PAM=4×12×|PA|×|AM|=4|PA|,而|PA|=√|MP|2−4,当直线MP⊥l时,|MP|√5min,|PA|min,此时|PM|⋅|AB|最小.∴MP:y−1=12(x−1)即y=12x+12,由{y=12x+122x+y+2=0解得,{x=−1y=0.所以以MP为直径的圆的方程为(x−1)(x+1)+y(y−1)=0,即x2+y2−y−1=0,两圆的方程相减可得:2x+y+1=0,即为直线AB的方程.故选:D.【小结】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.19.C【分析】利用抛物线的定义建立方程即可得到答案.【解析】设抛物线的焦点为F,由抛物线的定义知|AF|=x A+p2=12,即12=9+p2,解得p=6.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 20.B【分析】由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x−y−3=0的距离.【解析】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a,a),则圆的半径为a,圆的标准方程为(x−a)2+(y−a)2=a2.由题意可得(2−a)2+(1−a)2=a2,可得a2−6a+5=0,解得1a=或a=5,所以圆心的坐标为(1,1)或()5,5,圆心到直线的距离均为121132555d⨯--==;圆心到直线的距离均为225532555d⨯--==圆心到直线2x−y−3=0的距离均为d=√5=2√55;所以,圆心到直线2x−y−3=0的距离为2√55.故选:B.【小结】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题. 21.B【分析】因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c= 2√a2+b2,结合均值不等式,即可求得答案.【解析】∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=ba x,解得{x=ay=b故D(a,b)联立{x=ay=−ba x,解得{x=ay=−b故E(a,−b)∴|ED|=2b ∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号。
《解析几何》课程教学大纲======1.doc

《解析几何》课程教学大纲课程代号:21090010总学时:讲授/理论52学时,实验/技术/技能20学时,上机/课外实践0 学时适用专业:数学与应用数学、信息与计算科学先修课程:本课程是建立在中学《平面解析几何》与《立体几何》的基础上, 引进向量代数这个工具,在立体空间建立起空间坐标系,从而建立代数与空间几何的内在联系,达到用代数方法解决几何问题的目的。
一、本课程地位、性质和任务本课程为高等院校数学系各专业的一门必修的专业基础课程。
它为学习数学系的其它课程(诸如《数学分析》、《高等代数》及《微分几何》等打好基础,同时,它在自然科学与工程技术中,也有广泛的应用。
通过本课程的教学,应使学生系统地掌握空间解析几何的基础知识和基本理论;正确地理解和使用向量;在掌握几何图形性质的同时,提高运用代数方法,解决几何问题的能力;进一步培养学生的空间想象能力;能在较高的理论水平基础上,处理教学或工程技术中的有关问题。
二、课程教学的基本要求能够以向量代数为工具,用标架法建立空间直线、平面方程;掌握直线、平面的位置关系及几何量计算;掌握特殊曲面方程的推导并能利用平面截割法刻划曲面的几何性质;二次曲线(曲面)的一般理论。
三、课程学时分配、教学要求及主要内容(一)课程学时分配一览表早主要内容总学学时分配讲授讨论习题实验其他1向量与坐标181442轨迹与方程443平面与空间直线161244特殊曲面与二次曲16106面181265二次曲线的一般理论(二)课程教学要求及主要内容第一章向量与坐标教学目的和要求:向量代数及坐标法在自然科学和工程技术中有着广泛的应用。
本章是工具性的知识,是学习后面各章的基础。
本章通过向量代数与空间坐标系基本知识的教学,使学生能以向量为工具,研究并简单地解决某些几何问题。
教学重点和难点:1、透彻理解向量的有关基本概念。
2、牢固掌握向量的各种运算及其对应的几何意义与算律。
3、理解坐标系建立的依据以及向量与点坐标的意义,熟练地利用向量的坐标进行运算。
几何专项解析试题及答案

几何专项解析试题及答案1. 题目:已知三角形ABC中,AB=5,BC=7,AC=6,求三角形ABC的面积。
解析:根据海伦公式,首先计算半周长p:p = (AB + BC + AC) / 2 = (5 + 7 + 6) / 2 = 9然后计算三角形的面积S:S = √[p(p - AB)(p - BC)(p - AC)] = √[9(9 - 5)(9 - 7)(9 - 6)] = √[9 × 4 × 2 × 3] = √[216] = 6√6所以,三角形ABC的面积为6√6。
答案:6√6。
2. 题目:在直角坐标系中,点A(2, 3),点B(-1, 2),求线段AB的中点坐标。
解析:线段AB的中点坐标可以通过以下公式计算:中点坐标 = ((x1 + x2) / 2, (y1 + y2) / 2)将点A和点B的坐标代入公式:中点坐标 = ((2 - 1) / 2, (3 + 2) / 2) = (0.5, 2.5)所以,线段AB的中点坐标为(0.5, 2.5)。
答案:(0.5, 2.5)。
3. 题目:已知圆的半径为4,圆心坐标为(0, 0),求圆的面积。
解析:圆的面积可以通过公式S = πr²计算,其中r为圆的半径。
将半径代入公式:S = π × 4² = 16π所以,圆的面积为16π。
答案:16π。
4. 题目:在平面直角坐标系中,点P(3, 4)关于x轴对称的点的坐标是什么?解析:点P关于x轴对称的点的坐标可以通过以下方式得到:对称点坐标 = (x, -y)将点P的坐标代入公式:对称点坐标 = (3, -4)所以,点P关于x轴对称的点的坐标为(3, -4)。
答案:(3, -4)。
5. 题目:已知矩形ABCD的长AB=6,宽BC=4,求矩形ABCD的对角线AC的长度。
