nuclear liquid gas phase transition核液气相过渡理论

合集下载

气液旋流分离技术应用研究进展

气液旋流分离技术应用研究进展

2021年第49卷第1期—102 —石油机械CHINA PETROLEUM MACHINERYV油气田开发工程A气液旋流分离技术应用研究进展”蔡禄1孙治谦1朱丽云1王旱祥2王振波1(1.中国石油大学(华东)新能源学院2.中国石油大学(华东)机电工程学院)蔡禄,孙治谦,朱丽云,等.气液旋流分离技术应用研究进展.石油机械,2021, 49 (1): 102-109.摘要:气液旋流分离设备具有分离效率高、体积小及工作稳定等优点,在油田开发、天然气 开采、油气输送和压缩空气净化处理等领域得到了广泛应用。

油田开发中,常用的气驱技术能够提高采出率,但油井气液比会增大,油气分离技术要求日趋严苛。

对气液旋流分离设备的分离原理及国内外研究现状进行了简要介绍,阐述了分离性能的优化方法,分析了理论研究的不足。

研 究结果发现:气液旋流分离设备的分离性能受其结构参数、操作参数以及流体物性参数等因素的影响。

国内外学者为提高分离效率采取了改进外部结构和内部流场的措施,为进一步提升工业生 产效率提供了可能。

随着气液旋流分离技术应用领域的不断拓宽,旋流器及内部流场的定量数值研究对工程应用具有重要意义。

研究内容可为气液旋流分离器的设计与应用提供指导。

关键词:气液两相流;分离;旋流器;优化;研究进展中图分类号:TE934 文献标识码:A DOI : 10. 16082/j. cnki. issn. 1001-4578. 2021. 01. 015Application and Research Progress of Gas-LiquidCyclone Separation TechnologyCai Lu 1 Sun Zhiqian 1 Zhu Liyun 1 Wang Hanxiang 2 Wang Zhenbo 1(1. School of N ew Energy , China University of P etroleum (Huadong) ; 2. School of M echanical and Electrical Engineering, ChinaUniversity of Petroleum ^Huadong) )Abstract : Thanks to the remarkable advantages of high separation efficiency , small size and stable operation ,gas-liquid cyclone separation equipment has been widely used in oilfield development , natural gas exploitation , oil and gas transportation , compressed air purification and other fields. In the field of oilfield development , the com ­monly used gas flooding technology can improve the recovery rate , but the gas/liquid ratio of oil well will increase , so the requirements on oil and gas separation technologies are increasingly strict. In this paper, the separation prin ­ciple of gas-liquid cyclone separation equipment and the research status at home and abroad are briefly introduced. In addition , the methods for optimizing the separation performance are described and the shortages in theoretical studies are analyzed. The results show that the separation performance of gas-liquid cyclone separation equipment is affected by its structure parameters , operation parameters and fluid physical parameters. In order to improve the separation efficiency , domestic and foreign scholars have taken effective measures to improve the external structureand internal flow field, which provides many possibilities for the improvement of industrial production efficiency. With the development of the application field of gas-liquid cyclone separation , the quantitative numerical study oncyclone and its internal flow field is of increasingly important guiding significance to engineering application. Theresearch results can provide the guidance for the design of gas-liquid cyclone separator.Keywords : gas-liquid two-phase flow; separation ; cyclone ; optimization ; research progress*基金项目:中石油重大科技项目“天然气水合物开采气液分离技术及配套装置研究”(ZD2019-184-004)。

多模态动态核主成分分析的气液两相流状态监测

多模态动态核主成分分析的气液两相流状态监测

多模态动态核主成分分析的气液两相流状态监测
董峰;李昭;李凌涵;张淑美
【期刊名称】《自动化学报》
【年(卷),期】2022(48)3
【摘要】气液两相流流动过程作为一种非平稳过程,其状态的变化具有时变性、非线性、随机性等复杂流动过程的特点,其流动状态的实时监测对掌握其流动过程的产生、发展及转化,保障实际生产的安全稳定运行具有重要意义.特别是流动状态的过渡过程反映了流动状态的发展及演化,其流动结构非常复杂.针对气液两相流的3种典型流动状态及过渡转化过程,在多传感器获取流动状态测试数据的基础上,提出一种多模态动态核主成分分析方法.通过采用动态自相关、互相关方法提取流动过程测试数据中的动态特性,采用核方法提取非线性特性,结合主成分分析建立不同典型流动状态的监测模型;利用模型对不同典型流动状态进行判别,并进一步实现流动过渡状态的监测.通过对气液两相流实验装置中不同流动状态实验测试数据进行处理,验证了所提出方法对典型流动状态判别的准确性及对过渡状态监测的有效性.【总页数】12页(P762-773)
【作者】董峰;李昭;李凌涵;张淑美
【作者单位】天津大学电气自动化与信息工程学院天津市过程检测与控制重点实验室
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于主成分分析与支持向量机回归的气液两相流容积含气率的测量
2.绝热和加热状态下换热器壳侧气液两相流的充型与压降
3.起伏振动状态下水平管内气液两相流研究
4.基于ANSYS的气液两相流海洋立管流固耦合模态分析
5.管内相分隔状态下电磁流量计测量气液两相流的方法
因版权原因,仅展示原文概要,查看原文内容请购买。

基于气液两相流实验的工程热物理领域研究

基于气液两相流实验的工程热物理领域研究

基于气液两相流实验的工程热物理领域研究从汽车引擎到核电站,工程热物理领域的研究与应用在现代社会中起到了至关重要的作用。

在这个领域的研究中,气液两相流实验是一项不可或缺的技术手段。

本文将从此入手,探讨基于气液两相流实验的工程热物理领域研究。

1、气液两相流的研究背景气液两相流是近年来工程热物理领域研究的热点之一。

在许多工业领域中,气液两相流都是至关重要的。

例如,在油气开采工业中,气液两相流技术被广泛应用于油井的纵向运动和产油过程的调控。

此外,许多发电厂和航空航天工业也直接依赖于气液两相流技术的研究成果。

因此,气液两相流实验是工程热物理领域重要的研究手段。

2、气液两相流实验的分类气液两相流实验可以分为两类:一是模型试验,二是原型试验。

模型试验是在小尺度的实验设备中进行,其目的是模拟真实环境,以获得研究需要的数据。

这些数据可以用于验证气液两相流的理论模型、算法和计算程序。

原型试验则是在实际环境中进行,其目的是直接从现实中获取相关信息。

例如,在火力发电厂中,对于输送两相流混合物的管道进行原型试验,可以获得流体在节流、循环或分离等不同状态下的流动情况,从而验证输送管道的稳定性和性能。

3、气液两相流实验的分析气液两相流实验的主要目标是收集流体在不同条件下的动态特性和稳态响应数据。

在实验器材的结构和材料选择中,要考虑到流体特性、流量和温度、压力等因素,并根据所需要的实验数据选择合适的检测方法和设备。

为了保证实验的精度和可靠性,实验过程中还要尽可能减少外界干扰的因素,比如测量设备和实验装置的隔音设计和保温等。

同时,在实验数据处理时,也需要根据实验数据的种类和实验数据中的噪音等因素进行适当的处理。

例如,对于实验数据中存在的微小噪声,可通过滤波器去除,以提高数据的准确性和可靠性。

4、气液两相流实验的应用气液两相流实验在工程热物理领域的应用非常广泛。

比如,在建设新型高速列车时,为了研究列车二次侧偏转时气液两相流的瞬态特性,可通过实验建立精确的数值模型,进而在列车的设计和开发过程中进行深入研究和测试,提高列车的运行效率和安全性。

