高层建筑深基坑安全监测及数据处理
深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。
本文将就深基坑施工监测方案进行探讨。
一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。
通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。
二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。
监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。
2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。
监测频次为每天、每班、每小时,并及时记录监测数据。
3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。
监测频次为每天、每周,并记录监测数据。
同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。
4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。
经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。
5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。
监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。
三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。
2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。
报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。
四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。
深基坑工程中的变形监测与处理方法

深基坑工程中的变形监测与处理方法深基坑工程是现代建筑施工中常见的一项技术挑战,它涉及到深埋地下的巨大土体开挖和支护工程。
在这一过程中,土体的变形是无法避免的,而人们则需要通过变形监测和相应的处理方法来保证工程的安全性和可靠性。
在深基坑工程中,变形监测是至关重要的。
它可以帮助工程师了解土体的变形情况,及时发现潜在的风险,并根据监测数据进行合理的调整和处理。
变形监测可以采用多种方法,如测量支护墙体的变形、测量土体的沉降和位移等。
其中,最常用的方法是采用传感器进行实时监测,如倾斜度传感器、沉降计、位移计等。
监测数据的处理与分析是变形监测的关键步骤。
工程师需要对监测数据进行准确的分析和解读,判断土体的变形情况,并根据情况采取相应的措施。
传统的处理方法是通过人工统计和计算,但随着计算机技术的发展,现代工程师可以借助计算机软件进行数据处理和分析,提高工作效率和准确度。
处理变形监测数据时,工程师需要考虑多个因素。
首先,他们需要将监测数据与设计值进行比较,以判断变形是否在可接受的范围内。
其次,他们需要考虑土体的复杂性和不均匀性,采用合适的数学模型进行数据分析。
此外,他们还需要关注时间因素,根据监测数据的变化趋势,判断土体的变形速度和趋势,并及时采取相应措施。
在处理变形监测数据时,工程师还可以借助经验和专业知识进行判断和决策。
他们可以根据历史数据和类似工程的经验,判断当前工程的安全性,并根据情况调整支护结构和施工方法。
此外,他们还可以借助专业的地质和土力学知识,对土体的特性和变形机理进行深入分析,为工程施工提供参考和建议。
除了变形监测和处理,深基坑工程中还有其他一些重要的安全措施。
例如,在施工前需要进行全面的勘察和调查,了解地下水位、土体的物理性质和结构等。
此外,在开挖和支护过程中,还需要采取相应的排水措施,以减少土体的渗透和水压。
总之,深基坑工程中的变形监测与处理方法是确保工程安全和可靠的重要环节。
通过科学的监测方法和准确的数据处理,工程师可以及时发现土体的变形情况,并采取相应的措施。
深基坑监测总结报告内容

深基坑监测总结报告内容1. 简介深基坑工程是指在城市建设中需要修建的较深的地下结构,常见于高层建筑、地下车库等工程项目中。
由于深基坑在施工过程中具有较大的工程风险,因此需要进行监测以确保工程的安全进行。
本报告总结了某深基坑监测项目的监测过程、结果分析和改进建议。
2. 监测过程2.1 监测目标本次监测的目标为对深基坑工程的变形、应力、裂缝等进行实时监测,以及传感器数据的采集和处理。
2.2 监测方法本次监测采用了传感器监测和现场观察相结合的方法。
传感器监测主要包括水位传感器、内力传感器、位移传感器等。
现场观察主要由专业技术人员进行,观察变形情况、裂缝状况等。
2.3 监测结果在监测期间,通过传感器采集到了大量的监测数据,并经过处理得出了以下结果:- 变形:深基坑的变形主要表现为周边土壤的沉降和深基坑本身的位移。
监测结果显示,深基坑的沉降速度逐渐减小,位移整体稳定。
