高数公式大全

合集下载

高数公式(精简版)

高数公式(精简版)

高数公式集萃一、极限重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7) (8)lim arc cot 0x x →∞=lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10) (11)lim x x e →+∞=∞0lim 1xx x +→= 二、常用等价无穷小关系(0x →)(1)sin x x (2)tan x x (3)arcsin x x (4)arctan x x (5)211cos 2x x − (6)()ln 1x x + (7) (8) (9)1x e − x a 1ln x a x − ()11x x ∂+−∂三、导数的四则运算法则(1) (2)()u v u v ′′±=±′()uv u v uv ′′′=+ (3)2u u v u v v ′′′−⎛⎞=⎜⎟⎝⎠v 四、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− x ⑼()xxe ′⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x ′=−⋅e=⑽() ⑾()ln xxaa′=a 1ln x x ′= ⑿()1log ln x a x a′=⒀()arcsin x ′=⒁()arccos x ′= ⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x′=−+(17)′=五、微分运算法则⑴ ⑵ ⑶()d u v du dv ±=±()d cu cdu =()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠六、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d xxdx μμμ−=()sin cos d x xd =x x x⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x x ⑺ ⑻ ⑼()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅()xxd e e dx =⑽ ⑾()ln x x d a a adx =()1ln d x dx x =⑿()1log ln x a d dx x a=⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+ 七、下列常用凑微分公式八、中值定理与导数应用:拉格朗日中值定理。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高数公式大全

高数公式大全

高等数学公式总结第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:s i n s i n 2s i n c o s22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

高数公式大全

高数公式大全

高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->-⇔11()f x NM N>--.8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m a x m ax ()(),()(),()2bf xf f xf p f q a=-=;[]q p ab x ,2∉-=,{}max max ()(),()f x f p f q =,{}min min()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}m i n()m i n (),()f x fp f q =,若[]q p ab x ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是m in (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()m an f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fk y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)mn a =(0,,a m n N *>∈,且1n >). (2)1m nmnaa -=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mna a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.36.设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩ 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-. sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos 34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b c R ABC===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-. 53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)O A B S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos x x y y θ+=(a =11(,)x y ,b =22(,)x y ). 64.平面两点间的距离公式,A B d=||AB ==(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12P P PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121O P O P O P λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+).67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''O P O P P P ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为A B C ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为A B C ∆的外心222O A O B O C ⇔== .(2)O 为A B C ∆的重心0OA OB OC ⇔++=.(3)O 为A B C ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为A B C∆的内心0aOA bOB cOC ⇔++=.(5)O 为A B C ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)a x b x c ++><或2(0,40)a ba c ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式当a> 0时,有22x a x aa x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x aaf xg x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aaf xg x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离||Ax By C d ++=(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y D x Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 93.椭圆22221(0)x y a b ab +=>>焦半径公式 )(21cax e PF +=,)(22x c ae PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b ab+=>>的外部22221x y a b ⇔+>.95. 椭圆的切线方程 (1)椭圆22221(0)x y a b ab+=>>上一点00(,)P x y 处的切线方程是00221x x y y ab+=.(2)过椭圆22221(0)x y a b ab+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab+=.(3)椭圆22221(0)x y a b ab+=>>与直线0A x B y C ++=相切的条件是2222Aa B bc+=. 96.双曲线22221(0,0)x y a b ab-=>>的焦半径公式21|()|aPF e x c =+,22|()|aPF e x c=-.97.双曲线的内外部 (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)xya b a b -=>>的外部22221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by a x ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-bya x有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b ab-=>>上一点00(,)P x y 处的切线方程是00221x x y y ab-=.(2)过双曲线22221(0,0)x y a b ab-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab-=.(3)双曲线22221(0,0)x y a b ab-=>>与直线0A x B y C ++=相切的条件是2222A aB b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p C F x =+.过焦点弦长p x x p x p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x aa -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b aa--;(2)焦点的坐标为241(,)24b ac b aa-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221xya kb k+=--,其中22max{,}k a b <.当22m in{,}k a b >时,表示椭圆; 当2222m in{,}m ax{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =或1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A BA B++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy C y D x Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y y A x x B C y y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)O P t O A t O B =-+.||AB CD ⇔AB、CD 共线且A B C D 、不共线⇔AB tCD = 且A B C D 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使M P x M A y M B =+,或对空间任一定点O ,有序实数对,x y ,使O P O M x M A y M B =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z O C=++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB、A C 共面⇔A D x A B y A C =+ ⇔(1)O D x y O A xO B yO C =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使O P xO A y O B z O C =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则 a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体A B C D 中, A C 与BD 所成的角为θ,则 2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若A B C ∆所在平面若β与过若AB 的平面α成的角θ,另两边A C ,B C 与平面α成的角分别是1θ、2θ,A B 、为A B C ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若A B C ∆所在平面若β与过若AB 的平面α成的角θ,另两边A C ,B C 与平面α成的角分别是1θ、2θ,''A B 、为A B O ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB ==.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA,向量b =P Q ).136.异面直线间的距离||||C D n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =d =d ='E AAF ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,A F n =,E F d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos SS θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E m V =.146.球的半径是R ,则 其体积343V R π=,其表面积24S R π=. 147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 12,4.148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高). 13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+; (2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A m A -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m nC=mn m mA A=mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C . 155.组合恒等式 (1)11mm n nn m C C m --+=;(2)1m mn n nC C n m -=-;(3)11m m nn n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C . (6)nn n r n n n n C C C C C 2210=++++++ .(7)14205312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n n n n n n n nC C C C .(9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系mmn n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)。