CCUS领域国家重点研发计划项目启动

CCUS领域国家重点研发计划项目启动

CCUS领域国家重点研发计划项目启动
杨寒
【期刊名称】《天然气与石油》
【年(卷),期】2024(42)2
【摘要】2024年3月9日,国家重点研发计划“利用大型油气藏埋存二氧化碳关键技术标准研究与应用”项目启动会暨实施方案论证会在京举行。

“利用大型油气藏埋存二氧化碳关键技术标准研究与应用”项目的设立,是全面贯彻落实党的二十大关于“积极稳妥推进碳达峰碳中和”的战略部署,也是积极落实碳达峰碳中和“1+N”政策体系对标准化工作的重要部署。

【总页数】1页(P144-144)
【作者】杨寒
【作者单位】不详
【正文语种】中文
【中图分类】F42
【相关文献】
1.长江科学院派员参加国家重点研发计划“南方城乡生活节水和污水再生利用关键技术研发与集成示范”项目启动暨实施方案论证会
2.国家重点研发计划NQI专项2017年认证认可领域项目全面启动实施
3.国家重点研发计划“航空医学应急救援关键技术装备研发及应用示范”项目启动暨实施方案论证会顺利召开
4.国家重点研发计划项目“作物干旱高低温灾害预警预测与防控技术研发及集成示范”子课题
“东北玉米水稻低温冷害监测评估及预警预测研究”项目启动暨专家咨询会在哈召开US领域国家重点研发计划项目启动
因版权原因,仅展示原文概要,查看原文内容请购买。

核物理领域主要技术术语中英文释义及名词解释

核物理领域主要技术术语中英文释义及名词解释

目录反应堆:Nuclear Reactor (2)堆芯:core (3)核燃料:fuel (3)燃料元件:fuel element (6)燃料组件:fuel assembly (6)乏燃:spent fuel (6)主管道:main pipe (6)主屏蔽:main shield (6)反射屏蔽:reflective enclosure (7)压力容器:pressure vessel (7)冷却剂:coolant (7)控制棒:control rod (7)控制棒组件:control rod assembly (8)非能动安全系统:passive safety system (8)稳压器:pressurizer (8)生物屏蔽:Biological shielding (8)人孔:manhole (8)反应堆:Nuclear Reactor反应堆,又称为原子能反应堆或反应堆,是能维持可控自持链式核裂变反应,以实现核能利用的装置。

核反应堆通过合理布置核燃料,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。

反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。

按照冷却方式分类可分为以下几类:气冷快堆气冷快堆(gas-cooled fast reactor,GFR)系统是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。

它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。

通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。

此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。

参考反应堆是288兆瓦的氦冷系统,出口温度为850℃。

液态金属冷却快堆铅合金液态金属冷却快堆(lead-cooled fast reactor,LFR)系统是快中子谱铅(铅/铋共晶)液态金属冷却堆,采用闭式燃料循环,以实现可转换铀的有效转化,并控制锕系元素。

高压超导专题·前言

高压超导专题·前言

高压超导专题前言
程金光;刘寒雨
【期刊名称】《高压物理学报》
【年(卷),期】2024(38)2
【摘要】1911年,荷兰科学家Kamerlingh Onnes首次发现汞在温度接近4.2 K 时进入零电阻状态,从此拉开了超导电性研究的序幕。

寻找具有更高超导转变温度的超导体,尤其是室温超导体,一直是全球科学家孜孜以求的目标。

经过一个多世纪的发展,科学家们先后发现了铜氧化物和铁基等非常规高温超导体系,不仅将超导转变温度提升至液氮温区,而且极大地丰富和拓展了凝聚态物理的研究内涵和科学前沿。

【总页数】1页(P1-1)
【作者】程金光;刘寒雨
【作者单位】中国科学院物理研究所;吉林大学物质模拟方法与软件教育部重点实验室
【正文语种】中文
【中图分类】O51
【相关文献】
1.高压下HgBa_2NcaCu_2NO_(6+δ)超导体的制备及其超导电性
2.高压合成Nb_(1-x)B_2(0<x<0·7)超导体的结构转变、电子结构和超导电性研究
3.Nb_(1-
x)B_2(x=0~0.7)超导体的高压合成和超导电性4.“高密度有机封装基板”专题前言
因版权原因,仅展示原文概要,查看原文内容请购买。

质子交换膜燃料电池气体扩散层结构与设计研究进展

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期质子交换膜燃料电池气体扩散层结构与设计研究进展陈匡胤1,李蕊兰1,童杨2,沈建华1(1 华东理工大学材料学院,上海 200237;2 中华人民共和国科学技术部高技术研究发展中心,北京100044)摘要:气体扩散层(GDL )在质子交换膜燃料电池(PEMFC )中起到支撑催化层、传输反应气体和排出反应过程中产生的水的作用,设计和优化GDL 的结构对提升燃料电池的性能有重要作用。

本文首先介绍了氢燃料电池应用前景,简述了PEMFC 的结构和工作原理,指出了目前GDL 的气液传输能力不足的问题,分析了孔结构、碳材料、微孔层微观结构、润湿性和耐久性五个因素对GDL 性能的影响,并归纳了当前的研究进展,同时还涵盖了与GDL 内传质过程相关的建模方法。

最后总结了影响GDL 性能的各种因素,并对质子交换膜燃料电池内的GDL 发展进行了展望,指出用新型金属泡沫材料代替传统碳材料构建气体扩散层-双极板集成结构从而缩短传质路径并降低传质阻力,提出利用新兴的3D 打印技术去构建高精度具有复杂结构的气体扩散层。

本综述对未来优化GDL 结构、提高燃料电池性能具有一定的指导意义。

关键词:燃料电池;气液两相流;优化设计;传质;数值模拟中图分类号:TQ028.8 文献标志码:A 文章编号:1000-6613(2023)S1-0246-14Structure design of gas diffusion layer in proton exchange membranefuel cellCHEN Kuangyin 1,LI Ruilan 1,TONG Yang 2,SHEN Jianhua 1(1 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;2High Technology Research and Development Center ,Ministry of Science and Technology of the People s Republic ofChina ,Beijing 100044,China)Abstract: Gas diffusion layer (GDL) plays an important role in supporting the catalytic layer andproviding the transmission access of gas and water in proton exchange membrane fuel cell (PEMFC). Designing and optimizing the structure of GDL significantly influence the performance of fuel cell. In this paper, the application prospect of hydrogen fuel cell and the structure and working principle of PEMFC are briefly introduced. The problem of insufficient gas-liquid transmission capacity of GDL is pointed out and the effects of pore structure, carbon material, and microstructure of microporous layer, wettability and durability on the performance of GDL are analyzed. This review also summarizes the current research progress of GDL including the modeling studies. Finally, various factors affecting the performance of GDL are summarized, and the development of PEMFC is prospected. It is pointed out that novel metal foammaterials could replace the traditional carbon materials to construct the GDL-BP integrated structure with综述与专论DOI :10.16085/j.issn.1000-6613.2023-1102收稿日期:2023-07-03;修改稿日期:2023-09-26。

