高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064205

合集下载

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 100

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 100

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2.(3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS平行,因此,P,Q,R,S四点不共面.答案①②③考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④D E与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABC D-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.解(1)在四棱锥P-ABCD中,【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.解析 (1)法一 如图,取AC 的中点P ,连接PM ,PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,答案 (1)60°或30°(2)45°【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.所以D CD 1133S h S∆P A ∆A ⋅=⋅PE ,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是3722.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α2.(·福建卷)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.图1-5A =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P是线段BC的中点;(2)求二面角A - NP - M的余弦值.图1-4方法二:由俯视图及(1)可知,AO⊥平面BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线OA,OB,OC两两垂直.如图所示,以O为坐标原点,以OB,OC,OA的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系O -xyz.则A(0,0,3),B(1,0,0),C(0,3,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c() A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案D3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点解析如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.答案C6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.答案1或49.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB1是异面直线; ④直线AM 与DD1是异面直线. 其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.故异面直线OC与MD所成角的正切值为6 3.14.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值;(2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.(2)因为x>0,所以x 1+y2=2x212+y22≤2[x2+12+y22]2,又x2+(12+y22)=(x2+y22)+12=32, 所以x 1+y2≤2(12×32)=324, 即(x 1+y2)max =324.(3)令t =x -1≥0,则x =t2+1, 所以y =t t2+1+3+t =tt2+t +4.当t =0,即x =1时,y =0; 当t>0,即x>1时,y =1t +4t +1,因为t +4t ≥24=4(当且仅当t =2时取等号), 所以y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值). 【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( ) A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+2B .1+3C .3D .4 答案 (1)B (2)C题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________. (2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________.答案 (1)18 (2)6 解析 (1)(常数代换法) ∵x>0,y>0,且x +y =1, ∴8x +2y =(8x +2y )(x +y) =10+8y x +2xy ≥10+28y x ·2xy =18.当且仅当8y x =2xy ,即x =2y 时等号成立, ∴当x =23,y =13时,8x +2y 有最小值18. (2)由已知得x =9-3y1+y .方法一 (消元法) ∵x>0,y>0,∴y<3, ∴x +3y =9-3y1+y +3y=121+y+(3y +3)-6≥2121+y·3y +3-6=6, 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y)m in =6. 方法二 ∵x>0,y>0,9-(x +3y)=xy =13x·(3y)≤13·(x +3y2)2, 当且仅当x =3y 时等号成立. 设x +3y =t>0,则t2+12t -108≥0, ∴(t -6)(t +18)≥0, 又∵t>0,∴t≥6.故当x =3,y =1时,(x +3y)min =6. 【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 答案 (1)D (2)5解析 (1)x +2y =(x +2y)(2x +1y )=2+4y x +xy +2≥8, 当且仅当4y x =xy ,即x =2y 时等号成立. 由x +2y>m2+2m 恒成立,可知m2+2m<8,即m2+2m -8<0,解得-4<m<2. (2)方法一 由x +3y =5xy 可得15y +35x =1, ∴3x +4y =(3x +4y)(15y +35x ) =95+45+3x 5y +12y 5x ≥135+125=5.(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立), ∴3x +4y 的最小值是5.题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1)(2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________.答案 (1)B (2)[-83,+∞)解析 (1)由f(x)>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x , 即x =log32时,等号成立), ∴k +1<22,即k<22-1.(2)对任意x ∈N*,f(x)≥3恒成立,即x2+ax +11x +1≥3恒成立,即知a≥-(x +8x )+3.设g(x)=x +8x ,x ∈N*,则g(2)=6,g(3)=173. ∵g(2)>g(3),∴g(x)min =173.∴-(x +8x )+3≤-83, ∴a≥-83,故a 的取值范围是[-83,+∞). 【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max , a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性. 【举一反三】已知函数f(x)=x +p x -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.答案 94解析 由题意得x -1>0,f(x)=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f(x)在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.答案 10【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q2%,若p>q>0,则提价多的方案是________.答案 (1)B (2)乙解析 (1)设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x 8=20.当且仅当800x =x8(x>0),即x =80时“=”成立,故选B. (2)设原价为1,则提价后的价格为 方案甲:(1+p%)(1+q%), 方案乙:(1+p +q2%)2, 因为1+p%1+q%≤1+p%2+1+q%2=1+p +q2%,且p>q>0,所以1+p%1+q%<1+p +q 2%,即(1+p%)(1+q%)<(1+p +q2%)2, 所以提价多的方案是乙. 【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、4 【答案】C 【解析】12121220022,22ab a b ab ab a ba b a b ab+=∴=+≥⨯=∴≥,>,>,,(当且仅当2b a =时取等号),所以ab 的最小值为22,故选C.2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.【答案】233.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C 【解析】由已知得111a b +=,则11=()()a b a b a b +++2+b aa b=+,因为0,0a b >>,所以+2b a b a a b a b ≥⋅,故4a b +≥,当=b aa b,即2a b ==时取等号. 4.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.【答案】-25.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 【答案】2【解析】Tr +1=Cr 6(ax2)6-r·⎝⎛⎭⎫b x r =Cr 6a6-r·brx12-3r ,令12-3r =3,得r =3,所以C36a6-3b3=20,即a3b3=1,所以ab =1,所以a2+b2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a2+b2的最小值是2.6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【解析】设底面矩形的长和宽分别为a m ,b m ,则ab =4(m2).容器的总造价为20ab +2(a +b)×10=80+20(a +b)≥80+40ab =160(元)(当且仅当a =b 时等号成立).故选C.【答案】C7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________. 【解析】由log4(3a +4b)=log2ab 得3a +4b =ab , 且a >0,b >0,∴4a +3b =1, ∴a +b =(a +b)·⎝⎛⎭⎫4a +3b =7+⎝⎛⎭⎫3a b +4b a ≥ 7+23a b ·4b a =7+43,当且仅当3a b =4b a 时取等号.【答案】7+438.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.10 【答案】B【解析】由题意可知,F ⎝⎛⎭⎫14,0.设A(y21,y1),B(y22,y2),∴OA →·OB →=y1y2+y21y22=2,解得y1y2=1或y1y2=-2.又因为A ,B 两点位于x 轴两侧,所以y1y2<0,即y1y2=-2. 当y21≠y 2时,AB 所在直线方程为y -y1=y1-y2y21-y22(x -y21)=1y1+y2(x -y21),令y =0,得x =-y1y2=2,即直线AB 过定点C(2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y1|+12×2|y2|+12×14|y1|=18(9|y1|+8|y2|)≥18×29|y1|×8|y2|=3,当且仅当9|y1|=8|y2|且y1y2=-2时,等号成立.当y21=y22时,取y1=2,y2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B.9.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.94【答案】C10.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为()A .9 B.92 C .3 D.3 22【答案】B 【解析】因为-6≤a≤3,所以(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6,即a =-32时等号成立,故选B.【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 答案 C解析 当x>0时,x2+14≥2·x·12=x , 所以lg(x2+14)≥lgx(x>0), 故选项A 不正确;运用基本不等式时需保证“一正”“二定“三相等”, 而当x≠kπ,k ∈Z 时,sinx 的正负不定, 故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x2+1=1,故选项D 不正确.2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .8 答案 C解析 由a>0,b>0,ln(a +b)=0得⎩⎪⎨⎪⎧a +b =1,a>0,b>0.故1a +1b =a +b ab =1ab ≥1a +b22=1122=4.当且仅当a =b =12时上式取“=”.3.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .2 答案 D解析 ∵x>0,y>0,x +2y≥22xy , ∴4xy -(x +2y)≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy≥2.4.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b2 答案 A5.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 答案 C解析 由题意知:z =x2-3xy +4y2,则z xy =x2-3xy +4y2xy =x y +4y x -3≥1,当且仅当x =2y 时取等号,此时z =xy =2y2. 所以x +2y -z =2y +2y -2y2=-2y2+4y =-2(y -1)2+2≤2.6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.答案 a≥15 解析x x2+3x +1=13+x +1x, 因为x>0,所以x +1x ≥2(当且仅当x =1时取等号), 则13+x +1x≤13+2=15,即x x2+3x +1的最大值为15,故a≥15.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________. 答案 9解析 (x2+1y2)(1x2+4y2)=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.答案 209.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值. 解 (1)y =x +82x -3=-(3-2x 2+83-2x )+32.当x<32时,有3-2x>0, ∴3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x,即x =-12时取等号.于是y≤-4+32=-52. 故函数的最大值为-52. (2)∵0<x<2,∴2-x>0,∴y =x 4-2x =2·x 2-x ≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x 4-2x 的最大值为 2.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062 86

