电缆故障点测试方法
电力电缆故障的检测方法

电力电缆故障的检测方法电缆故障的主要种类是并联故障和串联故障。
串联故障指的是电缆当中的多个或者是一个导体存在断开情况,通常的时候,串联当中断开一个导体之前,较难发现串联的故障,只有真正出现短路情况的时候才容易发现串联故障。
并联故障是因为电缆长期超负荷运行而导致外绝缘的老化现象,进而在局部发生放电情况,导致并联故障。
而结合电缆故障被击穿的长度差异和电阻不同,能够划分电缆故障为高阻故障、低阻故障、开路故障。
1.电桥法电桥法是一种传统的电缆故障检测方法,其可以实现非常理想的效果。
这种检测方法十分便捷,有着非常高的检测精度,属于一种经常应用的电缆故障检测方法。
可是,也存在一些缺陷,因为电桥电压差和检流计不够灵敏,所以仅仅适宜对电阻较低的电缆故障开展检测。
而对于电阻较高的设备和断路故障的电缆问题难以借助这样的方法来检测。
2.高压电桥法在电缆检测当中,高压电桥法属于一种经常应用的故障检测方法。
其检测原理是,对于高压电桥当中恒流电源刺穿造成的电缆故障的地方,从一定程度上确保流动比较大的电桥电流,进而在电桥整体线路的两边形成一定的电位差,在协调电桥平衡的根底上统计故障地方的差距。
对于应用高压恒流电源而言,可以有效拓展电桥高阻检测的区域,相对来讲,其可以对结果开展尤为便捷和准确检测。
并且,对于电桥法的研究理论来讲,即电缆中心线路电阻与整体线路根据比率开展分配的特点可以促进电桥检测体系的形成。
3.冲击高压闪络法在对电缆故障开展检测的一些方法当中,施工人员应用十分广泛的一种方法是冲击高压闪络法。
这种方法的检测原理是在故障电缆的开端地方施加冲击高压,从而对发生故障的地方开展十分迅速的击穿,以及记录下故障地方一刹那电压突跳的数据信息。
在仔细研究电缆故障地方与电缆始末数据信息消耗时间的根底上对时间距离开展测试,从而得到故障的地方,以及执行解决对策。
4,低压脉冲反射法在电缆故障检测中应用低压脉冲发射的方法应当在损坏的线路当中注入低压脉冲。
电缆故障点的查找方法

文档归纳不易,仅供学习参考电缆故障点的查找方法一旦电缆绝缘被破坏产生故障、造成供电中断后,测试人员一般需要选择适宜的测试方法和适宜的仪器,按照肯定的方法来寻找故障点,今天要讲的是故障定点方法。
1.声测法该方法是在对故障电缆施加高压脉冲使故障点放电时,通过听故障点放电的声音来找出故障点的方法。
该方法比较简单理解,但由于外界环境一般比较嘈杂,干扰很大,有时很难分辩出真正的故障点的声音。
2.声磁同步法这种方法也需对故障电缆施加高压脉冲使故障点放电。
当向故障电缆中施加高压脉冲信号时,在电缆的周围就会产生一个脉冲磁场信号,同时因为故障点的放电又会产生一个放电的声音信号,由于脉冲磁场信号传播的速度比较快,声音信号传播的速度比较慢,它们传到地面时就会有一个时间差,用仪器的探头在地面上同时接收故障点放电产生的声音和磁场信号,测量出这个时间差,并通过在地面上移动探头的位置,找到这个时间差最小的地方,其探头所在位置的正下方就是故障点的位置。
用这种方法定点的最大优点就是:在故障点放电时,仪器有一个明确直观的指示,从而易于排出环境干扰;同时这种方法定点的精度较高〔<0.1m〕,信号易于理解、区分。
3.音频信号法此方法主要是用来探测电缆的路径走向。
在电缆两相间或者和金属护层之间〔在对端短路的情况下〕参加一个音频电流信号,用音频信号接收器接收这个音频电流产生的音频磁场信号,就能找出电缆的敷设路径;在电缆中间有金属性短路故障时,对端就不需短路,在发生金属性短路的两者之间参加音频电流信号后,音频信号接收器在故障点正上方接收到的信号会突然增强,过了故障点之后音频信号会明显减弱或者消逝,用这种方法可以找到故障点。