医学细胞生物学专业英语词汇

医学细胞生物学专业英语词汇* acrocentric chromosome 近端着丝粒染色体 actin 肌动蛋白 actin filament 肌动蛋白丝 actinomycin D 放线菌素D activator 活化物 active transport 主动运输 adenine 腺嘌呤 adenosine monophosphate, AMP 腺苷一磷酸, 腺苷酸 adenyl cyclase, AC 腺苷酸环化酶 adhesion plaque 黏着斑agranular endoplasmic reticulum 无颗粒内质网 Alzheimer disease 阿尔茨海默病 amino acid 氨基酸 aminoacyl site, A site 氨基酰位,A位 amitosis; direct division 无丝分裂;直接分裂 amphipathic molecule 双型性分子anaphase 后期anchoring junction 锚定连接 annular granule 孔环颗粒 anticoding strand 反编码链 antigen 抗原antiparallel 逆平行性 apoptic body 凋亡小体 apoptosis 凋亡assembly 组装aster 星体asymmetry 不对称性autolysis 自溶作用 autophagolysosome 自噬性溶酶体 autophagy 自噬作用autoradiography 放射自显影技术 autosome 常染色体 B lymphocyte B淋巴细胞bacteria 细菌 base substitution 碱基替换 belt desmosome 带状桥粒bioblast 生命小体 biological macromolecule 生物大分子 biomembrane 生物膜biotechnology 生物技术 bivalent 二价体 breakage 断裂 cadherin 钙粘连素calmodulin, CaM 钙调蛋白 cAMP 环一磷酸腺苷 cAMP-dependent protein kinase 环一磷酸腺苷依赖型蛋白激酶capping 戴帽 carrier protein 载体蛋白 cat cry syndrome 猫叫综合症cell division cycle gene CDC基因 cell 细胞 cell and molecular biology 细胞分子生物学 cell biology 细胞生物学 cell coat; glycocalyx 细胞衣;糖萼 cell culture 细胞培养 cell cycle 细胞周期cell cycle-regulating protein 细胞周期调节蛋白 cell cycle time 细胞周期时间 cell determination 细胞决定 cell differentiation 细胞分化 cell division cycle, CDC 细胞分裂周期 cell division cycle gene, CDC gene 细胞分裂周期基因 cell engineering 细胞工程 cell fractionation 细胞分级分离cell fusion 细胞融合 cell junction 细胞连接 cell line 细胞系 cell membrane; plasma membrane 细胞膜;质膜 cell plate 细胞板 cell proliferation 细胞增殖 cell recognition 细胞识别 cell surface antigen 细胞表面抗原 cell theory 细胞学说 cell strain 细胞株 cell aging 细胞衰老cell synchronization 细胞同步化 cellular oxidation 细胞氧化 cellular respiration 细胞呼吸 central granule 中央颗粒 centromere 着丝粒 chalone 抑素 channel protein 通道蛋白 chemiosmotic hypothesis 化学渗透假说chiasmata 交叉 cholesterol 胆固醇chromatid 染色单体 chromatin 染色质 chromomere 染色粒 chromosome 染色体 chromosome arm 染色体臂 chromosome banding 染色体带 chromosome disease 染色体病 chromosome engineering 染色体工程 chromosome scaffold 染色体支架 chromosome syndrome 染色体综合症 cis Golgi network 顺面高尔基网状结构 cisterna(pl. cisternae)扁平囊 clathrin 笼蛋白 clone 克隆coated pit 有被小窝 coated vesicle 包被小泡 coding strand 编码链 codon 密码子 codon degeneracy 密码子兼并性 coenzyme 辅酶 collagenfibronectin, FN 纤连蛋白 communication junction 通讯连接 complementation 互补性condensation stage 凝集期 confocal laser scanning microscope 共焦激光扫描显微镜 connexin 连接子 constitutive heterochromatin 结构异染色质continuous microtubules 极微管 converting enzyme 转变酶crista(pl. cristae)嵴 cyanine 胞嘧啶 cyclin 细胞周期素cydoeximide 放线菌酮 cytidine monophosphate, CMP 胞苷一磷酸,胞苷酸cytokinesis 细胞质分裂 cytology 细胞学 cytoplasm 细胞质 cytoplasm engineering 细胞质工程 cytoplasm substitution 细胞质代换 cytoplasmic plaque 胞质斑 cytoskeleton 细胞骨架 dark field microscope 暗视野显微镜dedifferentiation 去分化 degeneracy 兼并 deletion 缺失 density gradient centrifugation 密度梯度离心 deoxyadenosine monophosphate, dAMP 脱氧腺苷酸 deoxycytidine monophosphate, dCMP 脱氧胞苷酸 deoxyguanosine monophosphate, dGMP 脱氧鸟苷酸 deoxyribonucleic acid, DNA 脱氧核糖核酸deoxythymidine monophosphate, dTMP 脱氧胸苷酸 desmosome 桥粒 diakinesis 终变期 differential centrifugation 差速离心 differential expression 差异性表达 differentiation induction 分化诱导 differentiation inhibition 分化抑制 diplococcus pneumonia 肺炎双球菌diplotene 双线期 disassembly 去组装 DNA probe DNA探针 DNA synthesis phase DNA合成期 dosage compensation 剂量补偿 doublet 二联管 duplication 重复 effector 效应器 electric coupling 电偶联 electron microscope 电子显微镜 elementary particle 基粒 eletronfusion 电融合 elongation factor, EF 延长因子 embryonic induction 胚胎诱导作用 endocytosis 内吞作用endolysosome 内体性溶酶体 endomembrane system 内膜系统 endoplasmic reticulum, ER 内质网 enhancer 增强子 enzyme 酶 equatorial plane 赤道面eucaryotes 真核生物 euchromatin 常染色质 eukaryotic cell 真核细胞exocytosis 胞吐作用 exon 外显子 extracellular matrix, ECM 细胞外基质extrinsic; peripheral protein 外在蛋白;外周蛋白 F body 荧光小体facilitated diffusion 易化扩散 facultative heterochromatin 兼性异染色质 fibrillar component 原纤维成分 fibronectin, FN 纤粘连蛋白 fibrous actin, F-actin 纤维状肌动蛋白 flanking sequence 侧翼顺序 fluid mosaic model 液态镶嵌模型 fluorescence microscope 荧光显微镜 fluorescence recovery after 荧光漂白恢复 photobleaching, FRAPfork-initiation protein 叉起始蛋白 frameshift mutation 移码突变 free cell 游离细胞 free diffusion 自由扩散 free energy 自由能galactocerebroside 半乳糖脑苷脂 ganglioside 神经节苷脂 gap junction 间隙连接 gene 基因 gene cluster 基因簇 gene engineering 基因工程 gene expression 基因表达 gene family 基因家族 gene mutation 基因突变 genetic code 遗传密码 genetic message 遗传信息 genome 基因组 genome engineering 染色体工程 genomic DNA library 基因组DNA文库glycogen storage disease type? ?型糖原蓄积病 glycolipid 糖脂glycoprotein 糖蛋白 glycosaminoglycan, GAG 氨基聚糖 glycosylation 糖基化Golgi apparatus 高尔基器 Golgi body 高尔基体 Golgi complex 高尔基复合体granular component 颗粒成分 granular drop 脱粒 granular endoplasmic reticulum 颗粒内质网 growth factor 生长因子 GT-AG rule GT-AG法则guanine 鸟嘌呤 guanosine monophosphate, GMP 鸟苷一磷酸,鸟苷酸hemidesmosome 半桥粒 hereditary factor 遗传因子 heterochromatin 异染色质heterogeneous nuclear RNA, hnRNA 不均一核RNA heterokaryon 异核体heterophagolysosome 异噬性溶酶体 heterophagy 异噬作用 heteropyknosis 异固缩 highly repetitive sequence 高度重复序列 histone 组蛋白 holoenzyme全酶 homokaryon 同核体 housekeeping gene 管家基因 housekeeping protein管家蛋白human leukocyte antigen, HLA 人白细胞抗原 hyaluronic acid, HA 透明质酸 hybrid cell 杂交细胞 hyperdiploid 超二倍体 hypodiploid 亚二倍体immunofluorescence microscopy 免疫荧光显微镜技术 immunoglobulin 免疫球蛋白 in vitro 离体的 in vivo 体内的 inactive X hypothesis 失活X假说inborn errors of metabolism 先天性代谢缺陷病 inducer 诱导物 induction 诱导 inhibitor of mitotic factor, IMF 有丝分裂因子抑制物 initiation factor, IF 起始因子 inner membrane 内膜 inner nuclear membrane 内层核膜insertion sequence, IS 插入顺序 Integral protein 整合蛋白 integrin 整连蛋白 inter membrane space; outer chamber 膜间腔;外室 intercellular communication 细胞间通讯 intercristal space; inner chamber 嵴间腔;内室intermediate filament 中间纤维 internal membrane 内膜 internal reticular apparatus 内网器 interphase 间期 interstitial deletion 中间缺失interzonal microtubules 区间微管intracristal space 嵴内腔 intra-nucleolar chromatin 核仁内染色质intrinsic; integral protein 内在蛋白;整合蛋白 intron 内含子 inversion倒位 inverted repetitive sequence 倒位重复顺序 ionic channel 离子通道ionic coupling 离子偶联 jumping gene 跳跃基因 karyotype 核型 kinetochore 着丝点 kinetochore microtubules 动粒微管Klinefelter’s syndrome 先天性睾丸发育不全症 lagging