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062 86

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷【考情解读】1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.【重点知识梳理】1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎫-D2,-E2半径r=12D2+E2-4F平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.【高频考点突破】考点一圆的方程的求法【例1】 (1)经过点P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长等于6的圆的方程为________.(2)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2【变式探究】 (1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.则圆C的方程为________.(2)曲线y =x2-6x +1与坐标轴的交点为(0,1), (3±22,0).故可设圆的圆心坐标为(3,t), 则有32+(t -1)2=(22)2+t2,解得t =1, 则圆的半径为32+(t -1)2=3, 所以圆的方程为(x -3)2+(y -1)2=9.答案 (1)(x -3)2+y2=2 (2)(x -3)2+(y -1)2=9 考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x2+y2-4x +1=0. (1)求yx 的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x2+y2的最大值和最小值.学思想,其中以下几类转化极为常见:(1)形如m =y -bx -a 的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 的最值问题,可转化为动直线截距的最值问题;(3)形如m =(x -a)2+(y -b)2的最值问题,可转化为两点间距离的平方的最值问题.【变式探究】设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x2+y2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值为________.考点三 与圆有关的轨迹问题【例3】 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【变式探究】 设定点M(-3,4),动点N 在圆x2+y2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P(x ,y),N(x0,y0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x0-32,y0+42.由于平行四边形的对角线互相平分,【真题感悟】1.【高考北京,文2】圆心为()1,1且过原点的圆的方程是() A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.【高考重庆,文12】若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.3.【高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.xO y TCA B3.【高考广东,文20】(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.1.(·福建卷)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是()A.5 2 B.46+2C.7+ 2 D.622.(·新课标全国卷Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.3.(·重庆卷)如图1-9所示,椭圆的中心为原点O,长轴在x轴上,离心率e=22,过左焦点F1作x轴的垂线交椭圆于A,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外,若PQ⊥P′Q,求圆Q的标准方程.图1-94.(高考江西卷)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是________.【押题专练】1.已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是()A .x2+y2=2B .x2+y2=2C .x2+y2=1D .x2+y2=42.方程x2+y2+ax +2ay +2a2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫23+∞ B.⎝⎛⎭⎫-23,0C .(-2,0)D.⎝⎛⎭⎫-2,233.设圆的方程是x2+y2+2ax +2y +(a -1)2=0,若0<a<1,则原点与圆的位置关系是 ( ) A .原点在圆上 B .原点在圆外 C .原点在圆内D .不确定4.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x2+(y -2)2=1B .x2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x2+(y -3)2=15.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是 ( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1解析 设圆上任一点为Q(x0,y0),PQ 的中点为M(x ,y),则⎩⎪⎨⎪⎧x =4+x02,y =-2+y02,解得⎩⎪⎨⎪⎧x0=2x -4,y0=2y +2.因为点Q 在圆x2+y2=4上,所以x20+y20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 答案 A6.已知圆心(a ,b)(a <0,b <0)在直线y =2x +1上的圆,其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为25,则圆的方程为( )A .(x +2)2+(y +3)2=9B .(x +3)2+(y +5)2=25C .(x +6)2+⎝⎛⎭⎫y +732=499D.⎝⎛⎭⎫x +232+⎝⎛⎭⎫y +732=4997.已知圆C 的圆心在曲线y =2x 上,圆C 过坐标原点O ,且分别与x 轴、y 轴交于A ,B 两点,则△OAB 的面积等于( ) A .2B .3C .4D .88.已知点M(1,0)是圆C :x2+y2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.解析 过点M 的最短弦与CM 垂直,圆C :x2+y2-4x -2y =0的圆心为C(2,1),∵kCM =1-02-1=1,∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.答案 x +y -1=09.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为______.解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2. 答案210.已知平面区域⎩⎪⎨⎪⎧x≥0,y≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a)2+(y -b)2=r2及其内部所覆盖,则圆C的方程为________.11.若圆x2+(y -1)2=1上任意一点(x ,y)都使不等式x +y +m≥0恒成立,则实数m 的取值范围是________.12.一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.13.求适合下列条件的圆的方程:(1)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(2)过三点A(1,12),B(7,10),C(-9,2).14.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.解(1)设P(x,y),圆P的半径为r.由题设y2+2=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.高考模拟复习试卷试题模拟卷。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 101

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 101

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.【热点题型】题型一 平面向量数量积的运算例1、(1)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152 C.-322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.【提分秘籍】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.【举一反三】(1)已知平面向量a =(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b =-6.则x1+y1x2+y2的值为( )A.23B .-23C.56D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A.2B .2C.6D .6 题型二 求向量的模与夹角例2、(1)若平面向量a 与平面向量b 的夹角等于π3,|a|=2,|b|=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126 C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a|=1,|2a -b|=10,则|b|=________.(3)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【提分秘籍】(1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a|=a·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,就会达到简化运算的目的.【举一反三】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)已知单位向量e1与e2的夹角为α,且cosα=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cosβ=________.题型三 数量积的综合应用例3、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△AB C 的面积.【提分秘籍】解决以向量为载体考查三角形问题时,正弦定理、余弦定理、面积公式的应用、边与角之间的互化是判断三角形形状的常用方法.【举一反三】已知向量m =(2sin(ωx +π3),1),n =(2cosωx ,-3)(ω>0),函数f(x)=m·n 的两条相邻对称轴间的距离为π2.(1)求函数f(x)的单调递增区间; (2)当x ∈[-5π6,π12]时,求f(x)的值域. 题型四向量在平面几何中的应用例4、如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA =EF.【提分秘籍】用向量方法解决平面几何问题可分三步:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 【举一反三】(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33 B.92 C.3D.94(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积的比值是( ) A.13B.12C.23D.34题型五向量在三角函数中的应用例5、已知在锐角△ABC 中,两向量p =(2-2sinA ,cosA +sinA),q =(sinA -cosA,1+sinA),且p 与q 是共线向量.(1)求A 的大小; (2)求函数y =2sin2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小. 【提分秘籍】解决平面向量与三角函数的交汇问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.【举一反三】(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cosA ,sinA).若m ⊥n ,且acosB +bcosA =csinC ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sinC),n =(3a +c ,sinB -sinA),若m ∥n ,则角B 的大小为________.题型六平面向量在解析几何中的应用例6、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k),且A 、B 、C 三点共线,当k<0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y2=3的圆心,且圆上有一点M(x ,y)满足OM →·CM →=0,则y x =________.【提分秘籍】向量的共线和数量积在解析几何中可以解决一些平行、共线、垂直、夹角及最值问题,在解题中要充分重视数量积及其几何意义的作用.【举一反三】已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的最大值为________. 【高考风向标】1.【高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .52.【高考重庆,文7】已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为() (A)3π (B) 2π (C) 32π (D) 65π3.【高考福建,文7】设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .324.【高考天津,文13】在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为. 5.【高考浙江,文13】已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.1.(·北京卷)已知向量a ,b 满足|a|=1,b =(2,1),且λa +b =0(λ∈R),则|λ|=________. 2.(·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb)⊥(a -λb),则实数λ=________.3.(·江西卷)已知单位向量e1与e2的夹角为α,且cos α=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cos β=________..4.(·全国卷)若向量a ,b 满足:=1,(a +b)⊥a ,(+b)⊥b ,则|=() A .2 B.2 C .1 D.225.(·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b|=10,|a -b|=6,则=() A .1 B .2 C .3 D .56.(·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.7.(·天津卷)已知菱形AB CD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=()A.12B.23C.56D.7128.(高考湖北卷)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为() A.322B.3152C .-322D .-31529.(高考湖南卷)已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的取值范围是() A .[2-1,2+1] B.[]2-1,2+2C .[1,2+1]D .[1,2+2]10.(高考辽宁卷)设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈⎣⎡⎦⎤0,π2.(1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.11.(高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x),x ∈R ,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值.【高考押题】1.若向量a ,b 满足|a|=|b|=|a +b|=1,则a·b 的值为( ) A .-12B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b|等于( ) A .1B.2C .2D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a)∥b ,c ⊥(a +b),则c 等于( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10) D .(7,-6)5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A.5B .25C .5D .106.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B .2OM → C .3OM →D .4OM →7.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形 C .正方形D .菱形8.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形B .等腰三角形 C .直角三角形D .等腰直角三角形9.已知点A(-2,0)、B(3,0),动点P(x ,y)满足PA →·PB →=x2-6,则点P 的轨迹是( ) A .圆B .椭圆 C .双曲线D .抛物线10.若函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π11.已知在△ABC 中,AB →=a ,AC →=b ,a·b<0,S △ABC =154,|a|=3,|b|=5,则∠BA C =________. 12.已知|a|=2|b|,|b|≠0且关于x 的方程x2+|a|x -a·b =0有两相等实根,则向量a 与b 的夹角是________.13.已知在平面直角坐标系中,O(0,0),M(1,1),N(0,1),Q(2,3),动点P(x ,y)满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.14.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE.15.已知A ,B ,C 三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中α∈(π2,3π2). (1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.16.已知向量p =(2sinx ,3cosx),q =(-sinx,2sinx),函数f(x)=p·q. (1)求f(x)的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(C)=1,c =1,ab =23,且a>b ,求a ,b 的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n x x )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12 【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( )(A) 1 (B)0 (C)l (D)256【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210【答案】C【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)x x -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8y x ⎛⎫-⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).【答案】40-.【解析】 55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332n x x ⎛- ⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数;(3)求展开式中所有的有理项.【解析】(1)通项公式为2333111()()22n k k n k k k k k k n n T C x x C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10. (2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=. (3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z0≤k ≤10k ∈N ,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项, 它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中, (1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R).(1)求a0+a1+a2+…+a2 013的值;(2)求a1+a3+a5+…+a2 013的值;(3)求|a0|+|a1|+|a2|+…+|a2 013|的值.解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.①(2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.②与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013,∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r ,∴a2k -1<0,a2k>0 (k ∈N*).∴|a0|+|a1|+|a2|+…+|a2 013|=a0-a1+a2-…-a2 013=32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()0()C (1)n k k n k n n k k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小;(3)当2()f x x =时,求()n f x 的不为0的零点.。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 176

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 176

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x≠⎭⎬⎫kπ+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2kπ-π2,2kπ+π2[2kπ-π,2kπ]⎝⎛⎭⎫kπ-π2,kπ+π2递减 区间 ⎣⎡⎦⎤2kπ+π2,2kπ+3π2 [2kπ,2kπ+π]无对称 中心 (kπ,0) ⎝⎛⎭⎫kπ+π2,0⎝⎛⎭⎫kπ2,0对称轴 方程 x =kπ+π2x =kπ无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为() A .2- 3 B .0 C .-1 D .-1-3 【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________. 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是() A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 【规律方法】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos(ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为() A.π6 B.π4 C.π3 D.π2(2)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=() A.π2 B.2π3 C.3π2 D.5π3 考点三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是() A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于()A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______. 【真题感悟】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【高考福建,文21】已知函数()2103sin cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【高考重庆,文18】已知函数f(x)=12sin2x 32cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. (·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 (·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【押题专练】1.函数y =|2sin x|的最小正周期为( ) A .π B .2π C.π2D.π42.已知f(x)=cos 2x -1,g(x)=f(x +m)+n ,则使g(x)为奇函数的实数m ,n 的可能取值为( ) A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1D .m =-π4,n =13.已知函数y =sin x 的定义域为[a ,b],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( )A.π3B.2π3 C .π D.4π34.已知函数f(x)=sin πx 的部分图象如图1所示,则图2所示的函数的部分图象对应的函数解析式可以是( )A .y =f ⎝⎛⎭⎫2x -12B .y =f ⎝⎛⎭⎫x 2-12C .y =f(2x -1)D .y =f ⎝⎛⎭⎫x 2-1 5.定义行列式运算:⎪⎪⎪⎪⎪⎪a1a2a3a4=a1a4-a2a3,将函数f(x)=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m>0),若所得图象对应的函数为偶函数,则m 的最小值为( )A.π8B.π3C.56πD.2π36.已知f(x)=sin x ,x ∈R ,g(x)的图象与f(x)的图象关于点⎝⎛⎭⎫π4,0对称,则在区间[0,2π]上满足f(x)≤g(x)的x 的取值范围是( )A.⎣⎡⎦⎤π4,3π4 B .⎣⎡⎦⎤3π4,7π4C.⎣⎡⎦⎤π2,3π2D.⎣⎡⎦⎤3π4,3π2 7.若函数f(x)=sin(2x +φ)(φ∈[0,π])是偶函数,则φ=________. 8.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.9.函数f(x)=2sin ωx(ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.10.已知函数y =sin ⎝⎛⎭⎫π3-2x ,求:(1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.11.已知函数f(x)=2sin2⎝⎛⎭⎫π4x +9π4. (1)求函数f(x)的最小正周期; (2)计算f(1)+f(2)+…+f(2 013)的值.12.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f(x)的单调递增区间.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34 D .1 【答案】 C【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π4≤x≤π, ∴事件“sin x≥cos x”发生的概率为π-π4π-0=34.2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.78【答案】D3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关【解析】 由题意知,阴影部分的面积为a2-4×14×π⎝⎛⎭⎫a 22=⎝⎛⎭⎫1-π4a2,故概率为1-π4. 【答案】 A4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 2【答案】 D【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-5210-5=10-525=2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π12B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π【答案】B2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为()A.1718B.79C.29D.118【答案】A3.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y=+≤和集合{}(,)|20,0,0B x y x y x y=+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y,则点M落在区域2Ω的概率为.【答案】12πBAyxO4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .2764【答案】A【解析】根据几何概型知识,概率为体积之比,即P =4-2343=18. 5. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12【答案】A【解析】因为N ={x|x2-3x +2≤0}=[1,2],所以M ∩N =[1,2],所以所求的概率为2-18+2=110.C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 【答案】A2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)【答案】932【解析】用x表示小张到校的时间,3050x≤≤,用y表示小王到校的时间,3050y≤≤则所有可能的结果对应直角坐标平面内的正方形区域ABCD记“小张比小王至少早到5分钟”为事件M,则M所对区域为图中的阴影部分DEF∆所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形,所以答案应填:932.3. (济南市高三3月考模拟考试)如图,长方体ABCD—A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为.【答案】164. 【北京市丰台区高三一模】设不等式组2210x yy⎧+-≤⎨≥⎩,表示的平面区域为M,不等式组201t x ty t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是_________.【答案】2π5. 若k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆(x-k)2+y2=2相切的概率等于( )A .12B .13C .23D .34【答案】C【解析】点在圆外,过该点可做两条直线与圆相切.故使圆心与点A 的距离大于半径即可,即(1-k)2+1>2,解得k <0或k >2,所以所求k ∈[-3,0)∪(2,3],所求概率P =46=23.。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065 172