- 应力:监测结果显示,深基坑的应力分布均匀,未出现明显的应力集中现象。
- 裂缝:观察结果显示,深基坑周边土体出现了一些细微的裂缝,但未出现明显的裂缝扩展。
3. 结果分析3.1 变形分析深基坑的变形主要受土壤本身性质和周边环境的影响。
通过监测结果可以看出,深基坑的变形速度逐渐减小是正常现象,表明土壤基本稳定。
然而,变形仍然存在一定的风险,需要继续进行监测和分析。
3.2 应力分析深基坑的应力分布均匀表明施工过程中没有明显的超载现象,但不排除可能存在局部应力异常的情况。
应力异常可能导致结构的破坏,因此需要继续关注应力变化并及时采取相应的措施。
3.3 裂缝分析深基坑周边土体的细微裂缝可能是由于土壤固结引起的,一般属于正常现象。
然而,如果裂缝扩展较大,可能会对结构产生不利影响。
因此,需要持续观察裂缝的变化情况,并及时采取适当的补强措施。
4. 改进建议根据本次监测的结果分析,提出以下改进建议:- 继续进行深基坑的实时监测,以更全面地了解深基坑的变形、应力和裂缝情况。
深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。
该方案包括监测目标、监测内容、监测方法和监测频率等方面。
通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。
1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。
具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。
1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。
1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。
1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。
2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。
具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。
2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。
2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。
2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。
3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。
具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。
3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。
深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
深基坑监测方案

深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。
下面给出了一个深基坑监测方案的示例,以供参考。
一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。
2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。
3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。
二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。
2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。
3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。
4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。
5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。
三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。
2. 测斜监测:每周监测一次,记录并分析数据。
3. 沉降监测:每周监测一次,记录并分析数据。
4. 建筑物监测:每月监测一次,记录并分析数据。
5. 管线监测:每季度监测一次,记录并分析数据。
四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。
2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。
五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。
2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。