strand 后随链 laminin, LN 层粘连蛋白 lateral diffusion 侧向扩散 leading strand 前导链 leptotene 细线期 ligand; chemical signal 配体;化学信号 light microscope 光学显微镜 linear polymer 线性多聚体 linker 连接线 liposome 脂质体 liquid crystal 液晶 lowdensity lipoprotein, LDL 低密度脂蛋白 luxury gene 奢侈基因 luxuryprotein 奢侈蛋白 lymphokine 淋巴激活素 lymphotoxin 淋巴毒素lysosome 溶酶体 major histocompatibility complex, MHC 组织相容性复合体 malignancy 恶性 matrical granule 基质颗粒 matrix 基质 matrix fibronectin, mFN 基质纤连蛋白 maturation-prompting factor, MPF 成熟促进因子 medial Golgi stack 高尔基中间囊膜 meiosis 减数分裂 membrane antigen 膜抗原 membrane carbohydrate 膜碳水化合物 membrane flow 膜流 membrane lipid 膜脂 membrane protein 膜蛋白 membrane receptor 膜受体 membranous structure 膜相结构 messenger RNA 信使核糖核酸 mesosome 中间体 metabolic coupling 代谢偶联 metacentric chromosome 中央着丝粒染色体 metaphase 中期micelle 微团 microfilament 微丝 microscopy 显微镜技术 microsome 微粒体microtrabecular lattice 微梁网格 microtubule 微管 microtubule associated protein, MAP 微管结合蛋白 microtubule organizing centers, MTOC 微管组织中心microvillus 微绒毛 middle repetitive sequence 中度重复序列 miniband 微带 missense mutation 错义突变 mitochondria 线粒体 mitosis 有丝分裂mitosis phase 有丝分裂期 mitotic apparatus 有丝分裂器 mitotic factor, MF 有丝分裂因子 mobility 流动性 model for controlling gene expression 基因表达调控模型 molecular biology 分子生物学 molecular disease 分子病monopotent cell 单能细胞 monosomy 单体性 multiple coiling model 多级螺旋模型 multipotent cell 多能细胞 myasthenia gravis 重症肌无力症 mycoplasma 支原体 myofibrils 肌原纤维 necrosis 坏死 neuropeptide 神经肽 non-continuation 不连续性 non-histone 非组蛋白 non-membranous structure 非膜相结构 nonsense mutation 无义突变 nuclear envelope 核被膜 nuclear lamina 核纤层 nuclear matrix 核基质nuclear pore 核孔 nuclear pore complex 核孔复合体 nuclear sap 核液nuclear sex 核性别 nuclear skeleton 核骨架 nucleic acid 核酸 nucleic acid hybridization 核酸分子杂交 nucleo-cytoplasmic ratio 核质比 nucleoid 类核体 nucleoids 拟核 nucleolar associated chromatin 核仁相随染色质nucleolar organizing region 核仁组织区 nucleolus 核仁 nucleosome 核小体nucleotide 核苷酸 nucleosome core 核小体核心 nucleus 细胞核 nucleus transplantation 核移植法 nucleus-cytoplasm hybrid 核质杂种 Okazaki fragment 岗崎片段 oligomer fibronectin,oFN 寡聚纤连蛋白 oncogene 癌基因operator gene 操纵基因 operon 操纵子 operon theory 操纵子学说 organelle 细胞器 origin 起点 outer membrane 外膜 outer nuclear membrane 外层核膜overlapping gene 重叠基因 oxidative phosphorylation 氧化磷酸化pachytene 粗线期 pairing stage 配对期 partial monosome 部分单体 partial trisomy 部分三体 passive transport 被动运输 patching 成斑现象 peptide bond 肽键 peptidyl site, P site 肽基位;P位 perinuclear space 核间隙perinucleolar chromatin 核仁周围染色质 peripheral granule 周边颗粒peripheral protein 外周蛋白 permeability 通透性 peroxisome; microbody 过氧化物酶体;微体 phagocytosis 吞噬作用 phagolysosome 吞噬性溶酶体phagosome 自噬体 phase contrast microscope 相差显微镜 phenylalanine hydroxylase, PAH 苯丙氨酸羟化酶 phenylketonuria, PKU 苯丙酮尿症phosphatidylinositol, PL 磷脂酰肌醇 phosphodiester bond 磷酸二酯键phosphodiesterase, PDE 磷酸二酯酶 phosphoglyceride 磷酸甘油酯phospholipase C,PLC 磷脂酶C phospholipid 磷脂 pinocytosis 胞饮作用pinocytotic vesicle 吞饮泡 plasma cell 浆细胞 plasma fibronectin, pFN 血浆纤连蛋白 plasmid 质粒 point mutation 点突变 polar microtubule 极间微管 polarizing microscope 偏光显微镜 polyadenylation 多聚腺苷酸反应polyploid 多倍体 polyribosome 多聚核糖体 premature condensed chromosome, PCC 早熟染色体 premeiosis interphase 减数分裂前间期 primary constriction 主缢痕 primary culture 原代培养 primary culture cell 原代细胞 programmed cell death 细胞程序性死亡 prokaryotes 原核生物 prokaryotic cell 原核细胞promotor 启动子 promotor gene 启动基因 prophase 前期 protein 蛋白质protein kinase C, PKC 蛋白激酶C proteoglycan, PG 蛋白聚糖 protofilament 原纤维 protooncogene 原癌基因 protoplasm 原生质 purine 嘌呤碱 pyrimidine 嘧啶碱receptor mediated endocytosis 受体介导的内吞作用 reciprocal translocation 相互易位 recombinant DNA technology 重组DNA技术recombination nodules 重组小节 recombination stage 重组期 recondensation stage 再凝集期 redifferentiation 再分化 regulator gene 调节基因 release factor, RF 释放因子 replication 复制 replication eyes 复制眼 replication fork 复制叉 replicon 复制子 repressor 阻碍物 resolving power 分辨力residual body 残体 respiratory chain 呼吸链 restriction endonuclease 限制性内切核酸酶 restriction point 限制点 reverse transcription 逆转录 rho factor, ρ ρ因子 ribonucleic acid, RNA 核糖核酸 ribophorin 核糖体结合蛋白 ribosomal RNA 核糖体核糖核酸 ribosome 核糖核蛋白体 RNA polymerase RNA聚合酶 rough endoplasmic reticulum, rER 粗面内质网 sac 扁平囊 same sense mutation 同义突变sarcoplasmic reticulum 肌质网 satellite 随体 scanning electron microscope 扫描电子显微镜 scanning tunneling microscope 扫描隧道电子显微镜 secondary constriction 次缢痕 secondary culture 传代培养semiautonomous organelle 半自主性的细胞器 semiconservative replication 半保留复制 semidiscontinuous replication 半不连续复制 sensor 感受器sequential expression 顺序表达 sex chromosome 性染色体 signal codon 信号密码子 signal hypothesis 信号肽假说 signal molecule 信号分子 signal peptide 信号肽 signal recognition particle, SPR 信号识别颗粒 simple diffusion 简单扩散 single sequence 单一序列 single-stranded DNA binding protein 单链DNA结合蛋白 singlet 单管 small nuclear RNA, snRNA 小分子细胞核RNA smooth endoplasmic reticulum, sER 滑面内质网 solenoid 螺线管sparsomycin 稀疏酶素 sphingomyelin 神经鞘磷脂 spindle 纺锤体 splicing 剪接 split gene 断裂基因start codon 起始密码子 stem cell 干细胞 stress fiber 张力基因structural gene 结构基因 submetacentric chromosome 亚中着丝粒染色体supersolenoid 超螺线管 suppressor tRNA 校正tRNA synapsis 联会synaptonemal complex 联会复合体 synkaryon 合核体 synonymous codon 同义密码子 synonymous mutation 同义突变 T lymphocyte T淋巴细胞 tailing 加尾telomere 端粒 telophase 末期 terminal deletion 末端缺失 terminalization 端化 terminator 终止子 tetrad 四分体 tetraploid 四倍体 thymine 胸腺嘧啶three dimensional structure,3D 三维结构 tight junction 紧密连接 tissue cell 组织细胞 tissue engineering 组织工程 totipotency 全能性 trans Golgi network 反面高尔基网状结构 transcribed spacer 转录间隔区transcription 转录 transdifferentiation 转分化 transfer RNA 转运核糖核酸 transformation 转化 transition 转换 translation 翻译 translocation 易位 transport protein 运输蛋白 transposition 转座 transversion 颠换transmission electron microscope 透视电子显微镜 tricarboxylic acid cycle 三羧酸循环 trigger protein 触发蛋白 triplet 三联管 triploid 三倍体triskelion 三臂蛋白 trisomy 三体 tubulin 微管蛋白 tumor necrosis factor 肿瘤坏死因子Turner’s syndrome 先天性卵巢发育不全症 tyrosinase, TN 酪氨酸酶 ultravoltage electron microscope 超高压电子显微镜 unit membrane 单位膜 untranscribed spacer 非转录间隔区 unwinding protein 解链蛋白 uracil 尿嘧啶 uridine monophosphate, UMP 尿苷一磷酸;尿苷酸 vacuole 大囊泡vector 载体vesicle 小囊泡 vinculin 粘着斑连接蛋白 wobble hypothesis 摇摆学说 X chromatin X染色质 Y chromatin Y染色质 zygotene 偶线期。

