最新二极管三极管晶闸管简介

合集下载

二极管三极管主要参数

二极管三极管主要参数

二极管三极管主要参数二极管和三极管是半导体器件中常见的两种元件,它们在电子电路中具有重要的作用。

下面将详细介绍二极管和三极管的主要参数。

一、二极管的主要参数:1.电压额定值:也称为反向工作电压(VR)或正向导通电压(VF),表示二极管在正向和反向工作时能够承受的最大电压。

对于正向工作,一般为0.7V左右,而对于反向工作,一般为数十V至几百V。

2.最大定向电流:指二极管在正向工作时能够承受的最大电流,也称为连续电流(IF),一般为几毫安到几十安。

3.反向漏电流:指二极管在反向工作时的漏电流,也称为反向电流(IR),一般为几微安到几毫安。

4.开启时间和关断时间:也称为导通时间和截止时间,指二极管从关断到开启、从开启到关断的时间,一般为纳秒或微秒级。

5.反向恢复时间:指二极管在从正向工作状态转为反向工作状态时,恢复正常的导通特性所需的时间,一般为纳秒或微秒级。

6.动态电阻:指二极管在正向工作时的电压变化与电流变化的比值,一般在工作点附近呈线性关系。

7.耐压能力:指二极管在正向和反向工作时能够承受的最大电压,一般为几十伏到几百伏。

二、三极管的主要参数:1.当前放大倍数:也称为直流电流放大倍数(hFE)或β值,指输入电流和输出电流之间的比值,一般为几十至几千。

2.基极电流:也称为输入电流(IB),指输入信号经过基极向集电极注入的电流。

3.饱和电流:也称为最大电流(IC),指当三极管的基极电流达到一定值时,集电极电流不能再继续增大的电流值。

4.最大功耗:指三极管能够承受的最大功率,一般为几十毫瓦到几瓦。

5.最大频率:指三极管能够工作的最高频率,一般为几十MHz到几GHz。

6.最小输入电压:指三极管能够正常工作的最小输入电压。

7.最大输入电压:指三极管能够承受的最大输入电压。

三、总结:二极管主要参数包括电压额定值、最大定向电流、反向漏电流、开启时间和关断时间、反向恢复时间、动态电阻和耐压能力。

这些参数主要描述了二极管在正向和反向工作时的性能。

二极管 三极管 mos管

二极管 三极管 mos管

二极管三极管 mos管二极管、三极管和MOS管是现代电子技术中常用的三种元件。

它们分别具有不同的特性和应用范围,为电子设备的设计和制造提供了重要的支持和便利。

我们来探讨一下二极管。

二极管是一种具有两个电极的电子元件,由P型半导体和N型半导体组成。

二极管具有单向导电特性,即只允许电流在一个方向上通过。

当二极管的正端施加正电压,负端施加负电压时,电流可以顺利通过;而当施加的电压方向相反时,电流则无法通过。

这一特性使得二极管可以用于电路的整流、开关和保护等方面。

接下来,我们来探讨一下三极管。

三极管是一种具有三个电极的半导体器件,分别为发射极、基极和集电极。

三极管可以通过控制基极电流的大小来控制集电极电流的变化。

三极管有两种工作模式,分别为放大模式和开关模式。

在放大模式下,三极管可以将微弱的输入信号放大成较大的输出信号,常用于放大电路中。

而在开关模式下,三极管可以根据基极电流的变化来控制集电极电流的开关,常用于逻辑电路和开关电源等方面。

我们来探讨一下MOS管。

MOS管是金属氧化物半导体场效应管的简称,由金属栅极、绝缘氧化层和半导体基底构成。

MOS管具有高输入阻抗和低功耗的特点,常用于集成电路中。

MOS管有两种类型,分别为N沟道MOS管和P沟道MOS管,根据其导电性质的不同有所区别。

MOS管可以通过控制栅极电压来改变导电性能,实现电流的放大和开关控制。

MOS管广泛应用于数字电路、模拟电路和功率电子等领域。

总结起来,二极管、三极管和MOS管分别具有不同的特性和应用范围。

二极管可以实现单向导电,用于整流、开关和保护等方面;三极管可以放大和开关控制电流,用于放大电路、逻辑电路和开关电源等方面;MOS管具有高输入阻抗和低功耗,用于集成电路、数字电路、模拟电路和功率电子等领域。