六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。
2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。
七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。
2. 监测费用应计入工程造价。
以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。
关于深基坑支护施工安全监测预警要求及实现途径分析

关于深基坑支护施工安全监测预警要求及实现途径分析深基坑支护施工是指在建筑、地铁、桥梁等工程中,由于土质或地下水位等因素,需要进行大规模挖掘和支护处理的区域。
由于深基坑支护施工涉及到地下空间的开挖与支护,工程风险较大。
为了确保深基坑支护施工的安全性,必须进行安全监测和预警。
本文将就深基坑支护施工安全监测预警的要求及实现途径进行分析。
一、深基坑支护施工安全监测预警的要求1.定位准确:深基坑支护施工安全监测预警系统需要对工程进行准确的定位,便于监测和分析工程变形情况。
2.实时性:监测预警系统需要具备实时性,能够随时监测工程变形情况,并进行及时预警。
3.灵敏度高:监测预警系统需要具备高灵敏度,能够捕捉到工程变形的微小变化,避免因监测盲区而导致安全事故。
4.准确性:监测预警系统需要具备高准确性,能够对工程变形情况进行准确分析,提供科学的预警信息。
5.多参数监测:监测预警系统需要能够同时监测多个参数,如土体变形、地下水位、支护结构变形等,全面掌握工程变形情况。
二、深基坑支护施工安全监测预警的实现途径1.应用监测技术:利用先进的监测技术,如全站仪、GPS定位、激光测距仪等,对深基坑支护工程进行准确定位和实时监测。
2.建立监测网络:在施工现场周边布设监测点,建立完善的监测网络,实现对工程变形情况的全方位监测。
3.利用传感器:在深基坑支护工程中布设变形传感器、压力传感器、位移传感器等监测装置,实现多参数的实时监测。
4.数据分析与处理:利用专业的监测数据分析软件,对监测数据进行科学的分析和处理,提取出工程变形的规律性信息,为预警做好准备。
5.实施预警措施:在监测系统发现工程变形异常时,及时启动预警机制,采取相应的应急措施,确保施工安全。
三、深基坑支护施工安全监测预警的实践案例1.上海地铁11号线深基坑支护工程上海地铁11号线工程涉及多处深基坑支护工程,对深基坑支护施工安全进行了严格监测与预警,取得了良好的效果。
利用先进的监测技术和设备,对地下空间的变形情况进行了快速准确的监测,及时发现并处理了潜在的安全风险。
关于深基坑支护施工安全监测预警要求及实现途径分析

关于深基坑支护施工安全监测预警要求及实现途径分析深基坑支护施工是指在建筑施工过程中,对于较深的基坑进行支护的工程。
由于深基坑施工存在较高的风险,因此对其安全监测预警要求十分严格。
本文将从深基坑支护施工的安全监测预警要求以及实现途径进行分析。
深基坑支护施工的安全监测预警要求主要包括以下几个方面:1. 基坑边坡的变形监测:基坑边坡的变形是深基坑施工中最容易出现问题的地方,因此对其变形进行实时监测十分重要。
常见的监测方法有测斜仪监测、GPS监测、高斯仪监测等。
2. 基坑地下水位的监测:深基坑施工过程中,地下水位的变化会对基坑的稳定性产生重要影响。
要实时监测基坑地下水位的变化情况,以便及时采取相应的支护措施。
常见的监测方法有水位计监测、超声波探测器监测、压力测量仪监测等。
3. 土体应力的监测:在深基坑支护施工中,土体应力的变化是评估支护结构安全性的关键因素之一。
要对土体的应力进行实时监测,并根据监测结果来判断支护结构是否能够保持稳定。
常见的监测方法有应变计监测、压力板法监测、临摹法监测等。
随着科技的发展,实时监测设备的精度和灵敏度不断提高,为深基坑支护施工的安全监测提供了可靠的技术支持。
测斜仪、水位计、应变计等监测设备可以实时监测基坑边坡的变形、地下水位的变化及土体应力的变化情况。
无人机等先进的遥感技术可以对深基坑进行全景监测,实时获取基坑周边建筑物的变形情况。
通过对比监测数据,可以及时掌握基坑支护结构的稳定性,并采取相应的措施保护周边建筑物的安全。
大数据和人工智能技术的应用也为深基坑支护施工的安全监测提供了新的途径。
通过对大量的监测数据进行分析和处理,可以建立深基坑施工安全监测预警系统,并通过人工智能算法实现自动预警和预测,从而提高监测的准确性和及时性。
深基坑支护施工的安全监测预警要求包括基坑边坡变形、地下水位、土体应力和周边建筑物变形的监测。
通过采用先进的监测设备、遥感技术和大数据、人工智能技术,可以有效实现对深基坑支护施工的安全监测预警。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 4 ) 周围地下管线的竖 向位移观测累计报警值 1 场 地概 况
( 5 ) 基坑周边地表裂缝监测累计报警值 1 5 i / l l n 。 监测 过 程 中 , 当监 测 值 达 到 报 警 值 的 8 0 % 时, 在监 测 日报表 中注 明 , 并 提请 各方 引起 重视 , 必要 时 采取措 施 。当监 测 值 达 到报 警 值 时 , 除需 要 再 监 测 日报 表 中注 明外 , 还需 要 专 门行 文通 知 有 关 各 方并