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065 172

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值. 【重点知识梳理】1.几类函数模型及其增长差异 (1)几类函数模型函数模型 函数解析式一次函数模型 f(x)=ax +b (a 、b 为常数,a≠0) 反比例函数模型f(x)=kx +b (k ,b 为常数且k≠0) 二次函数模型f(x)=ax2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型f(x)=bax +c(a ,b ,c 为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=blogax +c(a ,b ,c 为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=axn +b (a ,b 为常数,a≠0)(2) 函数性质 y =ax(a>1) y =logax(a>1)y =xn(n>0)在(0,+∞) 上的增减性 单调递增 单调递增单调递增增长速度越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较 存在一个x0,当x>x0时,有logax<xn<ax2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:[难点正本 疑点清源]1.要注意实际问题的自变量的取值范围,合理确定函数的定义域. 2.解决实际应用问题的一般步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质. (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题. (3)解模:用数学知识和方法解决转化出的数学问题. (4)还原:回到题目本身,检验结果的实际意义,给出结论. 【高频考点突破】 考点一 二次函数模型例1、某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y =x25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【探究提高】二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.【变式探究】 某产品的总成本y(万元)与产量x(台)之间的函数关系是y =3 000+20x -0.1x2 (0<x<240,x ∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是 ( )A .100台B .120台C .150台D .180台 考点二 指数函数模型例2、诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f(x)表示第x(x ∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)【探究提高】此类增长率问题,在实际问题中常可以用指数函数模型y =N(1+p)x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a(1+x)n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【变式探究】 已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t +21-t(t≥0,并且m>0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. .考点三 分段函数模型例3、为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =⎩⎨⎧13x3-80x2+5 040x ,x ∈[120,144,12x2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【探究提高】本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.【变式探究】根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=⎩⎪⎨⎪⎧cx ,x<A ,cA ,x≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 【真题感悟】【高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时(·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at2+bt +c(a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟(·陕西卷)如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x3-12x2-x B .y =12x3+12x2-3x C .y =14x3-x D .y =14x3+12x2-2x【押题专练】1.有一批材料可以围成200 m 长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为 ( )A .1 000 m2B .2 000 m2C .2 500 m2D .3 000 m22.里氏震级M 的计算公式:M =lg A -lg A0,其中A 是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.( )A .6 1 000B .4 1 000C .6 10 000D .4 10 0003.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元4.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x ∈N*)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的平均利润最大 ( )A .3B .4C .5D .65.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x -0.15x2和L2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为 ( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元6.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为 ( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =147.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )8.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为____________.9.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.10.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.11.某商人购货,进价已按原价a扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为______________.12.某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M人.假定挂号的速度是每个窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个.13.某种出口产品的关税税率为t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=2(1-kt)(x-b)2,其中k,b均为常数.当关税税率t=75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k,b的值;(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2-x,当p=q时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.14.如图所示,在矩形ABCD中,已知AB=a,BC=b (a>b).在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于x,当x为何值时,四边形EFGH的面积最大?求出这个最大面积.15.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时) 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知: 2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中, 1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3 【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2 A.233 B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π4【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形. 【解析】解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH.同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065 171

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0065 171

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.考查基本初等函数的图象;2.考查图象的性质及变换;3.考查图象的应用. 【重点知识梳理】 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f(x)――→关于x 轴对称y =-f(x); ②y =f(x)――→关于y 轴对称y =f(-x); ③y =f(x)――→关于原点对称y =-f(-x);④y =ax (a>0且a≠1)――→关于y =x 对称y =logax(a>0且a≠1). ⑤y =f(x)――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f(x)|. ⑥y =f(x)――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f(|x|). (3)伸缩变换12①y =f(x)――→a>1,横坐标缩短为原来的1a 倍,纵坐标不变0<a<1,横坐标伸长为原来的1 a 倍,纵坐标不变 y =f(ax).②y =f(x)――→a>1,纵坐标伸长为原来的a 倍,横坐标不变0<a<1,纵坐标缩短为原来的a 倍,横坐标不变 y =af(x).【高频考点突破】考点一 函数的图象的画法 【例1】分别画出下列函数的图象. (1)y =|lg(x -1)|;(2)y =2x +1-1; (3)y =x2-|x|-2.【方法技巧】画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【举一反三】已知函数f(x)=⎩⎪⎨⎪⎧3-x2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图给定的直角坐标系内画出f(x)的图象;(2)写出f(x)的单调递增区间.【解析】考点二函数的图象的识别【例2】(1)函数y=x33x-1的图象大致是()(2)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()【答案】(1)C(2)B【方法技巧】识图的要点及方法(1)识图的要点:重点根据图象看函数的定义域、值域、奇偶性、单调性、特殊点(与x、y轴的交点,最高、最低点等).(2)识图的方法①定性分析法:对函数进行定性分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决;②定量计算法:通过定量的计算来分析解决; ③排除法:利用本身的性能或特殊点进行排除验证. 【举一反三】函数y =xcos x +sin x 的图象大致为( )【答案】D考点三 函数的图象的应用【例3】 已知函数y =|x2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.【答案】 (0,1)∪(1,4)【方法技巧】函数的图象常应用于以下几点(1)研究函数性质时一般要借助于函数图象,体现了数形结合思想; (2)有些不等式问题常转化为两函数图象的上、下关系来解决; (3)方程解的问题常转化为两熟悉的函数图象的交点个数问题来解决. 【举一反三】已知函数f (x)=⎩⎪⎨⎪⎧2x ,x≥2,x -13,x<2.若关于x 的方程f(x)=k 有两个不同的实根,则实数k 的取值范围是________.【答案】(0,1)考点四 数形结合思想在函数图象交点问题中的应用例4、若直角坐标平面内两点P 、Q 满足条件:①P 、Q 都在函数f(x)的图象上;②P 、Q 关于原点对称,则称点对(P ,Q)是函数f(x)的一个“友好点对”(点对(P ,Q)与点对(Q ,P)看作同一个“友好点对”).已知函数f(x)=⎩⎪⎨⎪⎧2x2+4x +1,x<0,2ex,x≥0,则f(x)的“友好点对”有________个.【答案】2【方法技巧】“以形助数”是研究两函数图象交点问题常用到的方法,近几年来高考在此处不断创新命题,着重考查应用图象解决问题的能力.解决此类问题的关键在于准确作出已知函数的图象,并标清一些关键点,作图的规范性与准确性及识图用图的能力,是此类问题考查的核心.【举一反三】函数y=11-x的图象与函数y=2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于() A.2 B.4C.6 D.8【答案】D【真题感悟】1.【高考浙江,文5】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为()A .B .C .D .【答案】D2.【高考安徽,文10】函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A )a>0,b<0,c>0,d>0 (B )a>0,b<0,c<0,d>0 (C )a<0,b<0,c<0,d>0 (D )a>0,b>0,c>0,d<0 【答案】A1.(·福建卷)若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是( )【答案】B2.(·湖北卷)已知函数f(x)是定义在R 上的奇函数,当x≥0时,f(x)=12(|x -a2|+|x -2a2|-3a2).若∀x ∈R ,f(x -1)≤f(x),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎢⎡⎦⎥⎤-33,33 【答案】B3.(·山东卷)已知函数f(x)=|x -2|+1,g(x)=kx ,若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,12 B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞) 【答案】B4.(·浙江卷)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图像可能是()图1-2【答案】D5.(·江西卷)如图1-3所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧FG的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图像大致是()【答案】D6.(·新课标全国卷Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0【答案】C【押题专练】1.函数y=esin x(-π≤x≤π)的大致图象为 ().【答案】D2.已知函数f(x)=4|x|+2-1的定义域是[a ,b](a ,b ∈Z),值域是[0,1],则满足条件的整数对(a ,b)共有( ).A .2对B .5对C .6对D .无数对【答案】B3.已知函数f(x)=⎝⎛⎭⎫1e x -tan x ⎝⎛⎭⎫-π2<x<π2,若实数x0是函数y =f(x)的零点,且0<t<x0,则f(t)的值( ).A .大于1B .大于0C .小于0D .不大于0【答案】B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t(0≤t≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f(t),则函数S =f(t)的图象大致是 ( ).【答案】C5.函数=ln 1|2x-3|的大致图象为(如图所示)().【答案】A6.如右图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为 ().【答案】A7.设函数f(x)=|x+2|+|x-a|的图象关于直线x=2对称,则a的值为________.【答案】68.函数y=11-x的图象与函数y=2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于________.【答案】89.使l og2(-x)<x+1成立的x的取值范围是________.【答案】(-1,0)10.讨论方程|1-x|=kx的实数根的个数.11.已知函数f(x)=x1+x.(1)画出f(x)的草图;(2)指出f(x)的单调区间.12.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象并判断其零点个数;(3)根据图象指出f(x)的单调递减区间;(4)根据图象写出不等式f(x)>0的解集;(5)求集合M={m|使方程f(x)=m有三个不相等的实根}.13.设函数f(x)=x +1x (x ∈(-∞,0)∪(0,+∞))的图象为C1,C1关于点A(2,1)的对称的图象为C2,C2对应的函数为g(x).(1)求函数y =g(x)的解析式,并确定其定义域;(2)若直线y =b 与C2只有一个交点,求b 的值,并求出交点的坐标.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知: 2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3 【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2 A.233 B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π4【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形. 【解析】解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH.同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30,则OD =53,O1D1=1033,由S 侧=S 上+S 下,得 12×(20+30)×3DD1=34×(202+302),解得DD1=1333,在直角梯形O1ODD1中,O1O =DD21-OD -O1D12=43, 所以棱台的高为43cm.高考模拟复习试卷试题模拟卷。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062 26

