多目标优化PPT课件
合集下载
《多目标规划实例》课件

PART 02
多目标规划的基本概念
REPORTING
目标函数
01
目标函数是用来衡量规划方案效果的数学表达式, 通常表示为决策变量的函数。
02
在多目标规划中,目标函数可能不止一个,每个目 标函数代表一个需要优化的目标。
03
目标函数的值可以是最大化或最小化的,具体取决 于问题的要求。
约束条件
01 约束条件是限制决策变量取值范围的规则或条件 。
混合智能算法
结合人工智能、机器学习等先进技术,开发混合智能算法,提高多 目标规划的自动化和智能化水平。
扩展应用领域
多目标规划的应用领域将进一步扩大,涵盖经济、工程、环境、社 会等更多领域,为解决实际问题提供更多思路和方法。
如何更好地应用多目标规划解决实际问题
强化理论支撑
深入研究多目标规划的基本理论,提高其理论水平和科学性,为实际应用提供更有力的理论支撑。
总结词
资源分配问题是一个多目标规划的经典问题,旨在合理分配有限资源以达到多 个目标最优。
详细描述
资源分配问题通常涉及多个相互冲突的目标,如最大化效益、最小化成本、确 保资源公平分配等。通过多目标规划方法,可以找到一种权衡方案,使得各个 目标在不同程度上得到优化。
实例二:生产计划问题
总结词
生产计划问题是多目标规划在制造业中的实际应用,旨在平衡生产成本、交货期和产品质量等多个目 标。
解释
在多目标规划中,决策者需要权衡多 个目标之间的利益关系,并找到一个 平衡点,使得所有目标都能得到相对 最优的解。
多目标规划的重要性
解决现实问题
多目标规划能够解决许多现实问题, 如资源分配、项目评估等,这些问题 通常涉及到多个相互冲突的目标。
多目标规划的基本概念
REPORTING
目标函数
01
目标函数是用来衡量规划方案效果的数学表达式, 通常表示为决策变量的函数。
02
在多目标规划中,目标函数可能不止一个,每个目 标函数代表一个需要优化的目标。
03
目标函数的值可以是最大化或最小化的,具体取决 于问题的要求。
约束条件
01 约束条件是限制决策变量取值范围的规则或条件 。
混合智能算法
结合人工智能、机器学习等先进技术,开发混合智能算法,提高多 目标规划的自动化和智能化水平。
扩展应用领域
多目标规划的应用领域将进一步扩大,涵盖经济、工程、环境、社 会等更多领域,为解决实际问题提供更多思路和方法。
如何更好地应用多目标规划解决实际问题
强化理论支撑
深入研究多目标规划的基本理论,提高其理论水平和科学性,为实际应用提供更有力的理论支撑。
总结词
资源分配问题是一个多目标规划的经典问题,旨在合理分配有限资源以达到多 个目标最优。
详细描述
资源分配问题通常涉及多个相互冲突的目标,如最大化效益、最小化成本、确 保资源公平分配等。通过多目标规划方法,可以找到一种权衡方案,使得各个 目标在不同程度上得到优化。
实例二:生产计划问题
总结词
生产计划问题是多目标规划在制造业中的实际应用,旨在平衡生产成本、交货期和产品质量等多个目 标。
解释
在多目标规划中,决策者需要权衡多 个目标之间的利益关系,并找到一个 平衡点,使得所有目标都能得到相对 最优的解。
多目标规划的重要性
解决现实问题
多目标规划能够解决许多现实问题, 如资源分配、项目评估等,这些问题 通常涉及到多个相互冲突的目标。
多目标规划教材(PPT 116张)

O
f2 A5 A4 A1 A3 A2 f1 A6 A7
多目标规划的解集
绝对最优解
* * 设 x* R ,如果对于 x R 均有 F x F x ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n 1, p 2 时绝对最优解的示意图。
多目标规划问题的典型实例
再由约束条件,该厂每周的生产时间为 40h,故: x1 x2 x3 40 且需要满足能耗不得超过 20t 标准煤: 0.48x1 0.65x2 0.42 x3 20 上面是对生产过程的约束,再考虑销售过程,由于数据表中给出了三种产品每周 的最大销量,故我们必须限制生产数量小于最大销量才能使得成本最低,即满足下 述约束条件:
qA1 20x1 700; qA2 25x2 800; qA3 15x3 500
同时考虑到生产时间的非负性,总结得到该问题的数学模型为:
max min s.t.