解析:根据勾股定理,矩形的对角线AC的长度可以通过以下公式计算:AC² = AB² + BC²将长和宽代入公式:AC² = 6² + 4² = 36 + 16 = 52所以,AC = √52 = 2√13因此,矩形ABCD的对角线AC的长度为2√13。
文科数学2010-2019高考真题分类训练专题九 解析几何第二十五讲 椭圆—后附解析答案

专题九 解析几何第二十五讲 椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .3|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .B C .23 D .595.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =时,证明:32k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为5. (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E :22221x y a b+=(a >b >0)经过点(0,1)A -,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)如图,椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,且过2F 的直线交椭圆于,P Q 两点,且PQ ⊥1PF .(Ⅰ)若122PF =+|,222PF =-|,求椭圆的标准方程; (Ⅱ)若|1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率e 的取值范围.42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>3,F 是椭圆E 的右焦点,直线AF 23,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b ab+=>>,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点23)P ,.(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0,22)A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.50.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 3, 过点F 且与x43(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.专题九 解析几何第二十五讲 椭圆答案部分 2019年2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫-⎪⎝⎭. 因为点B 在椭圆()222210x y a b a b +=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B.2.解析:由题意可得:232p p p ⎛⎫-= ⎪⎝⎭,解得8p =.故选D .3.解析(I )由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(Ⅱ)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+.令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k -+=-⋅+-⋅-+-++12||1tt+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t=0,所以直线l 为y kx =,所以直线l 恒过定点(0,0). 4.解析 (1)设椭圆C 的焦距为2c . 因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图所示,联结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E是线段BF2与椭圆的交点,所以32 y=-.因此3(1,)2E--.5.解析:设椭圆的右焦点为F',连接PF',线段PF的中点A在以原点O为圆心,2为半径的圆,连接AO,可得24PF AO'==,设P的坐标为(m,n),可得2343m-=,可得32m=-,15n=,由(2,0)F-,可得直线PF的斜率为15215322=-+.6.解:(1)连结1PF,由2POF△为等边三角形可知在12F PF△中,1290F PF∠=︒,2PF c=,13PF c=,于是122(31)a PF PF c=+=,故C的离心率是31cea==.(2)由题意可知,满足条件的点(,)P x y存在当且仅当1||2162y c⋅=,1y yx c x c⋅=-+-,22221x ya b+=,即||16c y=,①222x y c+=,②22221x ya b+=,③由②③及222a b c=+得422byc=,又由①知22216yc=,故4b=.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥时,存在满足条件的点P . 所以4b =,a的取值范围为)+∞.7.解析(Ⅰ)设椭圆的半焦距为c,由已知有2b =,又由222a b c =+,消去b得2222a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (Ⅱ)由(Ⅰ)知,2a c =,b = ,故椭圆方程为2222143x y c c+=.由题意,(),0F c -,则直线l 的方程为3()4y x c =+. 点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,,,消去y 并化简,得到2276130x cx c +-=,解得1x c =,2137c x =-,代入到l 的方程,解得132y c =,2914y c =-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设()4,C t . 因为OC AP ∥,且由(Ⅰ)知()2,0A c -,故3242c tc c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l2=,可得2c =.