这种方法主要用于查找金属性短路故障或距离比较近的开路故障的故障点〔线路中的分布电容和故障点处电容的存在可以使这种较高频率的音频信号得到传输〕。
对于故障电阻大于几十欧姆以上的短路故障或距离比较远的开路故障,这种方法不再适用。
电缆故障测试方法及技巧

电缆故障测试方法及技巧随着城市的进展扩大,城市电网的改造,电力电缆获得了越来越广泛的应用。
但另一方面,由于电缆处在地下,消失故障很难发觉其故障点位置所在,这对电网的平平稳定运行以及供电牢靠性都带来很大的困难。
对此,我们首先分析了电力电缆故障常见原因,在此基础上,进一步总结出电力电缆常用故障检测方法。
1.电力电缆故障产生的原因(1)绝缘层老化变质:绝缘电缆长期在风吹日晒,在电的的作用下发生了老化,还要受到伴随电作用而来的化学、热和机械作用,从而使介质发生物理化学变化,使介质的绝缘性能下降。
(2)过热:电缆绝缘内部气隙游离造成局部过热,使绝缘炭化。
另外,电缆过负荷产生过热,安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆,穿于干燥管中的电缆及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。
(3)机械损伤:如挖掘等外力造成的损伤。
(4)护层的腐蚀:因受土壤内酸碱和杂散电流的影响,埋地电缆的铅或铝包将遭到腐蚀而损坏。
(5)绝缘受潮:中心接头或终端头在结构上不密封或安装质量不好而造成绝缘受潮。
(6)过电压:过电压重要指大气过电压和内过电压,很多户外终端接头的故障是由大气过电压引起的,电缆本身的缺陷也会导致在大气过电压的情形下发生故障。
(7)材料缺陷:电缆制造的问题,电缆附件制造上的缺陷和对绝缘材料的维护管理不善等都可能使电缆发生故障。
2.电力电缆故障性质类别的快速判别2.1电力电缆的故障分类电缆故障若按故障发生的直接原因可以分为两大类:一类为试验击穿故障;另一类为在运行中发生的故障。
若按故障性质来分,又可分为开路、低阻、高阻故障等。
开路故障:指电缆的甲端与乙端一相或者三相*断开。
低阻故障:若电缆相间或相对地绝缘电阻在100k以下的故障称为低阻故障。
高阻故障:若电缆相间或相对地故障电阻较大,以致不能接受电桥或低压脉冲法进行粗测的故障,通称为高阻故障。
它包括泄漏性高阻故障和闪络性高阻故障。
在试验过程中发生击穿的故障,其性质比较单纯,一般为一相接地,很少有三相同时在试验中接地或短路的情形,更不行能发生断线故障。
电缆故障查找方法

电缆故障查找方法电缆故障是电力系统中常见的问题,一旦出现故障,不仅会影响正常的用电,还可能造成安全隐患。
因此,及时准确地查找电缆故障并进行修复至关重要。
下面将介绍几种常用的电缆故障查找方法。
首先,最常用的方法是使用绝缘电阻测试仪进行测试。
在使用测试仪之前,需要先将电缆的两端分别接地,然后将测试仪的两个探头分别接触电缆的两端,记录下测试仪显示的绝缘电阻数值。
如果绝缘电阻数值低于正常范围,就说明电缆存在绝缘故障。
通过这种方法可以快速定位故障位置,有针对性地进行修复。
其次,可以利用局放检测仪进行故障查找。
局放检测仪能够检测电缆局部放电现象,通过分析局放信号的特点,可以判断出电缆是否存在故障。
在使用局放检测仪时,需要注意选择合适的检测频率和增益,以确保能够准确地捕捉到局放信号。
通过这种方法,可以有效地排除电缆的局部故障,提高查找故障的效率。
另外,还可以借助红外热像仪进行故障查找。
红外热像仪能够将电缆表面的热量分布显示出来,通过观察热像图可以发现电缆存在的热点,从而判断出故障位置。
在使用红外热像仪时,需要注意选择合适的拍摄距离和角度,以确保能够准确地捕捉到热像图像。
通过这种方法,可以快速定位电缆的热故障,有针对性地进行修复。