这些电子元件的发展和应用,为现代电子技术的发展和进步提供了重要的支持和推动力。

随着科技的不断创新和发展,相信二极管、三极管和MOS管的应用将会更加广泛和深入。

二极管,三极管,晶体管概念和用途

二极管,三极管,晶体管概念和用途

二极管、三极管、晶体管概念和用途一、二极管的概念和用途二极管是一种具有两个电极的半导体器件,它具有单向导电特性。

当施加正向电压时,二极管正向导通,电流通过;当施加反向电压时,二极管反向截止,电流基本不通过。

二极管主要用于整流、稳压、开关和检波等电路中。

1、整流在交流电路中,二极管可以将交流信号转换为直流信号。

通过二极管整流,可以将交流电源转换为直流电源,以满足电子设备对直流电源的需求。

2、稳压二极管还可以作为稳压器使用。

在稳压电路中,通过合理连接二极管和电阻,可以实现对电压的稳定。

3、开关由于二极管具有导通和截止的特性,可以将其应用到开关电路中。

在开关电路中,二极管可以控制电流的通断,实现对电路的控制。

4、检波二极管还可以用作检波器。

在无线电接收机中,二极管可以将射频信号转换为音频信号,实现信息的接收和解调。

二、三极管的概念和用途三极管是一种具有三个电极的半导体器件,分为发射极、基极和集电极。

三极管具有放大、开关等功能,是现代电子设备中不可或缺的器件。

1、放大在放大电路中,三极管可以对输入信号进行放大处理。

通过合理设置电路参数,可以实现对电压、电流和功率等信号的放大。

2、开关与二极管类似,三极管也可以用作开关。

通过控制基极电流,可以实现对集电极与发射极之间的电流通断控制。

3、振荡在振荡电路中,三极管可以实现信号的自激振荡。

通过反馈电路的设计,可以使三极管产生稳定的振荡信号。

4、调制在通信系统中,三极管可以用于信号的调制。

通过三极管的放大和调制功能,可以实现对射频信号等信息的传输。

三、晶体管的概念和用途晶体管是一种半导体器件,是二极管的发展和改进,是现代电子技术的重要组成部分,被广泛应用于放大、开关、振荡和数字逻辑电路等领域。

1、放大晶体管可以作为放大器使用,实现对信号的放大处理。

晶体管的放大能力较强,可以应用于音频放大、射频放大等领域。

2、开关晶体管也可以用作开关。

与三极管类似,晶体管可以实现对电路的控制,用于开关电源、数码电路等领域。

三极管和二极管

三极管和二极管

三极管和二极管一、介绍三极管和二极管二极管是一种电子元件,它有两个电极,分别为阳极和阴极。

在正向电压下,电流可以流过二极管,而在反向电压下,电流将被阻止。

因此,二极管通常用于整流器、稳压器和信号检测等应用中。

三极管是另一种电子元件,它由三个区域组成:发射区、基区和集电区。

基区控制从发射区到集电区的电流。

当正向偏置时,三极管可以工作在放大器模式下;当反向偏置时,它可以工作在开关模式下。

三极管通常用于放大器、开关和振荡器等应用中。

二、二极管的类型1. 硅二极管硅二极管是最常见的类型之一。