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062 26

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【热点题型】题型一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________. (2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1-3解析 (1)要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+kπ,k ∈Z , 即⎩⎨⎧x ≠π4+kπ,k ∈Z ,x ≠π2+kπ,k ∈Z. 故函数的定义域为{x|x≠π4+kπ且x≠π2+kπ,k ∈Z}.(2)∵0≤x≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1. ∴y ∈[]-3,2,∴ymax +ymin =2- 3.答案 (1){x|x≠π4+kπ且x≠π2+kπ,k ∈Z} (2)A【提分秘籍】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sinx±cos x ,化为关于t 的二次函数求值域(最值).【举一反三】(1)函数y =sin x -cos x 的定义域为________.(2)函数y =sin x -cos x +sin xcos x 的值域为________.解析 (1)法一 要使函数有意义,必须使sinx -cos x≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . 法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . 法三 sin x -cos x =2sin ⎝⎛⎭⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2kπ≤x -π4≤π+2kπ,k ∈Z ,解得2kπ+π4≤x≤2kπ+5π4,k ∈Z.所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . (2)设t =sin x -cos x ,则t2=sin2x +cos2x -2sin xcos x ,sin xcos x =1-t22,且-2≤t≤ 2.∴y =-t22+t +12=-12(t -1)2+1.当t =1时,ymax =1;当t =-2时,ymin =-12- 2.∴函数的值域为⎣⎡⎦⎤-12-2,1. 答案 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z (2)⎣⎡⎦⎤-12-2,1 题型二三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数【提分秘籍】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asi n ωx 或y =Acos ωx +b 的形式. 【举一反三】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2(2)(·杭州模拟)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3题型三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________. (2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 解析 (1)由-π2+2kπ≤x +π4≤π2+2kπ,k ∈Z ,得-3π4+2kπ≤x≤π4+2kπ,k ∈Z.又x ∈[0,π],所以f(x)的单调递增区间为⎣⎡⎦⎤0,π4. (2)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2, ∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A. 答案 (1)⎣⎡⎦⎤0,π4 (2)A 【提分秘籍】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【举一反三】 (1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( ) A.23 B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.(2)由已知函数为y =-sin ⎝⎛⎭⎫2x -π3,欲求函数的单调减区间, 只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2kπ-π2≤2x -π3≤2kπ+π2,k ∈Z ,得kπ-π12≤x≤kπ+5π12,k ∈Z.故所给函数的单调减区间为⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z). 答案 (1)B (2)⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z) 【高考风向标】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是.【答案】32,2π- 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+ 23sin(2)242x π=-+,所以22T ππ==;min 32()22f x =-. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【答案】8【解析】由图像得,当sin()16x π+Φ=-时min 2y =,求得5k =, 当sin()16x π+Φ=时,max 3158y =⨯+=,故答案为8.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为3ω =_____.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),,, 距离最短的两个交点一定在同一个周期内,()2222152322442πππωω∴=-+--∴=()(),. 【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【答案】π【高考福建,文21】已知函数()2103cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析.【解析】(I )因为()2103cos 10cos 222x x x f x =+ 535cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭. 所以函数()f x 的最小正周期2πT =.(II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =.所以()10sin 8g x x =-.【高考重庆,文18】已知函数f(x)=1232cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. 【答案】(Ⅰ)()f x 的最小正周期为,最小值为2+3,(Ⅱ)1323,]. 【解析】 (1) 2113()sin 23cos sin 2(1cos 2)22f x x x x x 1333sin 2cos 2sin(2)232x x x , 因此()f x 的最小正周期为,最小值为2+32. (2)由条件可知:3g()sin()32x x .当[,]2x时,有2[,]363x , 从而sin()3x的值域为1[,1]2, 那么3sin()32x的值域为1323[,]22. 故g()x 在区间[,]2上的值域是1323,].(·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2.求cos A 与a 的值.【解析】 由三角形面积公式,得 12×3×1·sin A =2,故sin A =2 23. 因为sin2A +cos2A =1, 所以cos A =±1-sin2A =±1-89=±13.①当cos A =13时,由余弦定理得a2=b2+c2-2bccos A =32+12-2×1×3×13=8, 所以a =2 2.②当cos A =-13时,由余弦定理得a2=b2+c2-2bccos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称 D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 【答案】D【解析】将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f(x)=sin ⎝⎛⎭⎫x +π2的图像,即f(x)=cos x .由余弦函数的图像与性质知,f(x)是偶函数,其最小正周期为2π,且图像关于直线x =kπ(k ∈Z)对称,关于点⎝⎛⎭⎫π2+kπ,0(k ∈Z)对称,故选D.图1-2(·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】π6(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A【解析】函数y =cos|2x|=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x|的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________. 【答案】π 【解析】周期为T =2π2=π.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3 【答案】D【解析】∵f(-x)=-xcos(-x)+sin(-x)=-(xcos x +sin x )=-f(x),∴y =xcos x +sin x 为奇函数,图像关于原点对称,排除选项B ,当x =π2,y =1>0,x =π,y =-π<0,故选D.(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【答案】-2 55【解析】f(x)=sin x -2cos x = 5⎝⎛⎭⎪⎫15sin x -25cos x ,令cos α=15,sin α=25, 则f(x)=5sin(x -α).当θ-α=2kπ+π2, 即θ=2kπ+π2+α(上述k 为整数)时,f(x)取得最大值,此时 cos θ=-sin α=-2 55. 【高考押题】1.函数f(x)=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( )A.⎣⎡⎦⎤kπ2-π12,kπ2+5π12(k ∈Z)B.⎝⎛⎭⎫kπ2-π12,kπ2+5π12(k ∈Z) C.⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z) D.⎝⎛⎭⎫kπ+π6,kπ+2π3(k ∈Z)2.在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析 ①y =cos|2x|=cos 2x ,最小正周期为π; ②由图象知y =|cos x|的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A.答案 A3.已知函数f(x)=cos23x -12,则f(x)的图象的相邻两条对称轴之间的距离等于 ( ) A.2π3B.π3C.π6D.π12解析 因为f(x)=1+cos 6x 2-12=12cos 6x ,所以最小正周期T =2π6=π3,相邻两条对称轴之间的距离为T2=π6,故选C.答案 C4.已知函数f(x)=sin(x +θ)+3cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为 ( )A .0B.π6C.π4D.π3解析 据已知可得f(x)=2sin ⎝⎛⎭⎫x +θ+π3,若函数为偶函数,则必有θ+π3=kπ+π2(k ∈Z),又由于θ∈⎣⎡⎦⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意.答案 B5.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( )A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.解析 由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得2kπ≤2x -π4≤2kπ+π(k ∈Z), 故kπ+π8≤x≤kπ+5π8(k ∈Z).所以函数的单调减区间为⎣⎡⎦⎤kπ+π8,kπ+5π8(k ∈Z).答案 ⎣⎡⎦⎤kπ+π8,kπ+5π8(k ∈Z)7.函数y =lg(sin x)+cos x -12的定义域为________.解析 要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ(k ∈Z ),-π3+2kπ≤x≤π3+2kπ(k ∈Z ), ∴2kπ<x≤π3+2kπ(k ∈Z),∴函数的定义域为⎩⎨⎧⎭⎬⎫x|2kπ<x ≤π3+2kπ,(k ∈Z ).答案 ⎝⎛⎦⎤2kπ,π3+2kπ(k ∈Z)8.函数y =sin2x +sin x -1的值域为________. 解析y =sin2x +sin x -1,令t =sin x ,t ∈[-1,1],则有y =t2+t -1=⎝⎛⎭⎫t +122-54,画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1,可得y ∈⎣⎡⎦⎤-54,1. 答案 ⎣⎡⎦⎤-54,1 9.已知函数f(x)=6cos4x +5sin2x -4cos 2x ,求f(x)的定义域,判断它的奇偶性,并求其值域. 解 由cos 2x≠0得2x≠kπ+π2,k ∈Z , 解得x≠kπ2+π4,k ∈Z ,所以f(x)的定义域为⎩⎨⎧⎭⎬⎫x|x ∈R ,且x ≠kπ2+π4,k ∈Z .因为f(x)的定义域关于原点对称, 且f(-x)=6cos4(-x )+5sin2(-x )-4cos (-2x )=6cos4x +5sin2x -4cos 2x=f(x). 所以f(x)是偶函数, 当x≠kπ2+π4,k ∈Z 时,f(x)=6cos4x +5sin2x -4cos 2x =6cos4x +5-5cos2x -42cos2x -1 =(2cos2x -1)(3cos2x -1)2cos2x -1=3cos2x -1.所以f(x)的值域为⎩⎨⎧⎭⎬⎫y|-1≤y <12,或12<y≤2.10.已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R.(1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 【热点题型】题型一 二元一次不等式(组)表示的平面区域例1、(1)若不等式组⎩⎪⎨⎪⎧x≥0,x +3y≥4,3x +y≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34(2)如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 (1)A (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A(1,1),B(0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73.(2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 【提分秘籍】二元一次不等式(组)表示平面区域的判断方法: 直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.【举一反三】(1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a 的值为( )A .-5B .3C .5D .7(2)如图所示的平面区域(阴影部分)满足不等式________.答案 (1)D (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A(1,0),B(1,a +1),C(0,1)组成的三角形的内部(包括边界),且a>-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二 求线性目标函数的最值例2、(1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≤x ,x +y≤1,y≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n 等于( )A .5B .6C .7D .8(2)已知a>0,x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y≤3,y≥a x -3,若z =2x +y 的最小值为1,则a =________.答案 (1)B (2)12当直线y =-2x +z 经过点A 时,zmin =2×(-1)-1=-3=n.当直线y =-2x +z 经过点B 时,zmax =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a x -3, 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴zmin =2-2a =1, 解得a =12. 【提分秘籍】线性规划问题的解题步骤:(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. 【举一反三】(1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x≤2,y≤2,x ≤2y给定.若M(x ,y)为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .3B .4C .32D .4 2(2)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C.12D .-12答案 (1)B (2)D 解析 (1)由线性约束条件⎩⎨⎧0≤x≤2,y≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.题型三 线性规划的实际应用例3、某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y.由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≤21,y≤x +7,36x +60y≥900,x ,y≥0,x ,y ∈N.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 【提分秘籍】解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答. 【举一反三】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y.由题意得⎩⎪⎨⎪⎧x≥0,y≥0,3x +y≤13,2x +3y≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元). 题型四求非线性目标函数的最值例4、(1)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值为________.(2)已知O 是坐标原点,点A(1,0),若点M(x ,y)为平面区域⎩⎪⎨⎪⎧x +y≥2,x≤1,y≤2上的一个动点,则|OA →+OM →|的最小值是________.答案 (1)32 (2)322【提分秘籍】常见代数式的几何意义有(1)x2+y2表示点(x ,y)与原点(0,0)的距离; (2)x -a 2+y -b 2表示点(x ,y)与点(a ,b)之间的距离;(3)yx 表示点(x ,y)与原点(0,0)连线的斜率; (4)y -b x -a 表示点(x ,y)与点(a ,b)连线的斜率. 【举一反三】(1)设不等式组⎩⎪⎨⎪⎧x≥1,x -2y +3≥0,y≥x 所表示的平面区域是Ω1,平面区域Ω2是与Ω1关于直线3x -4y-9=0对称的区域,对于Ω1中的任意一点A 与Ω2中的任意一点B ,|AB|的最小值等于( )A.285B .4C.125D .2(2)设变量x ,y 满足⎩⎪⎨⎪⎧5x +2y -18≤0,2x -y≥0,x +y -3≥0,若直线kx -y +2=0经过该可行域,则k 的最大值为________.答案 (1)B (2)1解析 (1)由题意知,所求的|AB|的最小值,即为区域Ω1中的点到直线3x -4y -9=0的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线3x -4y -9=0的距离最小, 故|AB|的最小值为2×|3×1-4×1-9|5=4,选B. (2)画出可行域如图,k 为直线y =kx +2的斜率,直线过定点(0,2),并且直线过可行域,要使k 最大,此直线需过B(2,4)点,所以k =4-22-0=1.【高考风向标】1.【高考重庆,文10】若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为()(A)3 (B) 1 (C) 43(D)3 【答案】B【解析】如图,,由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为ABC ∆,且其面积等于43,再注意到直线:20AB x y +-=与直线:20BC x y m -+=互相垂直,所以ABC ∆是直角三角形, 易知,(2,0),(1,1)A B m m -+,2422(,)33m m C -+;从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43, 化简得:2(1)4m +=,解得3m =-,或1m =,检验知当3m =-时,已知不等式组不能表示一个三角形区域,故舍去,所以1m =;故选B.2.【高考四川,文9】设实数x,y满足2102146x yx yx y+≤⎧⎪+≤⎨⎪+≥⎩,则xy的最大值为( )(A)252(B)492(C)12 (D)14【答案】A【解析】画出可行域如图在△ABC区域中结合图象可知当动点在线段AC上时xy取得最大此时2x+y=10xy=12(2x·y)≤21225()222x y+=当且仅当x=52,y=5时取等号,对应点(52,5)落在线段AC上,故最大值为252。