最后,还可以利用无损检测技术进行故障查找。
无损检测技术能够在不破坏电缆表面的情况下,通过电磁、超声波等方法检测电缆内部的故障。
这种方法不仅能够准确地查找出电缆的故障位置,还能够保护电缆表面的完整性,减少对电缆的损坏。
通过这种方法,可以全面地了解电缆的故障情况,有针对性地进行修复。
综上所述,电缆故障的查找方法有多种,每种方法都有其适用的场景和特点。
在实际操作中,可以根据具体情况选择合适的方法进行故障查找,以确保能够及时准确地排除电缆故障,保障电力系统的正常运行。
电缆故障查找方法

电缆故障查找方法
电缆是电力传输和通信的重要设备,但在使用过程中难免会出现各种故障。
及时准确地查找和排除故障是保障电缆正常运行的关键。
下面将介绍几种常见的电缆故障查找方法。
首先,对于电缆的绝缘故障,可以采用绝缘电阻测试的方法。
通过测量电缆的绝缘电阻值,可以判断电缆是否存在绝缘故障。
一般来说,绝缘电阻值低于一定数值就表明存在绝缘故障,可以根据测试结果进行相应的维修和更换。
其次,对于电缆的接头故障,可以采用接地测试的方法。
通过测试接头的接地情况,可以判断接头是否存在故障。
如果接地电阻过大或者接地不良,就说明存在接头故障,需要及时处理。
另外,对于电缆的线路故障,可以采用电缆定位仪进行故障查找。
电缆定位仪可以通过发送信号和接收信号的方式,准确地定位出电缆线路中的故障点,为后续的维修工作提供准确的位置信息。
此外,对于电缆的局部损坏故障,可以采用红外热像仪进行检测。
红外热像仪可以通过红外线摄像头来检测电缆表面的温度分布
情况,从而找出电缆的局部损坏点,为后续的修复工作提供依据。
最后,对于电缆的外部损伤故障,可以采用目视检查的方法。
定期对电缆进行目视检查,可以及时发现电缆的外部损伤情况,及时进行维修和更换,避免故障的扩大和影响电缆的正常使用。
总之,电缆故障的查找方法有很多种,可以根据具体的故障情况选择合适的方法进行查找和处理。
通过及时准确地排除故障,可以保障电缆的正常运行,延长电缆的使用寿命,提高电力传输和通信的可靠性和安全性。
电缆故障点的四种实用测定方法

TN-C-S系统由两个接地系统组成,第一部分是TN-C系统,第二部分是TN-S系统,分界面在N线与PE线的连接点。该系统一般用在建筑物的供电由区域变电所引来的场所,进户之前采用TN-C系统,进户处做重复接地,进户后变成TN-S系统。TN-C系统前面已做分析。TN-S系统的特点是:中性线N与保护接地线PE在进户时共同接地后,不能再有任何电气连接。该系统中,中性线N常会带电,保护接地线PE没有电的来源。PE线连接的设备外壳及金属构件在系统正常运行时,始终不会带电.因此TN-S接地系统明显提高了人及物的安全性.同时只要我们采取接地引线,各自都从接地体一点引出,及选择正确的接地电阻值使电子设备共同获得一个等电位基准点等措施,那么TN-C-S系统可以作为常用电气设备的一种接地系统。
采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,计算过程中小数位数要全部保留。
(3) 电容电流测定法:
电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1~2kVA单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。
当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋 ”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。
试述配电网电缆故障的测定和故障选线