所以,椭圆的方程为2211612x y +=. 8.解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .9.解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =22522x y ⎛⎫+-= ⎪⎝⎭.2010-2018年1.C 【解析】不妨设0a >,因为椭圆C 的一个焦点为(20),,所以2c =,所以222448a b c =+=+=,所以C 的离心率为2c e a ==.故选C . 2.D 【解析】由题设知1290F PF ∠=,2160PF F ∠=︒,12||2F F c =,所以2||PF c =,1||PF .由椭圆的定义得12||||2PF PF a +=2c a +=,所以1)2c a =,故椭圆C 的离心率1c e a ===.故选D .3.C 【解析】由题意25=a ,=a P 到该椭圆的两个焦点的距离之和为2=a ,故选C .4.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B .5.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A .6.A 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab ≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab ≥=≥, 得9m ≥,故m 的取值范围为(0,1][9,)+∞,选A .7.B 【解析】不妨设直线l 过椭圆的上顶点(0,)b 和左焦点(,0)c -,0,0b c >>,则直线l的方程为0bx cy bc -+=124b =⨯,解得223b c =,又222b ac =-,所以2214c a =,即12e =,故选B .8.A 【解析】由题意,不妨设点P 在x 轴上方,直线l 的方程为()(0)y k x a k =+>,分别令x c =-与0x =,得||()FM k a c =-,||OE ka =,设OE 的中点为G ,由OBG FBM ∆∆,得||||||||OG OB FM BF =,即2()ka a k a c a c =-+,整理得13c a =,所以椭圆C 的离心率13e =,故选A . 9.B 【解析】∵抛物线C :28y x =的焦点坐标为(2,0),准线l 的方程为2x =- ①,设椭圆E 的方程为22221(0)x y a b a b+=>>,所以椭圆E 的半焦距2c ,又椭圆的离心率为12,所以4,a b ==E 的方程为2211612x y +=②,联立①②, 解得(2,3),(2,3)A B ---或(2,3),(2,3)A B ---,所以||6AB ,选B . 10.B 【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C . 11.A 【解析】设椭圆的左焦点为1F ,半焦距为c ,连结1AF ,1BF ,则四边形1AF BF 为平行四边形,所以11||||||||4AF BF AF BF +=+=,根据椭圆定义, 有11||||||||4AF AF BF BF a +++=,所以84a ,解得2a .因为点M 到直线l :340x y 的距离不小于45,即44,155b b ≥≥,所以21b ≥,所以2221,41a c c --≥≥,解得0c <0c a <,所以椭圆的离心率的取值范围为(0,]2.12.D 【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤Q P ,两点间的最大距离是.13.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 14.D【解析】∵1,2,c a b === D.15.C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==16.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2. 17.2【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得||||OQ OF =,又1||||OF OF =,所以1F Q QF ⊥,不妨设1||QF ck =, 则||QF bk =,1||F F ak =,因此2c ak =,又2a ck bk =+, 由以上二式可得22c ak a b c==+,即c a a b c=+,即22a c bc =+,所以bc =,22e =. 18.22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b -+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =.19.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.20.33【解析】由题意可得2(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-232b ac =,解得33e =. 21.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b--+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=. 22.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-.23.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==.即椭圆的离心率为5. 24.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d .12(F F,可得1()F A m n =,2()F B c d =,∵125F A F B =,∴5nc d ==,又点,A B 在椭圆上, ∴2213m n +=,22(5()135m n ++=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.25.