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061.85

高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061.85

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质.3.结合具体函数,了解函数奇偶性的含义.4.会运用函数的图象理解和研究函数的奇偶性. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f(x)中,满足“∀x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( ) A .f(x)=2xB .f(x)=|x -1| C .f(x)=1x -xD .f(x)=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”).解析 (1)由(x1-x2)[f(x1)-f(x2)]<0可知,f(x)在(0,+∞)是减函数,f(x)=1x -x 求导,f′(x)=1x2-1<0,∴f(x)=1x -x 在(0,+∞)是减函数.(2)任取x1,x2∈(-1,+∞),且x1<x2, 则y1-y2=x1+2x1+1-x2+2x2+1=x2-x1x1+1x2+1.∵x1>-1,x2>-1,∴x1+1>0,x2+1>0, 又x1<x2,∴x2-x1>0, ∴x2-x1x1+1x2+1>0,即y1-y2>0.∴y1>y2,所以函数y =x +2x +1在(-1,+∞)上是减函数.答案 (1)C(2)减函数 【提分秘籍】 (1)图象法作图象→看升降→归纳单调性区间 (2)转化法(3)导数法求导→判断f′x 正、负→单调性区间 (4)定义法取值→作差→变形→定号→单调性区间 求函数的单调区间,一定要注意定义域优先原则. 【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1B .y =(x -1)2 C .y =2-xD .y =log0.5(x +1)题型二求函数的单调区间 例2、求下列函数的单调区间: (1)y =-x2+2|x|+1; (2)y =log 12(x2-3x +2). 解析 (1)由于y=⎩⎪⎨⎪⎧-x2+2x +1x≥0,-x2-2x +1x<0,即y =⎩⎪⎨⎪⎧-x -12+2x≥0,-x +12+2x<0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x2-3x +2,则原函数可以看作y =log 12u 与u =x2-3x +2的复合函数. 令u =x2-3x +2>0,则x<1或x>2.∴函数y =log 12(x2-3x +2)的定义域为(-∞,1)∪(2,+∞). 又u =x2-3x +2的对称轴x =32,且开口向上.∴u =x2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数, ∴y =log 12(x2-3x +2)的单调减区间为(2,+∞), 单调增区间为(-∞,1). 【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f(x)的定义域上(或某一区间上)是增函数,则f(x1)<f(x2)⇔x1<x2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的范围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a>0且a≠1);(2)y =log 12(4x -x2).题型三函数单调性的应用例3、已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝⎛⎭⎫-π2,π2时,f(x)=ex +sin x ,则( ) A .f(1)<f(2)<f(3) B .f(2)<f(3)<f(1) C .f(3)<f(2)<f(1)D .f(3)<f(1)<f(2)解析:由f(x)=f(π-x),得函数f(x)的图象关于直线x =π2对称,又当x ∈⎝⎛⎭⎫-π2,π2时,f′(x)=ex +cosx>0恒成立,所以f(x)在⎝⎛⎭⎫-π2,π2上为增函数,f(2)=f(π-2),f(3)=f(π-3),且0<π-3<1<π-2<π2,所以f(π-3)<f(1)<f(π-2),即f(3)<f(1)<f(2).答案:D 【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中. 2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题.(3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f”号不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”号,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f ⎝⎛⎭⎫12=1,如果对于0<x<y ,都有f(x)>f(y).(1)求f(1)的值;(2)解不等式f(-x)+f(3-x)≥-2. 解析:(1)令x =y =1, 则f(1)=f(1)+f(1),f(1)=0.(2)由题意知f(x)为(0,+∞)上的减函数,且⎩⎪⎨⎪⎧-x>0,3-x>0,∴x<0, ∵f(xy)=f(x)+f(y),x 、y ∈(0,+∞)且f ⎝⎛⎭⎫12=1.∴f(-x)+f(3-x)≥-2可化为f(-x)+f(3-x)≥-2f ⎝⎛⎭⎫12, 即f(-x)+f ⎝⎛⎭⎫12+f(3-x)+f ⎝⎛⎭⎫12≥0=f(1)⇔f ⎝⎛⎭⎫-x 2+f ⎝⎛⎭⎫3-x 2≥f(1)⇔f ⎝⎛⎭⎫-x 2·3-x 2≥f(1),则⎩⎪⎨⎪⎧x<0,-x 2·3-x 2≤1,解得-1≤x<0.∴不等式的解集为{x|-1≤x<0}. 【变式探究】已知f(x)=⎩⎪⎨⎪⎧3-a x -ax<1logax x≥1是(-∞,+∞)上的增函数,则a 的取值范围是( ) A .(1,+∞)B .(1,3)C.⎣⎡⎭⎫32,3D.⎝⎛⎭⎫1,32题型四函数奇偶性的判定例4、(1)下列函数不具有奇偶性的有________. ①f(x)=(x +1) 1-x1+x; ②f(x)=x3-x ; ③f(x)=x2+|x|-2; ④f(x)=lg x2+lg 1x2;⑤f(x)=⎩⎪⎨⎪⎧x2+x x<0,-x2+x x>0(2)对于函数y =f(x),x ∈R ,“y =|f(x)|的图象关于y 轴对称”是“y =f(x)是奇函数”的() A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件解析 (1)①由1-x1+x ≥0可得函数的定义域为(-1,1],所以函数为非奇非偶函数.②∵x ∈R ,f(-x)=(-x)3-(-x)=-x3+x =-(x3-x)=-f(x). ∴f(x)=x3-x 是奇函数.③∵x∈R,f(-x)=(-x)2+|-x|-2=x2+|x|-2=f(x),∴f(x)=x2+|x|-2是偶函数.④定义域为(-∞,0)∪(0,+∞),f(x)=lg x2+lg 1x2=lg x2+lg(x2)-1=lg x2-lg x2=0,∴f(x)既是奇函数又是偶函数.⑤当x>0时,-x<0,f(x)=-x2+x,∴f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x);当x<0时,-x>0,f(x)=x2+x,∴f(-x)=-(-x)2-x=-x2-x=-(x2+x)=-f(x).所以对于x∈(-∞,0)∪(0,+∞),均有f(-x)=-f(x).∴函数为奇函数.(2)若f(x)是奇函数,则对任意的x∈R,均有f(-x)=-f(x),即|f(-x)|=|-f(x)|=|f(x)|,所以y=|f(x)|是偶函数,即y=|f(x)|的图象关于y轴对称.反过来,若y=|f(x)|的图象关于y轴对称,则不能得出y=f(x)一定是奇函数,比如y=|x2|,显然,其图象关于y轴对称,但是y=x2是偶函数.故“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的必要而不充分条件.答案(1)①(2)B【提分秘籍】(1)判定函数奇偶性的常用方法及思路:①定义法:②图象法:③性质法:a.“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;b.“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;c.“奇·偶”是奇,“奇÷偶”是奇.(2)判断函数奇偶性时应注意问题:①分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.②“性质法”中的结论是在两个函数的公共定义域内才成立的.③性质法在小题中可直接运用,但在解答题中应给出性质推导的过程.【举一反三】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B 项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.答案:C题型五函数的周期性例5、已知函数f(x)是R 上的偶函数,g(x)是R 上的奇函数,且g(x)=f(x -1),若f(2)=2,则f(2 014)的值为()A .2B .0C .-2D .±2解析 ∵g(-x)=f(-x -1),∴-g(x)=f(x +1).又g(x)=f(x -1),∴f(x +1)=-f(x -1),∴f(x +2)=-f(x),f(x +4)=-f(x +2)=f(x ),则f(x)是以4为周期的周期函数,所以f(2 014)=f(2)=2.答案 A【提分秘籍】函数周期性的判断要结合周期性的定义,还可以利用图象法及总结的几个结论,如f(x +a)=-f(x)⇒T =2a.【举一反三】函数f(x)=lg|sin x|是()A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数解析:易知函数的定义域为{x|x≠kπ,k ∈Z},关于原点对称,又f(-x)=lg|sin(-x)|=lg|-sin x|=lg|sin x|=f(x),所以f(x)是偶函数,又函数y =|sin x|的最小正周期为π,所以函数f(x)=lg|sin x|是最小正周期为π的偶函数.答案:C题型六函数奇偶性、周期性等性质的综合应用例6、设定义在R 上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x +2);③当0≤x≤1时,f(x)=2x -1,则f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫32+f(2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f(x)为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫32+f(2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+f(1)+f ⎝⎛⎭⎫-12+f(0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f(1)-f ⎝⎛⎭⎫12+f(0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f(1)+f(0) =212-1+21-1+20-1= 2.答案:2【提分秘籍】1.函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.归纳起来常见的命题角度有:(1)求函数值.(2)与函数图象有关的问题.(3)奇偶性、周期性单调性的综合.2.应用函数奇偶性可解决的问题及方法(1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.(4)应用奇偶性画图象和判断单调性.【举一反三】设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R 恒有f(x +1)=f(x -1),已知当x ∈[0,1]时,f(x)=⎝⎛⎭⎫121-x ,则下列命题: ①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x ∈(3,4)时,f(x)=⎝⎛⎭⎫12x -3. 其中正确命题的序号是________.【高考风向标】1.【高考四川,文15】已知函数f(x)=2x ,g(x)=x2+ax(其中a ∈R).对于不相等的实数x1,x2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题: ①对于任意不相等的实数x1,x2,都有m >0;②对于任意的a 及任意不相等的实数x1,x2,都有n >0;③对于任意的a ,存在不相等的实数x1,x2,使得m =n ;④对于任意的a ,存在不相等的实数x1,x2,使得m =-n.其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为f '(x)=2xln2>0恒成立,故①正确对于②,取a =-8,即g'(x)=2x -8,当x1,x2<4时n <0,②错误对于③,令f '(x)=g'(x),即2xln2=2x +a记h(x)=2xln2-2x ,则h'(x)=2x(ln2)2-2存在x0∈(0,1),使得h(x0)=0,可知函数h(x)先减后增,有最小值.