试述配电网电缆故障的测定和故障选线配电网电缆故障的测定和故障选线是配电网运行和维护中非常重要的一环。
电缆故障会导致供电中断,影响用户的用电需求,所以及时准确地测定和选择故障线路对于保障电网的稳定运行至关重要。
本文将从电缆故障的常见形式、测定方法以及故障选线方面进行详细介绍。
一、电缆故障的常见形式电缆故障主要有线路断、短路和接地故障三种形式。
线路断是指电缆中的导线或绝缘体在长期工作后发生开路故障;短路是指两根或多根导线之间(包括导线与接地之间)发生相互接触,使电流绕过负载回路而形成的一种故障;接地故障是指某一相或几相导线接地引起的故障。
这三种故障形式的产生都会导致电网的供电中断,所以及时准确地测定和选择故障线路就显得尤为重要。
二、电缆故障的测定方法1. 直接检测法直接检测法是利用测试仪器,对故障线路进行逐点的测量,在故障点处电缆悬空或引出,将测试仪器分别接在故障点的两端,通过测量电阻的大小或电流的大小,来判断故障的位置和形式。
这种方法的优点是测定的精度高,对故障点的位置和形式有更直观的了解,但也存在着对设备的依赖性和一定的复杂性。
2. 反距离测量法反距离测量法是通过在电缆线路上设置感应器,将感应器信号传输到测量仪器上,通过对信号的分析,来判断故障点的位置和形式。
这种方法适用于故障线路较长、测量范围较广的情况,具有测定速度快、测量范围广的优点。
但是对于一些特殊情况,如电缆线路受到干扰、外界环境复杂等,测定结果可能会受到一定程度的影响。
3. 电缆故障预测系统电缆故障预测系统是利用现代科技手段,通过对电缆线路的参数、工作状态等进行监测和分析,利用数据模型和算法,对电缆故障进行预测和定位。
这种方法不仅可以实现对电缆故障的及时测定,还可以在一定程度上提前预警,从而提供更大范围的保障。
三、故障选线的方法1. 人工选线人工选线是根据故障的位置和形式,通过人工逐点检查、比对,确定故障点的具体位置,并进行选线。
这种方法的优点是简单易行,适用范围较广。
10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法10kV配电线路电缆故障是电力系统中常见的问题,一旦出现故障可能会造成停电、损坏设备等严重后果。
及时准确地查找和修复电缆故障对于维护电力系统的稳定运行至关重要。
本文将介绍一些关于10kV配电线路电缆故障查找的方法,希望可以帮助相关工作人员提高工作效率,提高故障查找的准确性。
一、外观检查在进行故障查找之前,需要对10kV配电线路的电缆进行外观检查。
外观检查是最基本的一步,可以通过目测发现一些电缆外部的损坏情况,比如绝缘层的破损、接头处的漏油等。
如果发现了这些问题,需要及时进行修复或更换,以免引起更大的故障。
二、断路器查找接下来,可以通过断路器查找的方法来定位电缆故障的位置。
断开配电线路上游的断路器,然后使用线路测试仪器查找到断路器后的电压值。
如果发现后方的电压为零,即可初步判断故障点位于断路器后。
然后逐步移动测试仪器,直至找到断路器前的电压为零的位置,即为故障点所在。
在使用该方法时需要小心谨慎,以免对线路造成进一步损坏。
三、局部放电检测另外一种方法是利用局部放电检测技术来查找电缆故障。
局部放电是电介质中的局部放电现象,主要是由于电压应力或绝缘层缺陷引起的。
局部放电检测可以通过检测电缆的局部放电信号来定位故障点,比如利用放大器和高频探头来捕捉放电信号,再通过分析放电信号的波形和幅值来确定故障点。
这种方法适用于查找绝缘层损坏或接头处的故障。
四、超声波检测超声波检测是一种非接触的故障检测方法,可以用来查找电缆中导体之间或导体与绝缘层之间的故障。
通过使用超声波探头来扫描电缆,当波束遇到故障点时,会发生反射和散射,从而被探测仪器捕获。