【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)44364(48)20x x y y y x =--+-=-=∆. 因为00,0x y >,所以001x y ==. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=7AB =. 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为2.综上,直线l的方程为y =+26.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+27.【解析】(1)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=. (2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232mx x +=-,212334m x x -=,则12|||AB xx =-==易得当20m =时,max ||AB =,故||AB .(3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=,则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.28.【解析】(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍, 可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =. 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去; 当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.29.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-,0(0.)NM y =.由2NP NM =得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-, (,)OP m n =,(3,)PQ m t n =---,由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=.又因为01e <<,解得12e =.所以,椭圆的离心率为12. (Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c cx y m m -==++, 即点Q 的坐标为(22)3(,)22m c cm m -++.由已知|FQ |=32c ,有222(22)33[]()()222m c c cc m m -++=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c-+=⎧⎪⎨+=⎪⎩消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2cP c,进而可得5|2|c FP ==,所以53||||||22c cFP FQ Q c P -=-==.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN FP ⊥,所以339||||tan 248c cQN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =. 所以,椭圆的方程为2211612x y +=. 31.【解析】(Ⅰ)由椭圆的离心率为2,得2222()a a b =-,又当1y =时,2222a x a b =-,得2222a a b-=,所以24a =,22b =,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩ 得222(21)4240k x kmx m +++-=, 由0∆> 得2242m k <+ (*)且122421kmx x k +=+ , 因此122221my y k +=+ , 所以222(,)2121km mD k k -++ ,又(0,)N m - , 所以222222()()2121km m ND m k k =-++++ 整理得:2242224(13)(21)m k k ND k ++=+ ,因为NF m =所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++令283t k =+,3t ≥ 故21214t k ++=所以2221616111(1)2ND t t NFt t=+=++++. 令1y t t=+,所以211y t '=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增, 因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF+=≤,由(*)得m <<且0m ≠,故12NDNF ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ得最小值为6π. 从而EDF ∠的最小值为3π,此时直线l 的斜率时0. 综上所述:当0k =,(m ∈⋃时,EDF ∠取得最小值为3π. 32.【解析】(Ⅰ)设椭圆C 的方程为22221(0,0)x y a b a b+=>>.由题意得2,2a c a=⎧⎪⎨=⎪⎩解得c =所以2221b a c =-=.所以椭圆C 的方程为2214x y +=. (Ⅱ)设(,)M m n ,且22m -<<,则(,0),(,)D m N m n -.直线AM 的斜率2AM nk m =+,由AM DE ⊥,则1AM DE k k ⋅=-, 故直线DE 的斜率2DE m k n+=.所以直线DE 的方程为2()m y x m n +=--.直线BN 的方程为(2)2ny x m=--.联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩,解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5. 