f1 x 500 x1 400 x2 600 x3 f 2 x 0.48 x1 0.65 x2 0.42 x3 x1 x2 x3 40 0.48 x1 0.65 x2 0.42 x3 20 20 x1 700 25 x2 800 15 x3 500 x1 , x2 , x3 0
多目标规划的解集
直观理解
对单目标规划来说,给定任意两个可行解 x1 , x2 R ,通过比较它们的目标函数 值 f x1 , f x2 就可以确定哪个更优。 但对于多目标规划而言, 给定任意两个可行解
f2 A5 A4 A1 A3 A2 f1 A6 A7
多目标规划的解集
绝对最优解
* * 设 x* R ,如果对于 x R 均有 F x F x ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n 1, p 2 时绝对最优解的示意图。
多目标规划问题的典型实例
再由约束条件,该厂每周的生产时间为 40h,故: x1 x2 x3 40 且需要满足能耗不得超过 20t 标准煤: 0.48x1 0.65x2 0.42 x3 20 上面是对生产过程的约束,再考虑销售过程,由于数据表中给出了三种产品每周 的最大销量,故我们必须限制生产数量小于最大销量才能使得成本最低,即满足下 述约束条件:
qA1 20x1 700; qA2 25x2 800; qA3 15x3 500
同时考虑到生产时间的非负性,总结得到该问题的数学模型为:
max min s.t.
f1 x 500 x1 400 x2 600 x3 f 2 x 0.48 x1 0.65 x2 0.42 x3 x1 x2 x3 40 0.48 x1 0.65 x2 0.42 x3 20 20 x1 700 25 x2 800 15 x3 500 x1 , x2 , x3 0
多目标规划的解集
直观理解
对单目标规划来说,给定任意两个可行解 x1 , x2 R ,通过比较它们的目标函数 值 f x1 , f x2 就可以确定哪个更优。 但对于多目标规划而言, 给定任意两个可行解
多目标决策分析ppt课件 (2)

如何解决?
多目标决策问题
解:设甲级糖果数量为x1,乙级糖果数量为x2时,有:
60 x1 40 x2 1000
x1 x1
x2 10
1
5
x1 0 , x 2 0
在研究以什么为“最佳”的衡量标准时,“筹备
小组”的成员们意见可能会发生分歧,其原因是
他们会提出各种各样的目标来。例如:
多目标决策问题
f (0) i
max xR
fi (x)
相应的最优解记为 x(i),i 1, ,m, 其中,R是解的约束集合。
R { x |g ( x ) 0 } g ( x ,) { g 1 ( x ) ,,g l( x )T }
当这些x(i)都相同时,这些x(i)都就作为多目标问题的共同最
优解。但一般不会全相同,但它们都是非劣解。下面将多
2.2 非劣解的概念
引例:从五个人中选出身高最高且体重最重的人。
f2
×③ ×④ ×⑤
×② ×①
0
f1
①②为劣解,在多目标决策中应舍去。
③④⑤三点中各有一个指标优越,无法确定优劣,而
且又没有比他们更好的个体,所以③④⑤就被称为多目标
规划问题的非劣解或有效解,其余都称为劣解。
非劣解的概念
设同时考虑m个目标f1(x),…,fm(x),并要求越大越好。在 不考虑其它目标时,记第i个目标的最优值为
R=[0, 2],求 V— max F ( x) xR
非劣解图示
f2
f1
解 : 易求得 x(1) 1, x(2) 1.5,
这时多目标问题无最优解,而x∈[1,1.5]都
是非劣解,如上图所示。
主要内容
1 多目标决策问题 2 多目标优化模型 3 多目标优化方法
多目标决策问题
解:设甲级糖果数量为x1,乙级糖果数量为x2时,有:
60 x1 40 x2 1000
x1 x1
x2 10
1
5