通过分析捕获的信号可以准确地确定故障点的位置。
这种方法对于查找电缆内部的故障非常有效,但需要专业的人员和设备来操作。
五、热红外检测热红外检测是利用红外热像仪来检测电缆故障的一种方法。
当电缆出现故障时,会产生热量,而红外热像仪可以将这些热量转化为图像显示出来,从而可以清晰地看到故障点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆故障点测试方法探讨【摘要】应用一定的测试仪器将电缆故障点及时地查出,尽快地将故障排除,以使线路中电气设备恢复正常工作。
电缆是将一根或多根导线绞合而成的线芯,裹以相应绝缘层后,外面包上密闭包皮(铝、铅或塑料等)。
在电力系统中常用的电缆有电力电缆和控制电缆两大类,其中电力电缆是用来输送和分配大功率电能的。
按绝缘材料的不同,可以分为油浸纸绝缘电力电缆、橡皮绝缘电力电缆和聚氯乙烯绝缘电缆,在工程上应用最广泛的是油浸纸绝缘电力电缆,由于电缆在制作中,以及铺设线路、环境温度、施工原则等,国家都有明文规定,在此不再赘述,本文主要对电力电缆易发生故障的可能点及如何进行测试的几种方法,介绍给大家。
1 电缆故障的类型及测试方法电缆发生故障后一般先用1500V以上摇表或高阻计判别故障类型,再用不同仪器和方法初测故障,最后用定点法精确确定故障点,故障点的精测方法有感应法和声测法两种。
感应法,其原理是当音频电流经过电缆线芯时,在电缆的周围有电磁波存在,因些携带电磁感应接收器,沿线路行走时,可收听到电磁波的音响,音频电流流到故障点时,电流突变,电磁波的音频发生突变,这种方法对寻找断线相间低电阻短路故障很方便,但不宜于寻找高电阻短路及单相接地故障。
声测法,其原理是用高压脉冲促使故障点放电,产生放电声,用传感器在地面上接收这种放电声,以测出故障点的精确位置。
具体故障类型按以下方法进行测试。
低电阻接地故障单相低电阻接地故障(1)故障点的测试。
电缆的单相低电阻接地故障是指电缆的一根芯线对地的绝缘由阻低于100kΩ,而芯线连续性良好。
此类故障隐蔽性强,我们可以采用回路定点法原理进行测试。
接线图如图1a所示,将故障芯线与另一完好芯线组成测量回路,用电桥测量,一端用跨接线跨接,另一端接电源、电桥或检流计,调节电桥电阻使电桥平衡,当电缆芯线材质和截面相同时,可按下列公式计算若损坏的线芯和良好的芯线在电桥上位置相互调换时,则有式中Z——测量端至故障点的距离m;L——电缆总长度,m;R1、R2——电桥的电阻臂。
在正常情况下,这两种接线测量结果应相同,误差一般为%~%,如果超出此范围或者X>L/2,可将测量仪表移到线路的另一端测量。
另外,我们还可以采用连续扫描脉冲示波器法(MST—1A型或LGS—1型数字式测试仪)进行测试。
短路或接地故障点处反射波将为负反射,示波器荧屏图如图1b所示。
此时故障点距离可按下列公式计算式中X——反射时间μs;V——波速,m/μs。
(2)测量时注意的事项。
a.跨接线的截面应与电缆芯线截面接近,跨接线应尽量短,并保持良好。
b.测量回路应尽可能绕开分支箱或变、配电所,越短越好。
c.直流电源电压应不低于1500V。
d.直流电源负极应经电桥接到电缆导体,正极接电缆内护层并接地。
e.操作人员应站在绝缘垫上,并将桥臂电阻、检流计、分流器等放在绝缘垫上。
两相短路故障点的测试当出现两相短路故障点,测量接线方法如图2所示。
测量时可将任一故障芯线作接地线,另一故障芯线接电桥,计算公式和测量方法与单相低电阻接地故障点相同。
三相短路故障点的测试当发生三相短路故障时,测量时必须借用其他并行的线路或装设临时线路作回路,装设临时线路,必须精确测量该线路的电阻,接线方法如同图2所示。
可按下式计算,即式中R为临时线的单线电阻值,其余符号的含义与式(2)相同。