33.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为(77. 34.【解析】(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c ==2c e a ==. (II )设()00,x y P (00x <,00y <),则220044x y +=.又()2,0A ,()0,1B ,所以直线PA 的方程为()0022y y x x =--. 令0x =,得0022y y x M =--,从而002112y y x M BM =-=+-. 直线PB 的方程为0011y y x x -=+. 令0y =,得001x x y N =--,从而00221x x y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭ ()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=.从而四边形ABNM 的面积为定值.35.【解析】(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何李养成答案【篇一:空间解析几何教学大纲】txt>一课程说明1.课程基本情况课程名称:空间解析几何英文名称:analytic geometry 课程编号:2411207 开课专业:数学与应用数学开课学期:第1学期学分/周学时:3/3 课程类型:专业基础课2.课程性质(本课程在该专业的地位作用)本课程是数学与应用数学及信息与计算机科学专业的一门专业基础课,是初等数学通向高等数学的桥梁,是高等数学的基石,线性代数,数学分析,微分方程,微分几何,高等几何等课程的学习都离不开空间解析几何的基本知识及研究方法。
空间解析几何是用代数的方法研究几何图形的一门学科,是从初等数学进入高等数学的转折点,是沟通几何形式与数学关系的一座桥梁。
3.本课程的教学目的和任务通过本课程的学习,学生在掌握解析几何的基本概念的基础上,树立起空间观念。
使学生受到几何直观及逻辑推理等方面的训练,扩大知识领域,培养空间想象能力以及运用向量法与坐标法计算几何问题和证明几何问题的能力,并且能用解析方法研究几何问题和对解析表达式给予几何解释,为进一步学习其它课程打下基础;另一方面加深对中学几何理论与方法的理解,从而获得在比较高的观点下处理几何问题的能力,借助解析几何所具有的较强的直观效果提高学生认识事物的能力。
4.本课程与相关课程的关系、教材体系特点及具体要求本课程的教学,要求学生熟练掌握用代数的方法在空间直角坐标系下,研究平面、空间直线、柱面、锥面、旋转曲面和二次曲面等几何图形的性质,能对坐标化方法运用自如,从而达到数与形的统一。
了解二次曲线的一般理论和二次曲面的一般理论。
以培养学生掌握解析几何的基础知识为主,着力培养学生运用解析几何的思想和方法解决实际问题的能力,以及娴熟的矢量代数的计算能力和推理、演绎的逻辑思维能力,为后续课程的学习打下良好的基础。
5.教学时数及课时分配二教材及主要参考书1.李养成,《空间解析几何》,科学出版社。
2.吴光磊、田畴编,《解析几何简明教程》,高等教育出版社。
3.丘维声,《解析几何》,北京大学出版社。
4.南开大学《空间解析几何引论》编写组编,《空间解析几何引论》,高教出版社。
5.吕林根许子道等编《解析几何》(第三版),高等教育出版社出版三教学方法和教学手段说明1.启发式教学,课堂教学与课后练习相结合。
2.可考虑运用多媒体教学软件辅助教学。
四成绩考核办法成绩考核办法按学校教务处的相关规定执行。
五教学内容第一部分向量代数(10学时)一、教学目的向量运算及运用。
二、教学重点矢量的线性运算(矢量的加法与数乘)与矢量的乘法运算(数量积、向量积、混合积),混合积的几何意义。
三、教学难点矢量线性相关和线性无关的概念及用矢量法证明几何问题。
四、讲授要求正确理解自由矢量、单位矢量的概念、矢量差、数量与矢量乘法、矢量的线性相关和线性无关、标架、坐标等的定义;掌握矢量加法的运算法则和运算规律及多边形法则;弄清数量与矢量乘法的其运算规律;充分理解三矢量共面的充要条件;理解标架、坐标的有关概念;掌握射影的概念及性质;掌握数性积的概念和运算规律;掌握矢性积的概念和运算规律;掌握混合积的概念和性质;掌握用失量证明三点共线与三线共点,拉格朗日恒等式等。
五、讲授要点1、向量及其运算 2、标架与坐标 3、向量的内积 4、两向量的外积 5、向量的混合积六、实验及实践要求通过复习课和习题课来巩固所学内容及习题处理。
第二部分空间的平面与直线(10学时)一、教学目的让学生了解和掌握直线与平面的方程及其位置关系。
二、教学重点直线与平面的方程,异面直线的公垂线方程。
三、教学难点平面的法式方程,两异面直线的距离及方程。
四、讲授要求掌握平面的点位式、一般式和法式方程;掌握点与平面间的距离公式;熟悉并掌握判别两平面三种位置关系的条件;掌握直线与平面夹角的有关概念;熟练掌握两异面直线间的距离公式及公垂线方程的求法;熟练掌握点到直线的距离公式;充分理解平面束的概念和性质,能熟练利用平面束解决实际问题。
五、讲授要点 1、平面和直线的方程 2、线形图形的位置关系 3、平面束4、线性图形的度量关系六、实验及实践要求通过复习课和习题课巩固本章内容处理课后习题。
第三部分常见的曲面(12学时)一、教学目的熟悉常见的一些空间二次曲面方程及几何特征。
二、教学重点掌握柱面、锥面、旋转曲面的定义及方程。
三、教学难点柱面、锥面、旋转曲面的性质及方程求解。
四、讲授要求掌握柱面方程的定义及相关概念;掌握锥面方程的定义及相关概念;掌握旋转曲面方程的定义及相关概念。
五、讲授要点 1、图形和方程 2、柱面和锥面 3、旋转曲面4、曲线与曲面的参数方程,曲线族生成曲面5、物种典型的二次曲面 6、二次直纹曲面 7、作简图六、实验及实践要求通过复习课和习题课巩固本章内容处理课后习题。
第四部分二次曲面的一般理论(12学时)一、教学目的空间二次曲面方程及几何特征。
二、教学重点用直角坐标变换来化简一般二次曲面方程,得出二次曲面的分类。
三、教学难点掌握二次曲面的不变量,用不变量化简二次曲面。
四、讲授要求理解空间直角坐标变换,掌握变换关系;会利用转轴化简二次曲面方程;掌握二次曲面的分类;掌握二次曲面的不变量,会用不变量化简二次曲面;理解二次曲面的中心、渐近方向、径面、切线和切平面,并会求出二次曲面的这些量;了解平面二次曲线的方程、类型、不变量等。