x1 0 , x 2 0
在研究以什么为“最佳”的衡量标准时,“筹备
小组”的成员们意见可能会发生分歧,其原因是
他们会提出各种各样的目标来。例如:
多目标决策问题
f (0) i
max xR
fi (x)
相应的最优解记为 x(i),i 1, ,m, 其中,R是解的约束集合。
R { x |g ( x ) 0 } g ( x ,) { g 1 ( x ) ,,g l( x )T }
当这些x(i)都相同时,这些x(i)都就作为多目标问题的共同最
优解。但一般不会全相同,但它们都是非劣解。下面将多
2.2 非劣解的概念
引例:从五个人中选出身高最高且体重最重的人。
f2
×③ ×④ ×⑤
×② ×①
0
f1
①②为劣解,在多目标决策中应舍去。
③④⑤三点中各有一个指标优越,无法确定优劣,而
且又没有比他们更好的个体,所以③④⑤就被称为多目标
规划问题的非劣解或有效解,其余都称为劣解。
非劣解的概念
设同时考虑m个目标f1(x),…,fm(x),并要求越大越好。在 不考虑其它目标时,记第i个目标的最优值为
R=[0, 2],求 V— max F ( x) xR
非劣解图示
f2
f1
解 : 易求得 x(1) 1, x(2) 1.5,
这时多目标问题无最优解,而x∈[1,1.5]都
是非劣解,如上图所示。
主要内容
1 多目标决策问题 2 多目标优化模型 3 多目标优化方法
多目标规划方法讲义(PPT 76张)

s.t. ( X ) G
多目标规划问题的求解不能只追求一个目标的最优化 (最大或最小),而不顾其它目标。
对于上述多目标规划问题,求解就意味着需要做出如下 的复合选择:
▲ 每一个目标函数取什么值,原问题可以得到最满意 的解决? ▲ 每一个决策变量取什么值,原问题可以得到最满意 的解决 ?
非劣解可以用图1说明。
1( X ) 0 2( X ) 0 ( X ) ( X ) 0 m
在求解之前,先设计与目标函数相应的一组目标值理想 化的期望目标 fi* ( i=1,2,…,k ) , 每一个目标对应的权重系数为 i* ( i=1,2,…,k ) , 再设 为一松弛因子。 那么,多目标规划问题就转化为:
T [ x , x , , x ] 式中: X 为决策变量向量。 1 2 n
缩写形式:
max(min) Z F ( X )
(1) (2)
s . t .
( X ) G
有n个决策变量,k个目标函数, m个约束方程,
则:
Z=F(X) 是k维函数向量, (X)是m维函数向量;
G是m维常数向量;
在很多实际问题中,例如经济、管理、军事、科学和工程 设计等领域,衡量一个方案的好坏往往难以用一个指标来 判断,而需要用多个目标来比较,而这些目标有时不甚协 调,甚至是矛盾的。因此有许多学者致力于这方面的研究。
1896年法国经济学家 V. 帕雷托最早研究不可比较目标的优 化问题,之后,J.冯· 诺伊曼、H.W.库恩、A.W.塔克、A.M. 日夫里翁等数学家做了深入的探讨,但是尚未有一个完全 令人满意的定义。
????minx21kifxfiii??????210mixi??????????????????????????????minmin21xfxfxfxfk???????????????????????????????????????????????????????????????00021??xxxxm??????16方法五目标规划模型目标规划法需要预先确定各个目标的期望值fi同时给每一个目标赋予一个优先因子和权系数假定有k个目标l个优先级lk目标规划模型的数学形式为
多目标规划问题的求解不能只追求一个目标的最优化 (最大或最小),而不顾其它目标。
对于上述多目标规划问题,求解就意味着需要做出如下 的复合选择:
▲ 每一个目标函数取什么值,原问题可以得到最满意 的解决? ▲ 每一个决策变量取什么值,原问题可以得到最满意 的解决 ?