它有一个PN结,并且具有高的热稳定性和低的漏电流。

2. 锗二极管锗二极管比硅二极管更早被发明,并且具有较低的噪声水平和较高的灵敏度。

但是,锗材料对温度变化非常敏感。

3. 高速二极管高速二极管具有非常短的恢复时间,可以快速地从导通到截止转换。

它们通常用于高频应用中。

4. 肖特基二极管肖特基二极管是一种非常快速的二极管,它具有低的反向电流和较小的开关时间。

它们通常用于高频应用中。

三、三极管的类型1. NPN三极管NPN三极管是最常见的类型之一。

在正向偏置时,电流从发射区流向集电区。

当基区被注入电流时,它将控制从发射区到集电区的电流。

2. PNP三极管PNP三极管与NPN三极管相似,但是在正向偏置时,电流从集电区流向发射区。

当基区被注入电流时,它将控制从集电区到发射区的电流。

3. 功率三极管功率三极管可以处理大量功率并能够承受高压和高温度。

它们通常用于放大器、开关和变换器等应用中。

4. 双极性晶体管(BJT)BJT是一种双向传输器件,可以作为放大器或开关使用。

它由两个PN 结组成,其中一个是NPN结,另一个是PNP结。

四、应用1. 二极管的应用(1)整流器:二极管可以将交流电转换为直流电。

(2)稳压器:二极管可以用作稳压器的关键元件。

(3)信号检测:二极管可以检测并放大无线电频率信号。

2. 三极管的应用(1)放大器:三极管可以放大电路中的信号。

第9章--电力二极管、电力晶体管和晶闸管的应用简介

第9章--电力二极管、电力晶体管和晶闸管的应用简介

目录目录.............................................................................................................................................................................. 第9章电力二极管、电力晶体管和晶闸管的应用简介 . 09.1 电力二极管的应用简介 09.1.1 电力二极管的种类 09.1.2 各种常用的电力二极管结构、特点和用途 09.1.3 电力二极管的主要参数 09.1.4 电力二极管的选型原则 (1)9.2 电力晶体管的应用简介 (2)9.2.1 电力晶体管的主要参数 (2)9.2.2 电力晶体管的选型原则 (2)9.3 晶闸管的应用简介 (3)9.3.1 晶闸管的种类 (3)9.3.2 各种常用的晶体管结构、特点和用途 (3)9.3.3 晶闸管的主要参数 (4)9.3.4 晶闸管的选型原则 (5)9.4 总结 (6)第9章电力二极管、电力晶体管和晶闸管的应用简介9.1 电力二极管的应用简介电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管相同,都以半导体PN结为基础,实现正向导通、反向截止的功能。