【篇二:空间两条直线的关系】摘要:本文通过空间两条直线上的三个重要向量,表现出了空间两条直线的位置关系,从而得出了用三个向量表示空间直线关系的充要条件,可以方便的解决关于空间两直线关系的问题.关键词:空间直线;异面;相交;平行空间两直线的关系有异面和共面两种,其中共面直线又可以分为相交,平行,重合三种.在仿射坐标系中,设两直线l1与l2过点m1?x1,y1,z1?与m2?x2,y2,z2?,方?????向向量分别为v1??x1,y1,z1? ,v2??x2,y2,z2?,那么它们的标准方程为:l1:x?xy?1y1??x1y1z?1zz1l2:x?x2y?y2z?z2??. x2y2z2????????????l1与l2的关系取决于三个向量m1m2, v1, v2的相互关系; ????????????(1)当且仅当三向量m1m2, v1, v2异面时, l1与l2异面,即不共面; ????????????(2)当且仅当三向量m1m2, v1, v2共面时, l1与l2共面;在共面的情况下:?????(1)如果v1, v2不平行时, l1与l2相交; ????????????(2)如果v1, v2平行但不平行于m1m2,那么l1与l2平行; ????????????(3)如果m1m2, v1, v2的相互平行,那么l1与l2重合;因此,我们可以得到下面命题:????????????命题 1,l1与l2异面?(m1m2, v1, v2)?0. ?????????????????2,l1与l2相交?(m1m2, v1, v2)=0且v1, v2不共线. ????????????3,l1与l2平行?v1, v2共线.但和m1m2不共线. ???????????? 4,l1与l2重合?m1m2, v1, v2为共线向量.用坐标表示,则有下面推论:x2?x1y2?y1y1y2z2?z1z1z2?0;推论 1.l1与l2异面???x1x22.l1与l2相交???0且x1:y1:z1?x2:y2:z2;3.l1与l2平行?x1:y1:z1?x2:y2:z2??x2?x1?:?y2?y1?:?z2?z1?;4.l1与l2重合?x1:y1:z1?x2:y2:z2??x2?x1?:?y2?y1?:?z2?z1?;下面我们要定义空间两直线的夹角,即平行于空间两直线的两向量间的夹角.两直线l1与l2间的角记做??l1,l2?,空间两直线l1与l2的夹角,如果用它们的方向?????向量v1, v2之间的角表示,就是??l1,l2?.因此,在直角坐标系里,空间两直线的夹角的余弦为cos??l1,l2??通过两直线的夹角我们可知两直线垂直的充要条件是:x1x2?y1y2?z1z2?0. 综上所述,我们可判定空间两直线的关系为异面,相交(垂直),平行,重合五种.通过以上几种关系的充要条件,我们可以已知两直线方程,求两直线的关系.求通过某点且与已知两直线关系的方程.已知两个含参直线关系,求直线的方程中的参数.求通过某点且与一直线关系的直线方程.求与三条直线有关系的方程. 例一已知两直线xyz?1x?1y?1z?1l1:??,l2:??, 1?10110求两直线l1与l2的关系. ??解:因为直线l1过点m1?0,0,?1?,方向向量为v1??1,?1,0?,???而直线l2过点m2?1,1,1?,方向向量为v2??1,1,0?, ???????因为 m1m2??1,1,2?1?????????从而有 ??m1m2,v1,v21?10?4?. 01??所以l1与l2为两异面直线.例二求通过点p?1,1,1?且与两直线l1:xyzx?1y?2z?3??, l2:??123214都相交的直线的方程.?解设所求直线的方向向量为v??x,y,z?,那么所求直线l的方程可写成?因为l与l1,l2都相交,而且l1过点m1?0,0,0?,方向向量为v??1,2,3?,l2过点?m2?1,2,3?,方向向量v??2,1,4?.所以有x?1y?1z?1??, xyz??由上两式得显然又有1????????m1p,v1,v?112y13?0,即x?2y?z?0, z?x??????????m2p,v2,v?2?1?21y4?0,即x?2y?z?0, z?xx:y:z?0:2:4?0:1:2,???0:1:2?1:2:3,即v不平行于v1, ????0:1:2?2:1:4,即v不平行于v2.所以所求直线l的方程为x?1y?1z?1. ??012例三确定?的值使下面两直线相交.?3x?y?2z?6?0l1:?l2:z轴. ?x?4y??z?15?0解:因为直线l1的方向向量???12v???4?233?1???????8,2?3?,13?. 14??1又因为3?114?13?0?x?3?3x?y?6?0所以令 z?0,解? 得?y?3x?4y?15?0??m3,3,0m0,0,0所以l1过点1??又l2过点2??且方向向量2??0,0,1?. ?3?32?3?0?3??6??9所以 ?????80??3?2 40解得 ??5x?5yz?25例四求过点p?2,1,0?且与直线l:垂直相交的直线. ??32?2??解:设所求直线l1方向向量为v1??x,y,z????因为l过点p1?5,0,?25?,方向向量为v2??3,2,?2?又因为l与l1相交3?125?0所以 ??x3y2?解得 ?52x?69y?9z? 0又因为l与l1垂直l?l1,l??所以两直线夹角的余弦cos? 0所以 3x?2y?2z? 0y?9z?0??52x?69综上得方程组: ?,3x?2y?2z?0??解得 x:y:z??232:?120:131: 311,69??9??52692显然120:131:?311?3 :2所以所求直线l1的方程为x?2y?1z??120131311?x?3y?z?0例五求直线l0:?,平行且与下列两条直线x?y?z?4?0?l1:x?3?t,y??1?2t和,z?l2:x4t??2?3t,y??1,z?4?t相交的直线l的方程.?????3111?3?,,解:直线l0的方向向量v0????2?1,1,2?,?1?1?111?因为l与l0平衡,???所以取v0??1,1,2?作为l与l0的方向向量.??又因为l1过点m1?3,?1,0?,方向向量v1??1,2,4?, ???l2过点m2??2,?1,4?,方向向量v2??3,0,?1?.?????