非劣解可以用图1说明。
1( X ) 0 2( X ) 0 ( X ) ( X ) 0 m
在求解之前,先设计与目标函数相应的一组目标值理想 化的期望目标 fi* ( i=1,2,…,k ) , 每一个目标对应的权重系数为 i* ( i=1,2,…,k ) , 再设 为一松弛因子。 那么,多目标规划问题就转化为:
T [ x , x , , x ] 式中: X 为决策变量向量。 1 2 n
缩写形式:
max(min) Z F ( X )
(1) (2)
s . t .
( X ) G
有n个决策变量,k个目标函数, m个约束方程,
则:
Z=F(X) 是k维函数向量, (X)是m维函数向量;
G是m维常数向量;
在很多实际问题中,例如经济、管理、军事、科学和工程 设计等领域,衡量一个方案的好坏往往难以用一个指标来 判断,而需要用多个目标来比较,而这些目标有时不甚协 调,甚至是矛盾的。因此有许多学者致力于这方面的研究。
1896年法国经济学家 V. 帕雷托最早研究不可比较目标的优 化问题,之后,J.冯· 诺伊曼、H.W.库恩、A.W.塔克、A.M. 日夫里翁等数学家做了深入的探讨,但是尚未有一个完全 令人满意的定义。
????minx21kifxfiii??????210mixi??????????????????????????????minmin21xfxfxfxfk???????????????????????????????????????????????????????????????00021??xxxxm??????16方法五目标规划模型目标规划法需要预先确定各个目标的期望值fi同时给每一个目标赋予一个优先因子和权系数假定有k个目标l个优先级lk目标规划模型的数学形式为
《多目标规划模型》课件

02
权重法的主要步骤包括确定权重、构造加权目标函数、求解加权目标函数,最 后得到最优解。
03
权重法的优点是简单易行,适用于目标数量较少的情况。但缺点是主观性强, 依赖于决策者的经验和判断。
约束法
1
约束法是通过引入约束条件,将多目标问题转化 为单目标问题,然后求解单目标问题得到最优解 。
2
约束法的主要步骤包括确定约束条件、构造约束 下的目标函数、求解约束下的目标函数,最后得 到最优解。
多目标规划模型
目录
• 多目标规划模型概述 • 多目标规划模型的建立 • 多目标规划模型的求解方法 • 多目标规划模型的应用案例 • 多目标规划模型的未来发展与挑战
01 多目标规划模型概述
定义与特点
定义
多目标规划模型是一种数学优化方法 ,用于解决具有多个相互冲突的目标 的问题。
特点
多目标规划模型能够权衡和折衷多个 目标之间的矛盾,寻求满足所有目标 的最佳解决方案。
02 多目标规划模型的建立
确定目标函数
01
目标函数是描述系统或决策问题的期望结果的数学表达 式。
02
在多目标规划中,目标函数通常包含多个目标,每个目 标对应一个数学表达式。
03
目标函数的确定需要考虑问题的实际背景和决策者的偏 好。
确定约束条件
01 约束条件是限制决策变量取值范围的限制条件。 02 在多目标规划中,约束条件可以分为等式约束和
谢谢聆听
模型在大数据和人工智能时代的应用前景
要点一
总结词
要点二
详细描述
随着大数据和人工智能技术的快速发展,多目标规划模型 在许多领域的应用前景广阔。
大数据时代带来了海量的数据和复杂的问题,这为多目标 规划模型提供了广阔的应用场景。例如,在金融领域,多 目标规划可以用于资产配置和风险管理;在能源领域,多 目标规划可以用于能源系统优化和碳排放管理。同时,随 着人工智能技术的不断发展,多目标规划模型有望与机器 学习、深度学习等算法相结合,共同推动相关领域的发展 。
多目标优化设计方法PPT39页

间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
7.2 统一目标函数法(综合目标法)
一、基本思想 统一目标函数法就是设法将各分目标函数
f1(X),f2(X),…,fl(X)统一到一个新构成的总的目标函数 f(X), 这样就把原来的多目标问题转化为一个具有统— 目标函数的单目标问题来求解.