三级环流反应器中气液流动与传质规律

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期三级环流反应器中气液流动与传质规律黄益平1,李婷2,郑龙云2,戚傲2,陈政霖2,史天昊2,张新宇2,郭凯2,3,胡猛1,倪泽雨1,刘辉2,3,夏苗1,主凯1,刘春江2,3,4(1 中建安装集团有限公司,南京 江苏210000;2 天津大学化工学院,天津300072;3 天津市催化科学与工程重点实验室,天津300072;4 化学工程联合国家重点实验室(天津大学),天津300072)摘要:针对级间安装导流筒的三级环流反应器的气液流动与传质过程开展实验研究。

通过冷模实验获得不同表观气速下(0.015~0.1m/s )以及安装不同级间内构件时环流反应器内的气含率、混合时间、停留时间以及体积氧传质系数。

结果表明,随着表观气速的增加,反应器各级内的气含率增加,混合时间减少,平均停留时间减小,同时氧传质系数增加。

通过对反应器内气液流型的变化的观察,进一步分析了级间内构件对三级环流反应器性能的影响,发现内构件上截面较宽时(3#内构件),反应器的混合效果更好,而内构件的上截面较小时(1#内构件),反应器可以更好地抑制返混。

关键词:多级气升式环流反应器;多相流;级间内构件;流体动力学;气液传质中图分类号:TQ021.1 文献标志码:A 文章编号:1000-6613(2023)S1-0175-14Hydrodynamics and mass transfer characteristics of a three-stageinternal loop airlift reactorHUANG Yiping 1,LI Ting 2,ZHENG Longyun 2,QI Ao 2,CHEN Zhenglin 2,SHI Tianhao 2,ZHANG Xinyu 2,GUO Kai 2,3,HU Meng 1,NI Zeyu 1,LIU Hui 2,3,XIA Miao 1,ZHU Kai 1,LIU Chunjiang 2,3,4(1 China Construction Industrial & Energy Engineering Co., Ltd., Nanjing 210000, Jiangsu, China; 2 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 3 Tianjin Key Laboratory of Applied CatalysisScience and Engineering, Tianjin 300072, China; 4 State Key Laboratory of Chemical Engineering (Tianjin University),Tianjin 300072, China)Abstract: The hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor were investigated experimentally. The gas hold-up, mixing time, residence time, and volumetric mass transfer coefficient were measured in the cold mode experiment under different superficial gasvelocities (0.015—0.1m/s) and internals. Experimental results showed that as the superficial gas velocity increased, the gas hold-up increased, mixing time decreased, and mean residence time decreased. Meanwhile, the volumetric mass transfer coefficient increased as the superficial gas velocity increased. The effect of internals on the reactor performance was discussed based on the flow pattern observation. It was found that the mixing effect of the reactor was better when the diameter of the upper cross-section of研究开发DOI :10.16085/j.issn.1000-6613.2023-1269收稿日期:2023-07-23;修改稿日期:2023-10-17。