直线l与l1相交,那么l必定在经过点m1,方向向量为v0,v1的平面上,x?3y?1z122?0, 4则该平面方程为 11展开得 2y?z?2?0??????同理,l又落在经过点m2方向向量为v0,v2的平面上,x?2y?1z?4102?1?0,所成的平面方程为 13即 x?7y?3z?17?. 0?2y?z?2?0所以所求直线l的一般方程为?.?x?7y?3z?17?0参考文献[1] 李养成. 空间解析几何(新版)[m] 北京:科学出版社,2007年. [2] 周建伟. 解析几何 [m] 北京:高等教育出版社, 2005年.【篇三:数学类教材】书号 7-03-013004-9 7-03-013324-2 7-03-013149-5 7-03-013005-7 7-03-013007-3 7-03-013410-9 7-03-013430-3书名著作者李成章孟道骥杨振明周性伟刘炳初孟道骥林金坤定价 56.00 39.00 20.00 16.00 18.00 20.00 18.00适用专业数学数学数学数学数学数学数学订数数学分析(上、下)(第二版)高等代数与解析几何(上、下)(第二版)(国家级精品课程教材)概率论(第二版) 实变函数(第二版) 泛函分析(第二版) 微分几何(第二版) 拓扑学基础(第二版)国家理科基地教材书号 7-03-011663-1 7-03-012572-x 7-03-013485-0 7-03-011456-6 7-03-011455-8 7-03-011729-8 7-03-011766-2数学分析选论近世代数经典几何复变函数常微分方程线性规划理论与模型应用数学实验教程书名著作者毛羽辉韩士安沈纯理庞学诚林武忠束金龙万福永定价 19.00 19.00 19.00 16.00 17.00 20.00 22.00适用专业数学数学数学数学数学数学数学订数中国科学技术大学数学教学丛书书号 7-03-013439-7 7-03-013150-9 7-03-014579-8 7-03-013422-2 7-03-014032-x 7-03-012426-x 7-03-013356-0 7-03-013300-5 7-03-013484-2 7-03-015378-2 7-03-016942-5微积分五讲微积分(上) (国家级精品课程教材)微积分(下) (国家级精品课程教材)微积分学习辅导线性代数五讲概率论随机过程(第二版) 复变函数数量经济分析数学物理方程组合数学数值计算方法与算法(第二版)书名著作者龚昇谢盛刚谢盛刚陈效群龚昇苏淳缪柏其潘永亮侯定丕季孝达潘永亮张韵华定价 14.00 22.00 28.00 38.00 15.00 25.00 18.00 19.00 19.00 24.00 (估)21.00 (估)8.00适用专业数学、理工理工理工理工数学、理工数学理工理工理工、经济理工理工理工订数1高等院校教材书号 7-03-015232-8书名大学数学教程(上)(国家级精品课程教材)著作者姜东平定价 26.00适用专业地、化、生等地、化、生25.00 20.00 29.00 15.00 29.00 20.00 35.00 32.00 26.00 39.00 38.50等理工理工理工理工理工理工工科工科理工理工农、林、理 27.00 58.00 (上下) (估)42.00 62.00 54.00 28.00 26.00 36.00 28.00 (估)28.00 23.00 32.00 37.00 27.00 22.00 21.00 28.00工订数7-03-015233-6 7-03-015372-3 7-03-013323-4 7-03-013383-8 7-03-013621-7 7-03-013595-4 7-03-015409-6 7-03-015043-0 7-03-015044-9 7-03-006847-5 7-03-007244-8 7-03-011577-5大学数学教程(下)(国家级精品课程教材)高等数学典型应用实例与模型大学数学教程(一) 大学数学教程(二) 大学数学教程(三) 大学数学教程(四) 高等数学(上、下册)高等数学——及其教学软件(上册)(第二版)(含光盘)高等数学——及其教学软件(下册)(第二版)高等数学——一元微积分及其数学软件高等数学——多元微积分及其教学软件(含光盘)大学数学姜东平王宪杰韩旭里韩旭里韩旭里韩旭里刘铁夫上海交大集美大学上海交大集美大学孙薇荣上海交大钟谭卫西北工业大7-03-016037-17-03-010757-8 7-03-009642-8 7-03-008562-0 7-03-008720-8 7-03-013014-6 7-03-010716-07-03-013669-1 7-03-016011-8 7-03-010188-x 7-03-013536-9 7-03-012983-0 7-03-009141-8 7-03-006951-x 2高等数学(上、下册)高等数学 (上、下册) 工科数学分析(上、下册) 工科数学分析(上、下册) 高等数学习题课教程(上册)高等数学习题课教程(下册)高等数学(全一册)大学数学(微积分部分)(国家级精品课程教材)大学数学(微积分部分)习题与解答大学数学(线性代数、概率论与数理统计)(国家级精品课程教材)大学数学教程经济应用数学高等数学大学数学(国家级精品课程教材)大学文科数学文科高等数学学高等数学教材编写组沈京一丁晓庆张传义龚漫奇龚漫奇王声望姚天行姚天行丛玉豪万世栋赵文玲王崇祜张饴慈袁小明工科工科工科工科工科工科专科经管经管类经管经管经济经管文科文科文科7-03-016412-1线性代数(第二版)陈维新西北工业大7-03-016729-5 7-03-012790-0 7-03-007862-4 7-03-015670-6 7-03-015604-8 7-03-008712-7 7-03-011520-1 7-03-008457-8 7-03-013016-2 7-03-009593-6 7-03-007409-2 7-03-015018-x 7-03-011617-8 7-03-013487-7 7-03-013789-2 7-03-008547-7 7-03-016262-5 7-03-011160-5 7-03-012578-9 7-03-015437-1 7-03-014404-x 7-03-014012-5 7-03-013635-7 7-03-011183-47-03-009561-8 7-03-016092-4 