因此,对任意的a ,m =n 不一定成立.③错误对于④,由f '(x)=-g'(x),即2xln2=-2x -a令h(x)=2xln2+2x ,则h'(x)=2x(ln2)2+2>0恒成立,即h(x)是单调递增函数,当x→+∞时,h(x)→+∞当x→-∞时,h(x)→-∞因此对任意的a ,存在y =a 与函数h(x)有交点.④正确2.【高考陕西,文10】设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C【解析】1()ln ln 2p f ab ab ab ===;()ln 22a b a b q f ++==;11(()())ln 22r f a f b ab =+= 因为2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +> 所以q p r >=,故答案选C3.【高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦,()f x 的最小值是.【答案】1;2662--4.【高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分.已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由;(2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由.【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增.1.(·北京卷)下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|【答案】B【解析】由定义域为R,排除选项C,由函数单调递增,排除选项A,D. 2.(·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2 B.f(x)=x2+1C.f(x)=x3 D.f(x)=2-x【答案】A【解析】由偶函数的定义,可以排除C,D,又根据单调性,可得B不对.3.(·江苏卷)已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较ea-1与ae-1的大小,并证明你的结论.【解析】 (1)证明:因为对任意 x ∈R ,都有f(-x)=e -x +e -(-x)=e -x +ex =f(x),所以f(x)是R 上的偶函数.(2)由条件知 m(ex +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =ex(x>0),则 t>1,所以 m≤-t -1t2-t +1=-1t -1+1t -1+ 1对任意t>1成立.因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g(x)=ex +1ex - a(-x3+3x),则g′(x) =ex -1ex +3a(x2-1).当 x≥1时,ex -1ex >0,x2-1≥0.又a>0,故 g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数,因此g(x)在[1,+∞)上的最小值是 g(1)= e +e -1-2a.由于存在x0∈[1,+∞),使ex0+e -x0-a(-x30+ 3x0)<0 成立, 当且仅当最小值g(1)<0,故 e +e -1-2a<0, 即 a>e +e -12.令函数h(x) = x -(e -1)ln x -1,则 h′(x)=1-e -1x . 令 h′(x)=0, 得x =e -1.当x ∈(0,e -1)时,h′(x)<0,故h(x)是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h′(x)>0,故h(x)是(e -1,+∞)上的单调递增函数.所以h(x)在(0,+∞)上的最小值是h(e -1).注意到h(1)=h(e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h(e -1)≤h(x)<h(1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x ∈(1,e)成立.故①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时, h(a)<0,即a -1<(e -1)ln a ,从而ea -1<ae -1;②当a =e 时,ea -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h(a)>h(e)=0,即a -1>(e -1)ln a ,故ea -1>ae -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,ea -1<ae -1;当a =e 时,ea -1=ae -1;当a ∈(e ,+∞)时,ea -1>ae -1.4.(·四川卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M ,使得函数φ(x)的值域包含于区间[-M ,M].例如,当φ1(x)=x3,φ2(x)=sin x 时,φ1(x)∈A ,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D ,则“f(x)∈A”的充要条件是“∀b ∈R ,∃a ∈D ,f(a)=b”;②若函数f(x)∈B ,则f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A ,g(x)∈B ,则f(x)+g(x)∈/B ;④若函数f(x)=aln(x +2)+x x2+1(x >-2,a ∈R)有最大值,则f(x)∈B. 其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】若f(x)∈A ,则函数f(x)的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f(a)=b ,故①正确.取函数f(x)=x(-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f(x)的值域包含于[-M ,M]=[-1,1],但此时函数f(x)没有最大值和最小值,故②错误.当f(x)∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f(a)=b ,所以,当g(x)∈B 时,对于函数f(x)+g(x),如果存在一个正数M ,使得f(x)+g(x)的值域包含于[-M ,M],那么对于该区间外的某一个b0∈R ,一定存在一个a0∈D ,使得f(x)+f(a0)=b0-g(a0),即f(a0)+g(a0)=b0∉[-M ,M],故③正确.对于f(x)=aln(x +2)+x x2+1(x >-2),当a >0或a <0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a =0,此时f(x)=x x2+1(x >-2).易知f(x)∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f(x)∈[-M ,M],故④正确5.(·四川卷)已知函数f(x)=ex -ax2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e -2<a <1.【解析】(1)由f(x)=ex -ax2-bx -1,得g(x)=f′(x)=ex -2ax -b ,所以g′(x)=ex -2a.当x ∈[0,1]时,g′(x)∈[1-2a ,e -2a].当a≤12时,g′(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b ;当a≥e 2时,g′(x)≤0,所以g(x)在[0,1]上单调递减,因此g(x)在[0,1]上的最小值是g(1)=e -2a -b ;当12<a <e 2时,令g′(x)=0,得x =ln(2a)∈(0,1),所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a -2aln(2a)-b.综上所述,当a≤12时,g(x)在[0,1]上的最小值是g(0)=1-b ;当12<a <e 2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a -2aln(2a)-b ;当a≥e 2时,g(x)在[0,1]上的最小值是g(1)=e -2a -b.(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点;当a≥e 2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有g(0)=1-b >0,g(1)=e -2a -b >0.由f(1)=0有a +b =e -1<2,有g(0)=a -e +2>0,g(1)=1-a>0.解得e -2<a <1.所以,函数f(x)在区间(0,1)内有零点时,e -2<a <1.6.(·北京卷)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________. 【答案】(-∞,2)【解析】函数y =log 12x 在(0,+∞)上为减函数,当x≥1时,函数y =log 12x 的值域为(-∞,0];函数y =2x 在R 上是增函数,当x<1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).7.(·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -xC .y =-x2+1D .y =lg |x|【答案】C【解析】对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x|是偶函数,但在(0,+∞)上有y =lgx ,此时单调递增,排除.只有C 符合题意.8.(·新课标全国卷Ⅱ] 若存在正数x 使2x(x -a)<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)【答案】D【解析】由题意存在正数x 使得a>x -12x 成立,即a>⎝⎛⎭⎫x -12x min.由于x -12x 是(0,+∞)上的增函数,故x -12x >0-120=-1,所以a>-1.答案为D.9.(·新课标全国卷Ⅱ] 已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是( )A .x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=0【答案】C【解析】x→-∞时,f(x)<0,x→+∞时,f(x)>0,又f(x)连续,x0∈R ,f(x0)=0,A 正确.通过平移变换,函数可以化为f(x)=x3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确.若x0是f(x)的极小值点,可能还有极大值点x1,若x1<x0,则f(x)在区间(x1,x0)单调递减,C 错误.D 正确.故答案为C.10.(·四川卷)已知函数f(x)=⎩⎪⎨⎪⎧x2+2x +a ,x<0,ln x ,x>0,其中a 是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图像上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x2<0,证明:x2-x1≥1;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.【解析】(1)函数f(x)的单调递减区间为(-∞,-1 ),单调递增区间为[-1,0),(0,+∞).(2)证明:由导数的几何意义可知,点A 处的切线斜率为f′(x1),点B 处的切线斜率为f′(x2). 故当点A 处的切线与点B 处的切线垂直时,有f′(x1)·f′(x2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2.因为x1<x2<0,所以,(2x1+2)(2x2+2)=-1,所以2x1+2<0,2x2+2>0,因此x2-x1=12[-(2x1+2)+2x2+2]≥[-(2x1+2)](2x2+2)=1.当且仅当-(2x1+2)=2x2+2=1,即x1=-32且x2=-12时等号成立所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,有x2-x1≥1.(3)当x1<x2<0或x2>x1>0时,f′(x1)≠f′(x2),故x1<0<x2.当x1<0时,函数f(x)的图像在点(x1,f(x1))处的切线方程为y -(x21+2x1+a)=(2x1+2)(x -x1),即y =(2x1+2)x -x21+a.当x2>0时,函数f(x)的图像在点(x2,f(x2))处的切线方程为y -ln x2=1x2(x -x2),即y =1x2·x +ln x2-1.两切线重合的充要条件是⎩⎪⎨⎪⎧1x2=2x1+2,①ln x2-1=-x21+a.② 由①及x1<0<x2知,0<1x2<2.由①②得,a =ln x2+⎝⎛⎭⎫12x2-12-1=-ln 1x2+14⎝⎛⎭⎫1x2-22-1. 