高激发核物质液-气相变与核温度

高激发核物质液-气相变与核温度
靳根明
【期刊名称】《原子核物理评论》
【年(卷),期】1998(15)4
【摘要】评述了高激发核的激发能及核温度的测量方法,以及这些测量方法的可靠性.同时还根椐理论模拟的结果讨论了当前得到的核物质量热曲线中可能存在的问题,提出了进一步开展核物质量热曲线研究中温度测量的一些措施.
【总页数】10页(P227-236)
【关键词】液气-相变;量热曲线;激发能;核温度;核物质
【作者】靳根明
【作者单位】中国科学院近代物理研究所
【正文语种】中文
【中图分类】O571.4
【相关文献】
1.有限核物质的饱和性质与液气相变 [J], 王能平;杨善德
2.对称核物质的汽液相变和SGII型有效势 [J], 郑国桐;苏汝铿
3.“热核”的统计特性和核物质液气相变 [J], 蔡延璜;夏克定
4.热核多重碎裂中的条件矩与核内液气相变信号 [J], 刘福虎
5.核物质液-气相变和热核稳定性 [J], 宋宏秋
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Application of Information Theory in Nuclear Liquid Gas Phase TransitionY.G.MaCCAST(World Laboratory),P.O.Box8730,Beijing100080,Chinaand Shanghai Institute of Nuclear Research,Chinese Academy of Sciences,P.O.Box800-204,Shanghai201800,China*(Received28May1999)Information entropy and Zpif’s law in thefield of information theory have been used for studying the disassembly of nuclei in the framework of the isospin dependent lattice gas model and the molecular dynamical model.We found that the information entropy in the event space is maximum at the phase transition point and the mass of the cluster shows exactly inversely to its rank,i.e.,Zpif’s law appears. Both novel criteria are useful in searching the nuclear liquid gas phase transition experimentally and theoretically.PACS numbers:25.70.Pq,05.70.Jk,24.10.Pa,24.60.KyHot nuclei can be formed in energetic heavy ion colli-sions(HIC)and may be highly excited.They deexcite by different decay modes,such as multifragmentation.Ex-perimentally,this kind of multifragment emission was ob-served to evolve with beam energy(excitation energy,or nuclear temperature,...).Multiplicity,N imf,of interme-diate mass fragment(IMF)rises with the beam energy, reaches a maximum,andfinally falls to lower value.This phenomenon of the rise and fall of N imf may be related to the liquid gas phase transition in nuclear matter[1].The onset of multifragmentation probably indicates the coex-istence of liquid and gas phases.The mass distribution of IMF distribution can be expressed as a power law with parameter t.The minimum of t,t min,occurs when the liquid gas phase transition takes place[2].However,t min can also reveal at supercritical densities along the Kertész line[3]and at some subcritical densities at lower tempera-ture[4].So it is not possible to determine the phase tran-sition only from N imf and t min.On the other hand,experimentalists measured the nu-clear caloric curves,i.e.,the relationship between nuclear temperature and the excitation energy.He-Li isotopic tem-perature from the Albergo thermometer[5]for projectile-like Au spectators seems to exhibit a temperature plateau in the excitation energy range of3to10MeV͞u[6].This plateau was taken as an indication for afirst order nuclear liquid gas phase transition.However,due to the changing mass of Au spectators with excitation energy and the side-feeding effect to measured He-Li isotopic temperature, this conclusion is questionable[7].Nuclear caloric curves were also surveyed by several groups[8].However,unfor-tunately,the sharp signature of the liquid gas phase transi-tion in macroscopic systems may be smoothed and blurred due to the small numbers of nucleons in nuclei,and/or the difficulty to perform a direct comparison between the measured“apparent”temperature and the“real”tempera-ture interferes in obtaining the real nuclear caloric curve. These factors hamper the reaching of a definite conclusion on liquid gas phase transition in nuclei.The extraction of critical exponents and the study of critical behavior infinite-size systems were attempted in [9]and were followed by controversial debates[10].In this context,it is necessary and meaningful to search for some novel signatures to characterize the nuclear liquid gas phase transition in order to guide the experimental analysis and theoretical predictions.In this Letter,we will introduce information entropy [11],H,and Zpif’s law[12]into the diagnosis of a nuclear liquid gas phase transition.The information entropy was defined by Shannon in information theory.Originally,it measures the“amount of information”which is contained in messages sent along a transmission line.It can be ex-pressed as follows:H෇2Xip i ln͑p i͒,(1) where p i is a normalized probability,andPip i෇1. Jaynes proposed that a very general technique for discov-ering the least biased distribution of the p i consists in the maximization of the Shannon H entropy,subject to whatever constraints on p i are appropriate to the particu-lar situation.The maximization of H was thus put for-ward as a general principle of statistical inference—one which could be applied to a wide variety of problems in economics,engineering,and many otherfields,such as quantum phenomena[11].In high energy hadron colli-sions,multiparticle production proceeds on the maximum stochasticity,i.e.,they should obey the maximum entropy principle.This kind of stochasticity can be also quantified via the information entropy which has been shown to be a good tool to measure chaoticity in the hadron decaying branching process[13].In different physical conditions, information entropy can be expressed with different sto-chastic variables.In this work on HIC,we define p i as the event probability of having“i”particles produced,i.e.,͕p i͖is the normalized probability distribution of total mul-tiplicity,and the sum is taken over whole͕p i͖distribution. This emphasis is on the event space rather than the phase0031-9007͞99͞83(18)͞3617(4)$15.00©1999The American Physical Society3617space.As shown below,this kind of information entropy [14]can be taken as a method to determine nuclear liquid gas phase transition.Zpif’s law[12]has been known as a statistical phenome-non concerning the relation between English words and their frequency in literature in thefield of linguistics.The law states that,when we list the words in the order of de-creasing population,the frequency of a word is inversely proportional to its rank[12].This relation was found not only in linguistics but also in otherfields of sciences.For instance,the law appeared in distributions of populations in cities,distributions of income of corporations,distribu-tions of areas of lakes,and cluster-size distribution in the percolation process[15].In this Letter,Zpif’s law will be tested for the fragment mass distribution and it is evi-denced to be a factor in characterizing the phase transition. The tools we will use here are the isospin dependent lat-tice gas model(LGM)and the molecular dynamical(MD) model.The lattice gas model was