7-03-007886-1 7-03-009428-x 7-03-014519-4 7-03-013327-7 7-03-016466-0 7-03-008519-1 7-03-008061-0 7-03-009756-4 7-03-016305-2线性代数线性代数线性代数线性代数简明教程线性代数线性代数线性代数线性代数与解析几何线性代数与几何引论线性代数与解析几何线性代数与空间解析几何解析几何(普通高等教育十一五) 高等几何(配光盘)空间解析几何空间解析几何及其应用解析几何教程(修订本)应用概率论(第二版)应用数理统计(第二版) (普通高等教育十一五) 应用概率统计(普通高等教育十一五) 应用概率统计习题解答概率论与数理统计(第二版) 概率论与数理统计(第二版) 概率统计应用概率统计概率论与数理统计概率论与数理统计概率论与数理统计(第二版)概率论与数理统计概率论与数理统计学习指导概率统计教程应用概率统计教程概率与统计(第二版) 概率论与数理统计概率论与数理统计实用统计方法高等数学实验(含光盘)学线性代数编写组孟昭为冯卫国方小娟任功全陈治中王纪林王中良樊恽等游宏等俞南雁虞言林周兴和李养成蒋大为廖华奎孙荣恒孙荣恒刘嘉焜刘嘉焜王松桂刘晓石高玉斌张国权张丽娜许承德王勇贺才兴贺才兴马江洪曹炳元陈萍张饴慈陈希孺梅长林马新生20.00 16.00 12.00 20.00 18.00 25.00 25.00 30.00 21.00 16.0021.00 20.00 19.00 23.00 13.00 23.00 21.00 35.00 24.00 25.0022.00 18.00 22.00 (估) 16.00 20.00 20.00 18.00 18.00 18.00 28.00 20.00 23.00 26.00 30.00 18.00理工理工工、经管工科工科经管工科理工理工理工数学数学数学数学数学数学数学理工理工理工理工理工农林农林理工、经管理工、经管理工理工工科理工理工师范数学数学工科、财经理工科316.00工科、经济27.00理工7-03-009862-5 7-03-009710-6 7-03-008621-x 7-03-015462-2 7-03-008336-9 7-03-011760-3 7-03-008471-3 7-03-009459-x7-03-016375-3 7-03-010178-2 7-03-009549-9 7-03-016832-1数学实验数学实验数学实验数学实验复变函数复变函数复变函数与积分变换近世代数实变函数教程泛函分析基础实变函数与泛函分析基础教程数学物理方程经典数学物理方程(英文版)杨振华万中傅鹂焦光虹李庆忠杨纶标盖云英朱平天刘培德刘培德邵国年谢鸿政谢鸿政12.00 29.50 25.00 22.00 18.00 17.00 29.00 18.00 18.00 21.0019.00 28.00 (估) 23.00 (估) 23.00 32.00理工科理工理工理工工科数学工科工科数学数学数学数学理工工科7-03-016806-2 7-03-011544-9 7-03-014389-2 7-03-014390-6 7-03-013488-5 7-03-015763-x 7-03-010066-2 7-03-016489-x 7-03-009730-0 7-03-008502-7 7-03-016227-77-03-006962-5 7-03-011301-2 7-03-014403-1数学物理方程学习指导与习题辅导常微方程及其应用——方法、理论、建模、计算机数值计算方法(上册)(第二版)数值计算方法(下册)(第二版)数值计算方法数值计算方法计算方法计算方法(第二版)数值分析原理数值分析数值分析数值代数(第二版) 数值分析与实验微分方程数值方法微分方程数值解法基础教程(第二版)偏微分方程数值解法刘继军周义仓数学数学、计算机数学、计算机理工理工理工理工数学师范理工信息与计算理工类数学,非数学理工科数学、理科信息与计算数学、信息与计算理工科理工、信息林成森林成森魏毅强黄明游张池平张池平封建湖黄铎林成森张凯院韩旭里, 万中胡健伟林群孙志忠23.00 28.00 24.00 22.00 29.00 15.00 25.00 23.00 33.00 (估)20.00 (估)30.00 24.00 23.00 25.00 (估) 27.00 26.007-03-012418-9 4工程地质数值法有限元法基础与程序设计何满潮李亚智书号发行号书名著作者定价适用专业与计算7-03-015371-57-03-012423-5 7-03-014530-5 7-03-007024-0 7-03-014468-6 7-03-011295-4 7-03-015150-x运筹学线性系统理论图论现代精算风险理论数理金融——资产定价与金融决策理论几何画板课件制作教程(第二版)教育统计与测评导论现代教育技术教程(第二版)孙麟平程兆林王树禾唐启鹤叶中行刘胜利刘新平蔡铁权信息与计25.00 (估) 20.00 23.00 32.00 25.00 25.00 25.00 28.00算信息与计算信息与计算数学、金融经管、数学教育教育教育订数国科学院研究生教学丛书书号 7-03-013409-5 7-03-011346-2 7-03-011312-8 7-03-009665-7 7-03-009657-6 7-03-008590-6 7-03-008190-0 7-03-013478-8书名测度论讲义(第二版) 李群微分方程数值解法李群及其微分方程中的应用面向计算机科学的数理逻辑(第二版) 矩阵计算代数数论有限元方法的数学基础著作者严加安孟道骥余德浩汤华中田畴陆钟万 g.h.戈卢布冯克勤王烈衡定价 20.00 25.00 25.00 20.00 19.00 48.00 24.00 20.00适用专业数学数学数学数学数学数学数学数学订数西安交通大学数学研究生教学丛书书号 7-03-010792-6 7-03-008955-3 7-03-009088-8 7-03-008798-4 7-03-009364-x 7-03-010534-6书名计算智能中的仿生理论和算法统计推断导引抽象代数粗糙集理论与方法数值计算的算法与分析随机逼近及自适应算法著作者徐宗本范金城盛德成张文修张可村聂赞坎定价 30.00 30.00 20.00 22.00 33.00 19.00适用专业数学数学数学数学数学数学订数科学版研究生教学丛书5。