令t =1x2,则0<t<2,且a =14t2-t -ln t.设h(t)=14t2-t -ln t(0<t<2).则h′(t)=12t -1-1t =(t -1)2-32t<0. 所以h(t)(0<t<2)为减函数.则h(t)>h(2)=-ln 2-1,所以a>-ln2-1,而当t ∈(0,2)且t 趋近于0时,h(t)无限增大,所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).11.(·四川卷)设函数f(x)=ex +x -a(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f(f(b))=b 成立,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1]【答案】A【高考押题】1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是().A .y =x2B .y =|x|+1C .y =-lg|x|D .y =2|x|解析 对于C 中函数,当x>0时,y =-lgx ,故为(0,+∞)上的减函数,且y =-lg |x|为偶函数. 答案 C2.已知函数f(x)为R 上的减函数,则满足f(|x|)<f(1)的实数x 的取值范围是()A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f(x)在R 上为减函数且f(|x|)<f(1),∴|x|>1,解得x >1或x <-1.答案 D3.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax2+bx 在(0,+∞)上是() A .增函数 B .减函数C .先增后减D .先减后增解析∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a<0,b<0,∴y =ax2+bx 的对称轴方程x =-b2a <0,∴y =ax2+bx 在(0,+∞)上为减函数.答案B4.设函数f(x)=⎩⎪⎨⎪⎧ 1,x>0,0,x =0,-1,x<0,g(x)=x2f(x -1),则函数g(x)的递减区间是 ().A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g(x)=⎩⎪⎨⎪⎧x2,x>1,0,x =1,-x2,x<1.如图所示,其递减区间是[0,1).故选B.答案 B5.函数y =-x2+2x -3(x <0)的单调增区间是()A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又因为二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0).答案 C6.设f(x)为定义在R 上的奇函数.当x≥0时,f(x)=2x +2x +b(b 为常数),则f(-1)等于().A .3B .1C .-1D .-3解析 由f(-0)=-f(0),即f(0)=0.则b =-1,f(x)=2x +2x -1,f(-1)=-f(1)=-3.答案 D7.已知定义在R 上的奇函数,f(x)满足f(x +2)=-f(x),则f(6)的值为 ().A .-1B .0C .1D .2解析 (构造法)构造函数f(x)=sin π2x ,则有f(x +2)=sin ⎣⎡⎦⎤π2x +2=-sin π2x =-f(x),所以f(x)=sin π2x 是一个满足条件的函数,所以f(6)=sin 3π=0,故选B.答案 B8.定义在R 上的函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则下列不等式一定成立的是(). A .f ⎝⎛⎭⎫cos 2π3>f ⎝⎛⎭⎫sin 2π3B .f(sin 1)<f(cos 1)C .f ⎝⎛⎭⎫sin π6<f ⎝⎛⎭⎫cos π6D .f(cos 2)>f(sin 2)9.已知函数f(x)=⎩⎪⎨⎪⎧1-2-x ,x≥0,2x -1,x<0,则该函数是 (). A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x>0时,f(-x)=2-x -1=-f(x);当x<0时,f(-x)=1-2-(-x)=1-2x =-f(x).当x =0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x 在[0,+∞)上为增函数,f(x)=2x -1在(-∞,0)上为增函数,又x≥0时1-2-x≥0,x<0时2x -1<0,故f(x)为R 上的增函数.答案 C10.已知f(x)是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f(x)=4x -1,则f(-5.5)的值为()A .2B .-1C .-12D .1解析f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.答案 D11.设函数D(x)=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是 (). A .D(x)的值域为{0,1}B .D(x)是偶函数C .D(x)不是周期函数D .D(x)不是单调函数解析 显然D(x)不单调,且D(x)的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D(-x)=D(x),D(x +1)=D(x).则D(x)是偶函数,D(x)为周期函数,B 正确,C 错误.答案 C12.已知函数f(x)=x2+a x (x≠0,a ∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a 的取值范围.13.已知函数f(x)=a·2x +b·3x ,其中常数a ,b 满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x +1)>f(x)时的x 的取值范围.解 (1)当a>0,b>0时,因为a·2x ,b·3x 都单调递增,所以函数f(x)单调递增;当a<0,b<0时,因为a·2x ,b·3x 都单调递减,所以函数f(x)单调递减.(2)f(x +1)-f(x)=a·2x +2b·3x>0.(i)当a<0,b>0时,⎝⎛⎭⎫32x>-a 2b , 解得x>log 32⎝⎛⎭⎫-a 2b ; (ii)当a>0,b<0时,⎝⎛⎭⎫32x<-a 2b , 解得x<log 32⎝⎛⎭⎫-a 2b . 14.函数f(x)对任意的a 、b ∈R ,都有f(a +b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m2-m -2)<3.15.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x =1对称,当x ∈[0,1]时,f(x)=2x -1,(1)求证:f(x)是周期函数;(2)当x ∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f()的值.解析(1)证明 函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x =1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2)当x ∈[1,2]时,2-x ∈[0,1],又f(x)的图象关于x =1对称,则f(x)=f(2-x)=22-x -1,x ∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f()=f(2 012)+f(2 013)=f(0)+f(1)=1.16.已知函数f(x)的定义域为R ,且满足f(x +2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x ,求使f(x)=-12在[0,2 014]上的所有x 的个数.(1)证明 ∵f(x +2)=-f(x),∴f(x +4)=-f(x +2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解 当0≤x≤1时,f(x)=12x ,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x ,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x -2<1,∴f(x -2)=12(x -2).又∵f(x)是以4为周期的周期函数∴f(x -2)=f(x +2)=-f(x),∴-f(x)=12(x -2),∴f(x)=-12(x -2)(1<x<3).∴f(x)=⎩⎨⎧ 12x ,-1≤x≤1,-12x -2,1<x<3.由f(x)=-12,解得x =-1.∵f(x)是以4为周期的周期函数,∴f(x)=-12的所有x =4n -1(n ∈Z).令0≤4n -1≤2 014,则14≤n≤2 0154.又∵n ∈Z ,∴1≤n≤503(n ∈Z),∴在[0,2 014]上共有503个x 使f(x)=-12.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.6.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.7.知道对数函数是一类重要的函数模型.8.了解指数函数y =ax 与对数函数y =logax 互为反函数(a>0,且a≠1).【热点题型】题型一指数式与根式的计算(例1、计算 (1)733-3324-6319+4333=________.(2)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748=________.【提分秘籍】化简指数幂的一般步骤是:有括号先算括号里的,无括号先进行指数运算(即先乘方、开方),再乘除,最后加减,负指数幂化为正指数幂的倒数;底数是负数,先确定符号;底数是小数,先要化成分数;底数是带分数的,先要化成假分数;若是根式,应化为分数指数幂,然后再尽可能用幂的形式表示,便于运用指数幂的运算性质.【举一反三】若x>0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.题型二指数函数的图象问题(例2、若方程|ax -1|=2a(a>0,且a≠1)有两解,则a 的取值范围是________.【提分秘籍】y =ax ,y =|ax|,y =a|x|(a>0且a≠1)三者之间的关系:y =ax 与y =|ax|是同一函数的不同表现形式.函数y =a|x|与y =ax 不同,前者是一个偶函数,其图象关于y 轴对称,当x≥0时两函数图象相同.【举一反三】已知c<0,下列不等式中成立的一个是()A .c>2cB .c>⎝⎛⎭⎫12c C .2c<⎝⎛⎭⎫12c D .2c>⎝⎛⎭⎫12c题型三指数函数性质的应用例3、设a =40.8,b =80.46,c =⎝⎛⎭⎫12-1.2,则a ,b ,c 的大小关系为() A .a>b>c B .b>a>cC .c>a>bD .c>b>a【提分秘籍】(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)指数型函数中参数的取值范围问题.在解决涉及指数函数的单调性或最值问题时,应注意对底数a 的分类讨论.【举一反三】若函数f(x)=⎩⎨⎧ 1x ,x<0,⎝⎛⎭⎫13x ,x≥0,则不等式-13≤f(x)≤13的解集为()A .[-1,2)∪[3,+∞)B .(-∞,-3]∪[1,+∞)C.⎣⎡⎭⎫32,+∞ D .(1, 3 ]∪[3,+∞)题型四对数运算例4、(1)(3+2)2log(3-2)5=( )A .1B.12C.14D.15(2)=________.(3)若log147=a,14b =5,则a ,b 表示log3528=________.【提分秘籍】对数式的化简与求值的常用思路: (1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数的运算,然后逆用对数的运算法则,转化为同底数真数的积、商、幂再运算.【举一反三】lg 25+lg 2·lg 50+(lg 2)2=()A .1B .2C .3D .4题型五对数函数的图象及应用例5、(1)函数f(x)=lg(|x|-1)的大致图象是()(2)设方程10x =|lg(-x)|的两个根分别为x1,x2,则()A .x1x2<0B .x1x2=0C .x1x2>1D .0<x1x2<1【提分秘籍】在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.在研究方程的根时,可把方程的根看作两个函数图象交点的横坐标,通过研究两个函数图象得出方程根的关系.【举一反三】若函数y =logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()题型六对数函数的性质及应用例6、对于函数f(x)=log 12(x2-2ax +3),解答下列问题:(1)若f(x)的定义域为R ,求实数a 的取值范围;(2)若f(x)的值域为R ,求实数a 的取值范围;(3)若函数f(x)在(-∞,1]内为增函数,求实数a 的取值范围.【提分秘籍】对数函数性质的考查多与复合函数联系在一起.要注意两点:(1)要认清复合函数的构成,判断出单调性.(2)不要忽略定义域.【举一反三】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。