developed to describe the liquid gas phase transition for an atomic system by Lee and Yang[16].The same model has already been ap-plied to nuclear physics for isospin symmetrical systems in the grand canonical ensemble[17]with a sampling of the canonical ensemble[3,4,18–22],and also for isospin asymmetrical nuclear matter in the meanfield approxi-mation[23].In addition,a classical molecular dynamical model is used to compare its results with the results of the lattice gas model.Here we will make a brief description for the models.In the lattice gas model,A(෇N1Z)nucleons with an occupation number s,which is defined s෇1(21)for a proton(neutron)or s෇0for a vacancy,are placed on the L sites of lattice.Nucleons in the nearest neighboring sitesinteract with an energy e si s j.The Hamiltonian is writtenas E෇P Ai෇1͑P2i͞2m͒2Pi,je sis js i s j.The interactionconstant e si s jis chosen to be isospin dependent and befixedto reproduce the binding energy of the nuclei[20]:e nn෇e pp෇0MeV,e pn෇25.33MeV.(2)A three-dimensional cubic lattice with L sites is used. The freeze-out density of the disassembling system is assumed to be r f෇A L r0,where r0is the normal nuclear density.The disassembly of the system is to be calculated at r f,beyond which nucleons are too far apart to interact. Nucleons are put into a lattice by Monte Carlo Metropolis sampling.Once the nucleons have been placed,we also ascribe to each of them a momentum by Monte Carlo samplings of Maxwell-Boltzmann distribution.Once this is done,the LGM immediately gives the cluster distribution using the rule that two nucleons are part of the same cluster if P2r͞2m2e s i s j s i s j,0.This method is similar to the Coniglio-Klein’s prescription[24] in condensed matter physics and was shown to be valid in LGM[3,4,19,21].To calculate clusters using MD,we propagate the particles from the initial configuration for a long time under the influence of the chosen force.The form of the force is chosen to be also isospin dependent in order to compare with the results of LGM.The potential for unlike nucleons isy np͑r͒͑r͞r0,a͒෇C͓B͑r0͞r͒p2͑r0͞r͒q͔3expµ1͑r͞r0͒2a∂, y np͑r͒͑r͞r0.a͒෇0,(3)where r0෇1.842fm is the distance between the cen-ters of two adjacent cubes.The parameters of the po-tentials are p෇2,q෇1,a෇1.3,B෇0.924,and C෇1966MeV.With these parameters,the potential is minimum at r0with the value25.33MeV,is zero when the nucleons are more than 1.3r0apart,and becomes strongly repulsive when r is significantly less than r0. The potential for like nucleons is written asy pp͑r͒͑r,r0͒෇y np͑r͒2y np͑r0͒,y pp͑r͒͑r.r0͒෇0.(4)The system evolves with the above potential.At asymp-totic times the clusters are easily recognized.Observables based on the cluster distribution in both models can now be compared.In the case of proton-proton interactions, the Coulomb interaction can also be added separately,and it can be compared with the case without Coulomb effects. In this Letter,we choose the medium size nuclei129Xe as an example.In most cases,r f is chosen to be0.38r0, since the experimental data can be bestfitted by r f be-tween0.3r0and0.4r0in previous LGM calculations [19,25],which corresponds to73cubic lattice.In addition, 0.18r0,corresponding to93cubic lattice and0.60r0,cor-responding to63cubic lattice of r f,are also taken to com-pare and check the results with different r f values in the LGM case.1000events were simulated for each combina-tion of T and r f which ensures enough statistics for results. In order to check the phase transition behavior in LGM and MD,we willfirst show the results of some physical observables,namely,the effective power-law parameter t,the second moment of the cluster distribution S2,and the multiplicity of intermediate mass fragments N imf,for the disassembly of129Xe(Fig.1).These observables were shown to be good indicators of a liquid gas phase transition,as shown in Ref.[20].The extreme values of t, N imf,and S2occur at the same temperature,indicating the onset of the phase transition,for each calculation case.For the LGM case,the phase transition temperature increases with the freeze-out density;for the MD case,a slight small transition temperature is obtained when Coulomb force is ignored.It becomes much lower in the case of Coulomb interaction due to its long range repulsion.A similar phenomenon has been explored in a previous study [20].However,the aim of this Letter is to take the above transition temperatures as references to search for novel signatures of liquid gas phase transition.3618FIG.1.The effective power-law parameter t ,the second moment of the cluster distribution S 2,and the multiplicity of intermediate mass fragments N imf ,as a function of temperature for the disassembly of 129Xe.Left panel is the LGM results with different r f and right panel is the comparison of MD to LGM with 0.38r 0.The symbols are illustrated in the figure.Figure 2shows the information entropy for disassem-bly of Xe.The information entropy exhibits a rise and fall with temperature,which is similar to the behaviors of N imf and S 2.The temperatures extracted from the peak values of H are consistent with the transition temperatures in Fig.1,indicating that information entropy ought to be a good diagnosis of phase transition.Physically,the maxi-mum of H re flects the largest fluctuation of the multiplic-ity probability distribution in the phase transition point.In this case,it is the most dif ficult to predict how many clus-ters will be produced in each event,i.e.,the disorder(en-FIG.2.The same as Fig.1,but for the information en-tropy H .tropy)of information is the largest.Generally speaking,the larger the dispersal of multiplicity probability distribu-tion,the higher the information entropy,and then the disor-der of the system in the event topology.One should make a careful distinction between this information entropy,on the one hand,and the original thermodynamic entropy,on the other hand [11,14].The latter generally illustrates the heat disorder in momentum space rather than event space and it always increases with temperature.Next,we will present the results for testing Zpif ’s law in the fragment distribution.The law states that the re-lation between the sizes and their ranks is described by A n ෇c ͞n (n ෇1,2,3,...),where c is a constant,and A n is the mass of rank n in a mass list when we arrange the clusters in the order of decreasing size.In the calcula-tions,we averaged the masses for each rank in mass lists of the events.Then we examined the relation between the masses