7.1 概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例: 物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求: 各齿轮体积总和 f1(X ) 尽可能小
降低成本
各传动轴间的中心距总和 f2 (X ) 尽可能小 使变速箱结构紧凑。
合理选用材料
使总成本 f3 (X ) 尽可能小。
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
对于多目标优化问题,任何两个解不一定能比较其 优劣;
多目标优化问题得到的可能只是非劣解(有效解), 而非劣解往往不止一个,需要在多个非劣解中找出一个最 优解。
7.1 概述(续)
三、多目标优化问题的特点及解法(续) 2、解法:
直接法: 直接求出非劣解,然后再选择较好的解
将多目标优化问题转化为单目标优化问题
多目标规划方法讲义(PPT42张)

max Z ( X )
s . t .
(1)
( X ) G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i 来反映原问题中各目标函数在总体目标中的权重,即:
max i i
i 1 k
( x , x , x ) g ( i 1 , 2 , , m ) i 1 2 n i
x d d 200 1 d d 0( j 1 . 2 . 3 ) j, j x d d 250 2
2 3
2 3
若规定3600的钢材必须用完,原式9 x1 +4 x2 ≤3600 x 4 x d d 3600 d , d 0 则变为 9 1 2 4 4 4 4
1( X ) 0 2( X ) 0 ( X ) ( X ) 0 m
在求解之前,先设计与目标函数相应的一组目标值理想 化的期望目标 fi* ( i=1,2,…,k ) , 每一个目标对应的权重系数为 i* ( i=1,2,…,k ) , 再设 为一松弛因子。 那么,多目标规划问题就转化为:
在一次决策中,实现值不可能既超过目标值又未达 到目标值,故有 d+× d- =0,并规定d+≥0, d-≥0
当完成或超额完成规定的指标则表示:d+≥0, d-=0 当未完成规定的指标则表示: d+=0, d-≥0 当恰好完成指标时则表示: d+=0, d-=0 ∴ d+× d- =0 成立。
2、目标约束和绝对约束
对于由绝对约束转化而来的目标函数,也照上述处理即 可。
二 多目标规划求解
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
s . t .
(1)
( X ) G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i 来反映原问题中各目标函数在总体目标中的权重,即:
max i i
i 1 k
( x , x , x ) g ( i 1 , 2 , , m ) i 1 2 n i
x d d 200 1 d d 0( j 1 . 2 . 3 ) j, j x d d 250 2
2 3
2 3
若规定3600的钢材必须用完,原式9 x1 +4 x2 ≤3600 x 4 x d d 3600 d , d 0 则变为 9 1 2 4 4 4 4
1( X ) 0 2( X ) 0 ( X ) ( X ) 0 m
在求解之前,先设计与目标函数相应的一组目标值理想 化的期望目标 fi* ( i=1,2,…,k ) , 每一个目标对应的权重系数为 i* ( i=1,2,…,k ) , 再设 为一松弛因子。 那么,多目标规划问题就转化为:
在一次决策中,实现值不可能既超过目标值又未达 到目标值,故有 d+× d- =0,并规定d+≥0, d-≥0
当完成或超额完成规定的指标则表示:d+≥0, d-=0 当未完成规定的指标则表示: d+=0, d-≥0 当恰好完成指标时则表示: d+=0, d-=0 ∴ d+× d- =0 成立。
2、目标约束和绝对约束
对于由绝对约束转化而来的目标函数,也照上述处理即 可。
二 多目标规划求解
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
多目标优化方法及实例解析报告PPT78页

44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
4脑。—— 玛丽·佩蒂博恩·普尔
多目标优化方法及实例解析报告
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
4脑。—— 玛丽·佩蒂博恩·普尔
多目标优化方法及实例解析报告
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。