高电阻接地故障点电缆的高电阻接地故障是指导体与铝护层或导体与导体之间的绝缘电阻值远低于正常值,但大于100kΩ,而芯线连续性良好。
用高压电桥法寻找高阻接地故障其接线原理如图3a所示,由于故障点电阻大,必需使用高压直流电源,以保证通过故障点的电流不致太小。
桥臂电阻为100等分的Ω左右的滑线电阻,电桥所加电压10~200kV,微安表指示为100~20μA,故障点至测量端的距离可按下式测算,即当调换图3中故障芯线与完好芯线的位置时则有式中X——故障点至测量的距离,m;L——电缆线路长度,m;C——滑线电桥读数。
一次扫描示波器(711型)法所谓的一次扫描示波器法是采用高压一次扫描示波器,记录故障点放电振荡波形,确定故障点,示波器荧光屏如图3b所示,故障点的距离可按以下公式计算式中V——波速,m/μs;T——振荡周期,μs。
测量时应意事项(1)由于测量是在高压下进行,必须与地可靠绝缘,操作人员应戴绝缘手套,用绝缘杆操作,并与高压引线保持一距离。
(2)同一电缆中不测量芯线也必须可靠接地,以防感应产生危险高压。
(3)测量时应逐渐加压,若发现电流表指针晃动或闪络性故障,要立即停止测量,以免烧毁仪表。
(4)当用正接法测量完毕而需要更换接线时,必须降低电压,切断电源,只有将回路中残余电荷放尽,才能调换接线进行反接法测量。
完全断线故障点所谓完全断线故障是指各相绝缘良好,一相或者多相导线不连续。
此时,同样可采用二种方法进行测试。
电桥法(电容电桥,QF1—A型电桥)其接线如图4a所示,在线路二端测量故障的电容与标准电容器之比,确定故障点的距离,可按下列公式计算式中CE、CF分别为故障相在E、F端时所测的电容。
连续扫描示波器法(MST—1A或LGS—1型)采用示波器法,发射脉冲,在断线故障点处,反射波为正反射。
示波器荧屏图如图4b所示,故障点的距离按下列公式计算式中V——波速,m/μs;T——反射时间,μs。
不完全断线故障点不完全断线点分高电阻断线(导体电阻大于1kΩ)和低电阻断线(导体电阻小于1kΩ)两种情况。
它表现出各相绝缘良好,一相或多相导线不完全连续。
此时我们对高电阻断线可采用交流电桥法测量,其接线原理图如图5所示。
在线路两端测量故障相的电容与标准电容器之比,其距离按下列公式计算式中CE、CF分别为故障相在E、F端所测量的电容。
而对低电阻断线,先用低压电流使其烧断,然后再按完全线故障测试。
其他除以上几种情况外,还会发生一些故障,如:(1)完全断线并接地故障,此故障表现为一端各相绝缘良好,另一端接地,我们可以采用完全断线故障点测试法。
(2)不完全断线并接地故障,此类故障表现为各相绝缘良好,一相或多相导线不完全连续,经电阻接地,可采用交流电桥法按高阻断线故障测试。
(3)闪络性故障,所谓闪络性故障表现各相绝缘电阻良好,而且导线连续性亦好,故障点已经封闭。
此时可采用高电阻接地故障中的一次扫描示波器(711型)法,或者烧穿后用其他方法进行测试。
2 结束语电缆线路万一发生故障后,应立即进行修理,以免因外界原因扩大损坏范围,要加强责任心,对工作极端负责任,将尽可能避免一些常见故障发生。
为确保电缆线路的安全运行,预防很重要,要做好电缆运行的技术管理,加强巡视和监护,严格控制电缆和负荷电流及温度,严格执行工艺规程,确保检修质量,使电缆线路得以充分地利用。
【摘要】应用一定的测试仪器将电缆故障点及时地查出,尽快地将故障排除,以使线路中电气设备恢复正常工作。
电缆是将一根或多根导线绞合而成的线芯,裹以相应绝缘层后,外面包上密闭包皮(铝、铅或塑料等)。
在电力系统中常用的电缆有电力电缆和控制电缆两大类,其中电力电缆是用来输送和分配大功率电能的。