A n and their ranks n with the fit of A n ~n 2l in the range of 1#n #10,where l is the slope parameter.The upper panel of Fig.3summarizes such parameter l as a function of temperature for LGM and MD cases.Clearly,the value of l decreases with temperature,indicating that the difference of mass between the different fragment ranks is becoming smaller.When l ϳ1,the Zpif ’s law is satis-fied:A n ~n 21.The temperatures having Zpif ’s law for all calculations in Fig.3are also consistent with the respective transition temperatures extracted from the extreme values of some observables in Figs.1and 2.Therefore Zpif ’s law is also a good signal to phase transition.From the statistical point of view,Zpif ’s law is related to the criti-cal behavior or self-organized criticality [2,26],which may be a special state with the maximum information or leasteffort.FIG.3.The slope parameter l of the relation A n to n (upper panel)and the x 2͞ndf with the fit of Zpif ’s law (lower panel)as a function of temperature.Left panel is the LGM results with different r f and right panel is the comparison of MD to LGM with 0.38r 0.The symbols are the same as Fig.1.3619In order to further illustrate that Zpif’s law exists atthe phase transition point most probably,we directlyfitthe rank-classified cluster distribution with Zpif’s law andextract the truth of the hypothesis:x2test.The lowerpanel of Fig.3demonstrates the x2͞ndf for the A n-n re-lations at different T for different calculation cases.Asexpected,there are minima of x2͞ndf around the respec-tive transition temperature,which further support Zpif’s law of the fragment distribution indicating a phase transi-tion.All calculations give the same conclusions as above. In addition,we also investigated larger systems,such as A෇274,500,and830,in the LGM case to see if the system behaves as expected in129Xe.The results show that the maximum of information entropy and Zpif’s law behavior still remain at the same phase transition tem-perature as the one extracted from the extreme values of t,N imf,and S2.It illustrates that both novel criteria are suitable as signals of phase transition in the larger A limit. In conclusion,the information entropy and Zpif’s law in thefield of information theory are introduced,for thefirst time,into the study of the liquid gas phase transition of nuclei in the framework of the isospin dependent lattice gas model and the molecular dynamical model in a r-T plane. At the point of phase transition,the information entropy of multiplicity distribution is maximum,which indicates that the system at this time has the largestfluctuation/ stochasticity/chaoticity in the event space.Meanwhile, the cluster mass shows exactly inversely to its rank,i.e., Zpif’s law appears.Even though both criteria are still phenomenological,we believe that they are simple and practicable tools to diagnose the nuclear liquid gas phase transition in experiments and theories.We are waiting for some data analysis on the information entropy and Zpif’s law in the near future.It is my pleasure to thank Dr.J.Pan and Dr.S.Das Gupta for providing the LGM and MD codes,and Dr.J.Péter for reading the paper.This workwas supported by the China’s Distinguished YoungScholar Fund under Grant No.19725521,the NSFCunder Grant No.19705012,the STDF of Shanghai underGrant No.97QA14038,and the Presidential Foundationof CAS.*Mailing address.[1]C.A.Ogilvie et al.,Phys.Rev.Lett.67,1214(1991);M.B.Tsang et al.,Phys.Rev.Lett.71,1502(1993);Y.G.Ma and W.Q.Shen,Phys.Rev.C51,710(1995).[2]M.E.Fisher,Physics(Long Island City,N.Y.)3,255(1967).[3]X.Campi and H.Krivine,Nucl.Phys.A620,46(1997).[4]J.Pan and S.Das Gupta,Phys.Rev.C53,1319(1996).[5]S.Albergo et al.,Nuovo Cimento Soc.Ital.Fis.89A,1(1985).[6]J.Pochodzalla et al.,Phys.Rev.Lett.75,1040(1995).[7]J.B.Natowitz et al.,Phys.Rev.C52,R2322(1995);M.B.Tsang et al.,Phys.Rev.Lett.78,3836(1997);A.Siwek et al.,Phys.Rev.C57,2507(1998).[8]Y.G.Ma et al.,Phys.Lett.B390,41(1997);M.J.Huanget al.,Phys.Rev.Lett.78,1648(1997);R.Wada et al., Phys.Rev.C55,227(1997);J.A.Hauger et al.,Phys.Rev.Lett.77,235(1996);V.Serfling et al.,Phys.Rev.Lett.80,3928(1998).[9]M.L.Gilkes et al.,Phys.Rev.Lett.73,1590(1994);J.B.Elliott et al.,Phys.Lett.B381,35(1998);P.F.Mastinu et al.,Phys.Rev.Lett.76,2646(1996);M.L.Cherry et al.,Phys.Rev.C52,2652(1995).[10]J.B.Elliot et al.,Phys.Rev.C55,544(1997);W.Bauerand A.Botvina,Phys.Rev.C55,546(1997),and refer-ences therein;L.G.Moretto et al.,Phys.Rev.Lett.79, 3538(1997).[11]K.G.Denbigh and J.S.Denbigh,Entropy in Relationto Uncomplete Knowledge(Cambridge University,Cam-bridge,England,1995).[12]G.K.Zpif,Human Behavior and the Principle ofLeast Effort(Addisson-Wesley,Cambridge,MA,1949);D.Crystal,The Cambridge Encyclopedia of Language(Cambridge University,Cambridge,England,1987), p.86.[13]P.Brogueira et al.,Phys.Rev.D53,5283(1996);ZhenCao and R.C.Hwa,Phys.Rev.D53,6608(1996). [14]The information entropy[Eq.(1)]is defined only if allevents i are a priori equally probable in equilibrium ther-modynamics.However,the equal probability of events is nearly impossible in hadron collisions and nuclear frag-mentation since the process is highly dynamical.A the-ory based on equilibrium thermodynamics would in any case be only an approximation.In this context,a phe-nomenological study is probably more useful than a ther-modynamical theory.Of course,the entropy defined here is not strict information entropy.Probably,it is better to call it“event entropy”or“multiplicity entropy.”How-ever,since the form of information entropy[Eq.(1)]has been well known,we will still call it information entropy as already made in hadron collision(see[13])throughout this phenomenological study.[15]M.Watanabe,Phys.Rev.E53,4187(1996).[16]T.D.Lee and C.N.Yang,Phys.Rev.87,410(1952).[17]T.S.Biro et al.,Nucl.Phys.A459,692(1986);S.K.Samaddar and J.Richert,Phys.Lett.B218,381(1989);Z.Phys.A332,443(1989);J.M.Carmona et al.,Nucl.Phys.A643,115(1998).[18]W.F.J.Müller,Phys.Rev.C56,2873(1997).[19]J.Pan and S.Das Gupta,Phys.Lett.B344,29(1995);Phys.Rev.C51,1384(1995);Phys.Rev.Lett.80,1182 (1998);S.Das Gupta et al.,Nucl.Phys.A621,897(1997).[20]J.Pan and S.Das Gupta,Phys.Rev.C57,1839(1998).[21]F.Gullminelli and P.Chomaz,Phys.Rev.Lett.82,1402(1999).[22]Y.G.Ma et al.,Eur.Phys.J.A4,217(1999);J.Phys.G25,1559(1999).[23]S.Ray et al.,Phys.Lett.B392,7(1997).[24]A.Coniglio and E.Klein,J.Phys.A13,2775(1980).[25]L.Beaulieu et al.,Phys.Rev.C54,R973(1996).[26]D.Stauffer,Introduction to Percolation Theory(Taylor&Francis,London,1985).3620。

相关文档
最新文档