电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。

电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。

9.1.1 电力二极管的种类电力二极管主要有普通二极管、快速恢复二极管和肖特基二极管。

9.1.2 各种常用的电力二极管结构、特点和用途名称结构特点、用途实例图片整流二极管多用于开关频率不高(1kHz以下)的整流电路中。

其反向恢复时间较长,一般在5s以上,其正向电流定额和反向电压定额可以达到很高。

常见功率器件介绍

常见功率器件介绍

常见功率器件介绍功率器件是电力电子领域中重要的一种电子器件,用于变换、传递和控制电能。

常见的功率器件包括大功率二极管、晶闸管、可控硅、IGBT和MOSFET等。

本文将对这些常见的功率器件进行介绍。

1.大功率二极管:大功率二极管是一种常见的功率器件,具有较低的导通压降和较高的瞬态响应速度。

常见的大功率二极管如Schottky二极管,它具有快速导通、快速关断,适合于高频和高效率的电力转换系统。

大功率二极管常用于电流整流和反向保护等电源应用中。

2. 晶闸管(Thyristor):晶闸管是一种可控硅器件,具有双向导通特性。

晶闸管的导通状态由门极信号控制,一旦导通后,其二极管部分将保持导通状态,直到控制信号消失或电流下降至谷值。

晶闸管适用于高压、高电流的交流电源控制和整流应用,如交流调光、电动机控制和功率变换等。

3.可控硅(SCR):可控硅是一种具有双向导通特性的功率器件,可通过外部电压触发,从而控制其导通和关断状态。

可控硅的导通需要一个触发脉冲,一旦导通,只能通过降低电流或断开电源来关断。

可控硅广泛应用于高压电源、充电器、交直流变换器和电动机驱动器等系统中。

4. IGBT(Insulated Gate Bipolar Transistor):IGBT是一种功率MOSFET和双极型晶体管的混合器件,结合了二者的优点。

IGBT具有低导通压降和高开关速度的特点,在高频和高效率的应用中广泛使用。

IGBT适用于电力电子中的交流调变器、逆变器和电动机驱动器等应用。

5. MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor):MOSFET是一种具有储存性的功率晶体管,可以在接通状态下进行电流放大,适用于低功率和中功率应用。

MOSFET具有低导通压降、高开关速度和可控性强的优点。

在电源管理、电动机控制和逆变器等应用中,MOSFET是一种常见的功率器件。

总结起来,大功率二极管、晶闸管、可控硅、IGBT和MOSFET是常见的功率器件。

二极管、三极管、晶闸管简介

二极管、三极管、晶闸管简介

5、 二极管作用: 整流:将交流电信号转换成直流电信号。 检波:用于高频信号的调解(信号转换)。 发光:用于装饰或各种信号指示。 变容:用于各种自动调谐电路。 光电:用于光的测量;当制成大面积的光电二极管,可当做一种能源,称为光电池。
整流(利用单向导电性)
把交流电变为直流电,称为整流。一个简单的二极管半波整流电路如图(a)所示。若二极管为理想二极管,当输入一 正弦波时,由图可知:正半周时,二极管导通(相当开关闭合),vo=vi;负半周时,二极管截止(相当开关打开), vo =0。其输入、输出波形见图(b)。整流电路是直流电源的一个组成部分。
vi

D

0
t
vi
RL
vo
vo


0
t
(a)
(b)
稳压
稳压二极管的特点就是反向通电尚未击穿前,其两端的电压基本保持不变。这样,当把稳压管接 入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压 将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示
1、正常二极管
二极管、三极管、晶闸管简介
晶体二极管(Diode)
1、二极管的构成 核心是PN结, P性材料和N性材料结合, 有2个出线 端,即二极管有正、负两个极
应用电路




正极
positive
PN
负极
negative


(a)
正极
负极
(b)
2、二极管的电路符号: D VD 3、 基本特性:单向导电性
4、分类: 根据材质分为:1)硅二极管(导通电压:0.5~0.7V) 2) 锗二极管(导通电压:0.2~0.3V) 根据用途分:整流二极管、检波二极管、稳压二极管、发光二极管、光电二极管、变容二极管等