警值 1 0 mm;
测, 及 时发 现异 常情 况并 采取 相应 措施 , 不 仅可 以实
现基坑施工 的信息化指导 , 也可 以有效地避 免或降 低 财产 安全 等方 面 的损 失 ¨ ' 2 J 。
该 文 以南 昌市 的某一 高 层建 筑物 基坑 为例 阐述
基 坑工 程 的变形 监 测及数 据 处理 。
・
71 ・
第2 9 卷第 8 期 要求 采取 相应措 施 。
山 东 国 土 资 源
2 0 1 3 年8 月
和 高程起 算数 据 。后 期也 将定 期进行 复测 。 对基 准点 、 工作 基点 和监测 点进 行测量 时 , 应 符 合 下列 要求 : ( 1 ) 采 用相 同的观测路 线 和观测 方法 ;
中 图分 类 号 : P 2 5 8 文 献标 识 码 : B
0 引 言
2 0世纪 8 0年代 以来 , 我 国工 程建 设 发 展 迅 速 , 伴 随着大 型市 政 设 施 的 施 工 及 大 量 地 下 空 间 的 开 发, 深 基 坑工 程大 量涌 现 , 并 向超深 、 超 大方 向发 展 。 为 了节省 土地 , 提 高土 地 的空 间利用 效率 , 以充分 利 用 地 下空 间 , 基 坑 工 程 成 为 高层 建 筑 及 地 下 空 间 开 发 中的重 要组 成部 分 , 其 深 度也 由原 来 的 5~6 m 逐
渐发展 到 l 2~1 3 m, 甚至是 2 0 m 以上 , 这 对 基 坑施
紫红色泥质砂岩 。总体来看 , 场地地质条件比较差。 此 深基 坑 近似长 方 形 , 长宽约为 1 4 0 m ×1 1 0 m, 基
坑 设计 深 度 为 7~8 m, 东 西 南 临 近 马路 , 东 边 有 一 栋 在建 高楼 , 北边 5 0 m 之外 为赣 江 。基 坑周 边无 大 型管线设 施 。基坑 0~ 4 m采 用 自然 放 坡钢 丝 网喷
该 工 程 场地 地 质 上 部 由第 四纪 杂 填 土 、 第 四纪 更新 世 粉质 粘土 、 圆砾 砾砂 互 层组 成 ; 下部 为古 近纪
收稿 日期 : 2 0 1 3—0 7—1 0; 修订 日期 : 2 0 1 3—0 7—1 5; 编辑: 孟 舞平
作者简介 : 彭祥国 ( 1 9 8 5 一) , 男, 江西九江人 , 助理工程师 , 主要从事变形监测及数据处理工作 ; E—ma i l : p x g d e y x 0 7 9 7 @1 6 3 . e o m。
2 监测数据处理与信息反馈
监测 取得 的数 据经处 理后 应在 当 日或 隔 日以 日 报 表 的书面形 式提 交 给 监理 方 , 当实 测 数 据 达 到或
超过报警值时, 应立刻通知监理方 , 并结合工况分析 原因 , 供设 计 方 、 施 工 单 位参 考 , 以便 及 时 采 取相 应 措 施确保 施工 安全 。而后 根据 日报 表数 据资料 整理
制监测数据 处理与信息反馈流程 。阐述 了基坑安全 监测 的主要 内容及测 点布置情 况 。利用 高精度 测量仪器 采集
基坑支护墙顶水 平位移 、 竖 向位 移、 基坑周边道路裂缝及 沉降监测 数据并对其进行分析与探讨 。
关键词 : 深基坑 ; 水平 位移 ; 竖 向位移 ; 警戒值 ; 数据处理
点 。通 过对 基坑 施 工 的各 个 阶段 开展 全 面系统 地监
监 测 报警 值 由基 坑 设 计方 、 监理 方 和监 测 方 在 基坑 设计 交底 会 上 商定 J 。根 据监 测 的主 要 内容 , 确定 了如 下报 警值 : ( 1 ) 基 坑 支 护 墙 顶 部 水 平 位 移 速 率 ≤5 mm / d , 累计 报警 值 2 0 m m; ( 2 ) 基 坑支 护 墙顶 部 竖 向位 移 速 率 ≤4 mr n / d , 累计 报警 值 2 5 m m; ( 3 ) 基 坑周 边地 表 沉 降速 率 ≤2 mm / d , 累 计 报
锚 护面 , 放 坡 后 有一 个 1 m左 右 的承 台 , 4~ 8 m 部
分采用钻孔灌注桩作 为基坑的支护体 系, 部分采用 钢 丝 网加 喷锚 水泥 墙作 为止 水幕 墙 。
1 . 2 报 警值 的确 定
工 的安 全保 障提 出 了巨大挑 战 。 由于基 坑 施 工过 程 中受 到地 下 土 体 地 质条 件 、 外 部荷 载 、 支护 结 构形式 、 施 工现 场及 周边 环境 等 不 确 定性 因素影 响 , 致 使基 坑 安全 事故 时有 发生 , 基坑 施 工及 周 边 建 构 物 的安 全俨 然 成 为 人 们 关 注 的焦
第2 9 卷 第8 期
山 东 国 土 资 源
2 0 1 3 年8 月
高层 建 筑 深 基坑 安 全 监 测及 数 据处 理
彭祥 国 , 万先 斌 , 杨宁, 艾光 辉
( 江 西省 水利规 划设 计 院 , 江西 南 昌 3 3 0 0 2 9 )
摘要 : 结合某高层建筑物深基坑 安全监测工程实例 , 根据规范 和相关 工程实践 确定 深基坑安 全监测 报警值 以及编
为 阶段性 的数据处 理 报 告 , 当现 场监 测 工 作 全 部完 成后的 1 个 月 之 内 向委 托 方 提 供 最 终 监 测 总结 报