按绝缘材料的不同,可以分为油浸纸绝缘电力电缆、橡皮绝缘电力电缆和聚氯乙烯绝缘电缆,在工程上应用最广泛的是油浸纸绝缘电力电缆,由于电缆在制作中,以及铺设线路、环境温度、施工原则等,国家都有明文规定,在此不再赘述,本文主要对电力电缆易发生故障的可能点及如何进行测试的几种方法,介绍给大家。
1 电缆故障的类型及测试方法电缆发生故障后一般先用1500V以上摇表或高阻计判别故障类型,再用不同仪器和方法初测故障,最后用定点法精确确定故障点,故障点的精测方法有感应法和声测法两种。
感应法,其原理是当音频电流经过电缆线芯时,在电缆的周围有电磁波存在,因些携带电磁感应接收器,沿线路行走时,可收听到电磁波的音响,音频电流流到故障点时,电流突变,电磁波的音频发生突变,这种方法对寻找断线相间低电阻短路故障很方便,但不宜于寻找高电阻短路及单相接地故障。
声测法,其原理是用高压脉冲促使故障点放电,产生放电声,用传感器在地面上接收这种放电声,以测出故障点的精确位置。
具体故障类型按以下方法进行测试。
低电阻接地故障单相低电阻接地故障(1)故障点的测试。
电缆的单相低电阻接地故障是指电缆的一根芯线对地的绝缘由阻低于100kΩ,而芯线连续性良好。
此类故障隐蔽性强,我们可以采用回路定点法原理进行测试。
接线图如图1a所示,将故障芯线与另一完好芯线组成测量回路,用电桥测量,一端用跨接线跨接,另一端接电源、电桥或检流计,调节电桥电阻使电桥平衡,当电缆芯线材质和截面相同时,可按下列公式计算若损坏的线芯和良好的芯线在电桥上位置相互调换时,则有式中Z——测量端至故障点的距离m;L——电缆总长度,m;R1、R2——电桥的电阻臂。
在正常情况下,这两种接线测量结果应相同,误差一般为%~%,如果超出此范围或者X>L/2,可将测量仪表移到线路的另一端测量。
另外,我们还可以采用连续扫描脉冲示波器法(MST—1A型或LGS—1型数字式测试仪)进行测试。
短路或接地故障点处反射波将为负反射,示波器荧屏图如图1b所示。
此时故障点距离可按下列公式计算式中X——反射时间μs;V——波速,m/μs。
(2)测量时注意的事项。
a.跨接线的截面应与电缆芯线截面接近,跨接线应尽量短,并保持良好。
b.测量回路应尽可能绕开分支箱或变、配电所,越短越好。
c.直流电源电压应不低于1500V。
d.直流电源负极应经电桥接到电缆导体,正极接电缆内护层并接地。
e.操作人员应站在绝缘垫上,并将桥臂电阻、检流计、分流器等放在绝缘垫上。
两相短路故障点的测试当出现两相短路故障点,测量接线方法如图2所示。
测量时可将任一故障芯线作接地线,另一故障芯线接电桥,计算公式和测量方法与单相低电阻接地故障点相同。
三相短路故障点的测试当发生三相短路故障时,测量时必须借用其他并行的线路或装设临时线路作回路,装设临时线路,必须精确测量该线路的电阻,接线方法如同图2所示。
可按下式计算,即式中R为临时线的单线电阻值,其余符号的含义与式(2)相同。
高电阻接地故障点电缆的高电阻接地故障是指导体与铝护层或导体与导体之间的绝缘电阻值远低于正常值,但大于100kΩ,而芯线连续性良好。
用高压电桥法寻找高阻接地故障其接线原理如图3a所示,由于故障点电阻大,必需使用高压直流电源,以保证通过故障点的电流不致太小。
桥臂电阻为100等分的Ω左右的滑线电阻,电桥所加电压10~200kV,微安表指示为100~20μA,故障点至测量端的距离可按下式测算,即当调换图3中故障芯线与完好芯线的位置时则有式中X——故障点至测量的距离,m;L——电缆线路长度,m;C——滑线电桥读数。
一次扫描示波器(711型)法所谓的一次扫描示波器法是采用高压一次扫描示波器,记录故障点放电振荡波形,确定故障点,示波器荧光屏如图3b所示,故障点的距离可按以下公式计算式中V——波速,m/μs;T——振荡周期,μs。