二极管和三极管常识介绍

二极管和三极管常识介绍

晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。

1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。

正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。

电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。

2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。

发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。

3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。

1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。

它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。

电话机中常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、9013、9012等型号。

2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。

为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。

名称共发射极电路共集电极电路(射极输出器)共基极电路输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧)输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧)电压放大倍数大小(小于1并接近于1)大电流放大倍数大(几十)大(几十)小(小于1并接近于1)功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝)三极管的导通条件:三极管的导通条件是:发射结加正向电压,集电结加反向电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三极管的测试
用数字万用表测试三极管的方法:
用二极管档位测量判断三极管的类型 , 和基极b ,将三极管看成是背靠背的二极
管,按照判断二极管的方法,可以判断区 分出其中一个极为公共正极或公共负极, 此极即为基极b,对于NPN型三极管基极 为公共正极,对于PNP型三极管基极为公 共负极,以此来判断三极管是NPN型或 PNP型。
态,负载电压vL=0。 ωt1时刻给控制极加触发电压vg,晶闸管V
导通。
在ωt1~π期间,尽管vg在晶闸管导通后即 消失,但晶闸管仍然保持导通,此期间负载电压
vL与输人电压v2相等,直至v2过零值(π时刻)时, 晶闸管才自行关断。
在π~2π期间,v2进入负半周,晶闸管承受 反向电压,即使控制极加人vg也不会导通,这时 负载电压vL =0。
2、损坏的二极管 (1)正反向均不导通 (2)正反向测试数值均很小
晶体三极管
晶体三极管又称双极型晶体管,半导体三极管等。 分类及用途: 制造工艺不同:锗管、硅管。硅管应用广泛 结构不同:NPN、PNP,硅管大部分为NPN 工作频率不同:高频管(大于3MHZ),低频管 用途不同:普通管,开关管
根据不同的掺杂方式在同一个硅片上制造出三 个掺杂区域,并形成两个PN结,就构成了晶体管。
(a)实验电路 (b)正向阻断
开关断开
(2)触发导通 在图(c)所示电 路中,晶闸管加正向电压,在控制极上 加正向触发电压,此时指示灯亮,表明 晶闸管导通,这种状态称为晶闸管的触 发导通。
(3)反向阻断 在图(d)所示电
路中,晶闸管加反向电压,即a极接电
源负极,k极接电源正极,此时不论开
关s闭合与否,指示灯始终不亮。这说
1.电路构成 图所示为单相半波可控整流电路,它主要由整流 主电路和触发电路两大部分组成,可控整流电路与普 通整流电路相似,只是将整流二极管换成晶闸管。
单相半波可控整流电路
(a)电路原理图
(b)实物接线图
2.工作原理 v2为正半周时,晶闸管V承受正向电压,如 果这时没加触发电压,则晶闸管处于正向阻断状
• 可控硅的弱点有静态及动态的过载能力较 差;容易受干扰而误导通。
工作特性
在图(a)所示的电路中, 晶闸管的a、k极、指示灯HL、 和电源VAA构成的回路称为主 回路。晶闸管的g、k极、开关 S和电源VGG构成的回路称为触 发电路或控制电路。
(1)正向阻断 在图(b) 所示电路中,指示灯不亮,这 说明晶闸管加正向电压,但控 制极未加正向电压时,管子不 会导通,这种状态称为晶闸管 的正向阻断状态。
晶闸管承受正向电压而不导通的范围称为控
制角α,导通的范围称为导通角θ,通过改变控制 角α的大小,便可调整输出电压VL的大小。
半波可控整流波形
硅砂平面摇筛
给料机
• 不管可控硅的外形如何,它们的管芯都是由P型硅 和N型硅组成的四层P1N1P2N2结构。它有三个 PN结(J1、J2、J3),从J1结构的P1层引出阳极 A,从N2层引出阴级K,从P2层引出控制极G,所 以它是一种四层三端的半导体器件。
可控硅结构示意图和符号图
• 可控硅的优点很多,例如:以小功率控制 大功率,功率放大倍数高达几十万倍;反 应极快,在微秒级内开通、关断;无触点 运行,无火花、无噪音;效率高,成本低 等等。
明当单向晶闸管加反向电压时,不管控
制极加怎样的电压,它都不会导通,而
处于截止状态,这种状态称为晶闸管的
反向阻断。
主回路加反向电压
开关闭合 (c)触发导通
(d)反向阻断
可控硅只有导通和关断两种工作状态,它具有开关特性 ,这种特性需要一定的条件才能转化,此条件见下表:
半波可控整流电路
单向晶闸管在正向电压作用下,改变控制极触发 信号的触发时间,即可控制晶闸管导通的时间,利用 这种特性可以把交流电变成大小可调的直流电,这样 的电路称为可控整流电路。
二极管三极管晶闸管简介
晶体二极管(Diode)
1、二极管的构成
核心是PN结, P性材料和N性材料结合, 有2个出线 端,即二极管有正、负两个极
应用电路




正极
positivePNຫໍສະໝຸດ 负极negative


(a)
正极
负极
(b)
二极管的测试
1、正常二极管
模拟及数字表测量表二极管
注:图中显示正向压降值是示意性的,不同的二极管此值是不同的。

参照二极管测试方法判别三极管的基极
二极管测试
三级管测试
晶闸管(可控硅)
晶闸管SCR又称:晶体闸流管可控硅整流器。
晶闸管可分单向晶闸管、双向晶闸管、光控 晶闸管、逆导晶闸管、可关断晶闸管、快速 晶闸管,等等。
优质单向晶闸管可控硅
单向可控硅晶闸管5000a bt169d系列单向可控硅晶闸管
单向可控硅的结构
相关文档
最新文档