3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案 (1)D (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →, 所以AB →=85AN →-45AM →, 所以λ+μ=45. (2)设BP →=kBN →,k ∈R. 因为AP →=AB →+BP →=AB →+kBN →=AB →+k(AN →-AB →)=AB →+k(14AC →-AB →)=(1-k)AB →+k 4AC →, 且AP →=mAB →+211AC →,所以1-k =m ,k 4=211, 解得k =811,m =311. 【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M(0,20).又∵CN →=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N(9,2).∴MN →=(9,-18). 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________.题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________.(2)(·陕西)设0<θ<π2,向量a =(sin2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________.【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.答案 (1)(2,4) (2)60°解析 (1)∵在梯形ABCD 中,DC =2AB ,∴DC →=2AB →. 设点D 的坐标为(x ,y),则DC →=(4,2)-(x ,y)=(4-x,2-y), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). (2)因为p ∥q ,则(a +c)(c -a)-b(b -a)=0, 所以a2+b2-c2=ab , 所以a2+b2-c22ab =12, 结合余弦定理知, cosC =12,又0°<C<180°, 所以C =60°. 【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4) 【答案】A【解析】∵AB OB OA =-=(3,1),∴BC =AC AB -=(7,4),故选A.1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.152 【答案】C【解析】∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b)⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.2.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3) 【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【解析】(1)由题意知,f(x)==msin 2x +ncos 2x.因为y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=msin π6+ncos π6,-2=msin 4π3+ncos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f(x)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g(x)=f(x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g(x)的图像上符合题意的最高点为(x0,2). 由题意知,x20+1=1,所以x0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g(x)得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g(x)=2sin ⎝⎛⎭⎫2x +π2=2cos 2x.由2kπ-π≤2x≤2kπ,k ∈Z 得kπ-π2≤x≤kπ,k ∈Z , 所以函数y =g(x)的单调递增区间为⎣⎡⎦⎤kπ-π2,kπ,k ∈Z.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 【答案】12【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12. 5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.(2)∵OP →=mAB →+nAC →, ∴(x ,y)=(m +2n ,2m +n),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B(2,3)时,t 取得最大值1,故m -n 的最大值为1. 6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 3 【答案】D【解析】由|OA →|=|OB →|=OA →·OB →=2,可得点A ,B 在圆x2+y2=4上且∠AOB =60°,在平面直角坐标系中,设A(2,0),B(1,3),设P(x ,y),则(x ,y)=λ(2,0)+μ(1,3),由此得x =2λ+μ,y =3μ,解得μ=y 3,λ=12x -12 3y ,由于|λ|+|μ|≤1, 所以12x -12 3y +13y≤1,即|3x -y|+|2y|≤2 3.①⎩⎨⎧3x -y≥0,y≥0,3x +y≤2 3或②⎩⎨⎧3x -y≥0,y<0,3x -3y≤2 3或 ③⎩⎨⎧3x -y<0,y≥0,-3x +3y≤23或④⎩⎨⎧3x -y<0,y<0,-3x -y≤2 3.上述四个不等式组在平面直角坐标系中表示的区域如图阴影部分所示,所以所求区域的面积是4 3.7.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+2 【答案】A【解析】由题可知a·b =0,则a ⊥b ,又|a|=|b|=1,且|c -a -b|=1,不妨令c =(x ,y),a =(1,0),b =(0,1),则(x -1)2+(y -1)2=1,又|c|=x2+y2,故根据几何关系可知|c|max =12+12+1=1+2,|c|min =12+12-1=2-1,故选A.8.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-3 【答案】4【解析】以向量a 和b 的交点为原点,水平方向和竖直方向分别为x 轴和y 轴建立直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),则⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,所以λμ=4.9.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35【答案】A【解析】∵AB →=(3,-4),∴与AB →方向相同的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45,故选A. 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.【答案】1211.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.【答案】2【解析】如图,建立直角坐标系,则AE →=(1,2),BD →=(-2,2),AE →·BD →=2.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-9【解析】(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a2+22b2=1,从而e2+4b2=1. 由e =22得b2=41-e2=8,从而a2=b21-e2=16.故该椭圆的标准方程为x216+y28=1.13.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【答案】D【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 答案 A解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎫35,-45.2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21) 答案 B解析 BC →=3PC →=3(2PQ →-PA →) =6PQ →-3PA →=(6,30)-(12,9)=(-6,21).3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb)∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 答案 B5.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x=23,y =13.6.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________. 答案 12解析 AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.答案 k≠18.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°, ∴tan150°=3-3λ,即-33=-33λ,∴λ=1.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1). ∵A 、B 、C 三点共线,∴AB →∥AC →, ∴2(b -1)+2(a -1)=0,即a +b =2. (2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2),∴⎩⎪⎨⎪⎧ a -1=4b -1=-4,解得⎩⎪⎨⎪⎧a =5b =-3, ∴点C 的坐标为(5,-3).10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.考查三个“二次”的联系和应用;2.以5种幂函数为载体,考查幂函数的概念、图象、性质,多以客观题的形式出现;3.和其他知识交汇,以解答题形式考查综合应用.【重点知识梳理】1.一次函数与二次函数的解析式(1)一次函数:y=kx+b (k,b 为常数,且k≠0).(2)二次函数①一般式:f(x)=ax2+bx+c_(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)_(a≠0).2.一次函数与二次函数的定义及性质函数一次函数二次函数解析式y=kx+b (k≠0)y=ax2+bx+c (a≠0)图象k>0k<0a>0a<0b>0b>0b<0,c>0b>0,c<0定义域R R值域R [4ac-b24a,+∞)(-∞,4ac-b24a]单调性在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数在(-∞,-b2a]上是减函数;在[-b2a,+∞)上是增函数在(-∞,-b2a]上是增函数;在[-b2a,+∞)上是减函数3.常用幂函数的图象与性质函数性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R[0,+∞){x|x∈R 且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R 且y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性增x∈[0,+∞)时,增;x∈(-∞,0]时,减增增x∈(0,+∞)时,减;x∈(-∞,0)时,减【高频考点突破】考点一求二次函数的解析式例1、已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数.【拓展提高】二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.【变式探究】已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于17.求f(x)的解析式.考点二二次函数的图象与性质例2、已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.【拓展提高】(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.【变式探究】若函数f(x)=2x2+mx-1在区间[-1,+∞)上递增,则f(-1)的取值范围是____________.【答案】(-∞,-3]考点三二次函数的综合应用例3、若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.【拓展提高】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.【变式探究】已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.(1)求f(x)与g(x)的解析式;(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.考点四幂函数的图象和性质例4、已知幂函数f(x)=xm2-2m -3 (m ∈N*)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a)-m3的a 的取值范围.【拓展提高】(1)幂函数解析式一定要设为y =xα (α为常数的形式); (2)可以借助幂函数的图象理解函数的对称性、单调性. 【变式探究】已知幂函数f(x)=x(m2+m)-1(m ∈N*)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f(2-a)>f(a -1)的实数a 的取值范围.【真题感悟】 【高考安徽,文11】=-+-1)21(2lg 225lg . 【答案】11.(·江苏卷)已知函数f(x)=x2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫-22,0 2.(·全国卷)函数y =cos 2x +2sin x 的最大值为________.【答案】323.(·全国新课标卷Ⅰ)设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.【答案】(-∞,8]4.(·安徽卷)“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C5.(·湖南卷)函数f(x)=2ln x 的图像与函数g(x)=x2-4x +5的图像的交点个数为( ) A .3 B .2 C .1 D .0 【答案】B6.(·新课标全国卷Ⅱ] 已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是( ) A .x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=0 【答案】C7.(·北京卷)函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =ex 关于y 轴对称,则f(x)=( )A .ex +1B .ex -1C .e -x +1D .e -x -1 【答案】D【押题专练】1.设函数f(x)=ax2+2x -3在区间(-∞,4)上是单调递增函数,则实数a 的取值范围是________.【答案】⎣⎡⎦⎤-14,02.已知点⎝⎛⎭⎫12,2在幂函数y =f(x)的图象上,点⎝⎛⎭⎫-2,14在幂函数y =g(x)的图象上,则f(2)+g(-1)=________.【答案】323.当a =________时,函数f(x)=x2-2ax +a 的定义域为[-1,1],值域为[-2,2].【答案】-14.设f(x)=x2-2ax +2,当x ∈[-1,+∞)时,f(x)≥a 恒成立,则实数a 的取值范围是________.【答案】[-3,1]5.给出关于幂函数的以下说法:①幂函数的图象都经过(1,1)点;②幂函数的图象都经过(0,0)点;③幂函数不可能既不是奇函数也不是偶函数;④幂函数的图象不可能经过第四象限;⑤幂函数在第一象限内一定有图象;⑥幂函数在(-∞,0)上不可能是递增函数.其中正确的说法有________.【答案】①④⑤6.某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y(单位:万元)与营运年数x(x ∈N*)为二次函数的关系如图所示,则每辆客车营运________年,使其营运年平均利润最大.【答案】56.已知函数f(x)=x2+1的定义域为[a ,b](a<b),值域为[1,5],则在平面直角坐标系内点(a ,b)的运动轨迹与两坐标轴围成的图形面积为________.【答案】47.已知二次函数y =f(x)的顶点坐标为⎝⎛⎭⎫-32,49,且方程f(x)=0的两个实根之差等于7,则此二次函数的解析式是________.【答案】f(x)=-4x2-12x +408.如图,已知二次函数y =ax2+bx +c(a ,b ,c 为实数,a≠0)的图象过点C(t,2),且与x 轴交于A ,B 两点,若AC ⊥BC ,则a 的值为________.【答案】-129.已知函数f(x)=|2x -3|,若0<2a <b +1,且f(2a)=f(b +3),则T =3a2+b 的取值范围为________.【答案】⎝⎛⎭⎫-516,0 10.已知函数f(x)=x|x -2|. (1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设0<a≤2,求f(x)在[0,a]上的最大值.11.已知函数f(x)=x2,g(x)=x-1.(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;(2)设F(x)=f(x)-m g(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.12.设二次函数f(x)=ax2+bx +c(a≠0)在区间[-2,2]上的最大值、最小值分别是M ,m ,集合A ={x|f(x)=x}.(1)若A ={1,2},且f(0)=2,求M 和m 的值;(2)若A ={1},且a≥1,记g(a)=M +m ,求g(a)的最小值.13.已知13≤a≤1,若f(x)=ax2-2x +1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a).(1)求g(a)的函数表达式;(2)判断g(a)的单调性,并求出g(a)的最小值.高考模拟复习试卷试题模拟卷。

相关文档
最新文档