高数公式大全

高数公式大全

高等数学公式汇总第一章一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos )cos()]21sin sin )cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x x x xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x -----==++==±+-+===+-双曲正弦双曲余弦;反双曲余弦双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++= 22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,lim 1n a >=;lim 1n →∞=ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan ;1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x na x a e x x ax x x--++++3、连续:定义:00lim 0;lim ()()x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或第二章导数与微分1、基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (co t )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ) (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====-222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n xn x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑ 3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

高数公式大全

高数公式大全

高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin coscos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;lim 1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

高数微积分基本公式大全

高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。

高数公式一览

高数公式一览

极限的运算0sin lim=∞→x x x 1s i n l i m 0=→x x x n n n)11(lim +∞→=e导数常用等价无穷小量sinx ~x tanx ~x e x -1~x ln(1+x)~x1-cosx ~22x 11-+nx ~n x a x -1~xlnaarctanx ~arcsinx ~x导数定义)(x f x x )f(x f(x)x x Δx )f(x Δx)f(x Δx 0000lim 000lim'=--→=-+→ 导数公式()a aa xxln =' ()ax x a ln 1log ='()x x 2sec tan =' ()x x 2csc cot -=' ()x x x tan sec sec ='()x x c o t c s c c s c -='()211arcsin xx -='()211arccos xx --='()211arctan x x +='()211c o t xx a r c +-='复合函数求导 [])((x f y ϕ= 若)(u f y =;)(x u ϕ=均可导则[])((x f y ϕ=可导,且x u x u y y ''='参数方程的导数⎩⎨⎧==)()(t y t x φϕ t t x x dtdx dt dy xx y y dxdy y '''=''==')( 拉格朗日中值定理))(()()(a b f a f b f -'=-ξ罗比达法则)()(lim)()(lim ,00x g x f x g x f ''=∞∞不定式对于 求极值的方法)(0x f '=0若)(0x f ''>0 则f (x 0)极小值)(0x f ''<0 则f (x 0)极大值图像的凹凸对于y=f (x)在(a b)上有是可能拐点或不存在凸的则凹的则 0)()( 0)()( 0)(=''<''>''x f x f x f x f x f不定积分Ca x a x a a x dx Cx x dx++-=-+=⎰⎰ln 2tan cos 222第一类换元积分法()[]()⎰'dx x x f ϕϕ=()[]()x d x f ϕϕ⎰第二类换元积分法⎰⎰−−→−=)()]([)()(t d t f du u f t u ϕϕϕ=⎰'dt t t f )()]([ϕϕ=F (t)+c =c t F +-)]([ϕ 常用变量替换nb ax + 令t =n b ax + 1n x ,2nx 令x=n x22x a -令x=a sint 利用sin 2t+cos 2t=122a x +令x=a tant 利用1+tan 2t=sec 2t 22a x -令x=a sect 利用1+tan 2t=sec 2t分部积分法⎰⎰'-='vdx u uv dx v u常见选用形式)(arctan arcsin ln arctan arcsin ln )(sin cos )(cos sin )(1x dP x x x dx x x x x P x x e d x P dx x x e x P n n x nx n +⎰⎰⎰⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ 定积分变上限函数 若f (x)连续则 ⎰xa)(dt t f 可导且有[⎰xa)(dt t f ]′=f (x)(⎰ax)(dt t f )′=-f (x)x dt t f '⎪⎭⎫ ⎝⎛⎰)(x a )(ϕ=[])()(x x f ϕϕ' N-L 公式⎰ba)(dx x f =abx F )(=F (b)-F (a)奇偶函数积分性质 若f(x)为奇函数 则⎰aadx x f -)(=0若f(x)为偶函数 则⎰a adx x f -)(=2⎰adx x f 0)(奇+奇=奇 偶+偶=奇奇×奇=偶 偶×偶=偶 奇×偶=奇 求旋转体体积 y=(x)在[a,b]dV=πf 2(x)dx V=⎰badV =⎰badx x f )(2π空间解析几何 两点间距离M 1(x 1,y 1,z 1) M 2(x 2,y 2,z 2) │M 1 M 2│=212212212)()()(z z y y x x -+-+-两向量关系→a ={ a x a y a z } →b ={ b x b y b z }→a ∥→b ⇔x x b a =y y b a =zzb a →a ⊥→b = a x b x +a y b y +a z b z =0矢量的数量积性质→a ·→b =a x b x +a y b y +a z b z →a ·→b =→b ·→a →a (→b +→c )=→a →b +→a →c矢量的矢量积性质→a ×→b =zy x z y x b b b a a a①→a ∥→b ⇔→a ×→b = ②→a ×→b =-→b ×→a③→a ×(→b ×→c )=→a ×→b +→a ×→c=S 平行四边形 平面与直线 平面方程M 0 (x 0 , y 0 , z 0 )={A B C} (法向量)M (x , y , z)A(x-x 0)+B(y-y 0)+C(z-z 0)=0 (点法式方程) Ax+By+Cz+D=0 (一般式方程)当A=0 平面平行x 轴,D=0 平面过原点a x +b y +cz=1 (截距式方程) 平面的位置关系A 1x+B 1y+C 1z+D 1=0 A 2x+B 2y+C 2z+D 2=0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧=++⇔===⇔0cos 212121212121C C B B A A C C B B A A 垂直夹角平行θ 点到平面距离d=222000A CB A DCz By x +++++直线方程M 0 (x 0 , y 0 , z 0 )={l , m , n } 方向向量M 0={x-x 0 ,y-y 0 ,z-z 0}①l x x 0-=m y y 0-=nz z 0-=t 标准方程 对称方程 点向式方程②⎪⎩⎪⎨⎧+=+=+=ntz z m t y y lt x x 000 参数式 ③⎩⎨⎧=+++=+++0022221111D z C x B x A D z C x B x A 一般式={A 1 B 1 C 1}×{A 2 B 2 C 2}直线与直线的位置关系⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧==++==212121212121cos 0n n m m l l n n m m l l θ夹角直角不平行平行 平面与直线关系⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧=++=+++⎪⎪⎩⎪⎪⎨⎧=-==0A 0D A )cos(A 0002Cn Bm l Cz By x n C m B l 重合平行垂直相交θπ 简单的二次曲面 特殊曲面 球面方程圆心(x 0 ,y 0 ,z 0) 半径为r (x-x 0)2+(y-y 0)2+(z-z 0)2=r 2 椭球面方程22a x +22b y +22c z =1 柱面方程 φ (y , x)=0 ① x 2+y 2=1 圆柱面方程 ② y=x 2 抛物面方程③ 22a y -22bx =1 双曲柱面方程旋转曲面方程 f (y, z)⎪⎩⎪⎨⎧+±→22yx y z z 不变轴旋转,绕 z=221y x -- 上半单位球面x 2+y 2=1 圆柱面 z=x 2+y 2 旋转抛物面z=22y x + 上半锥面多元函数微分学 隐函数求导设F(x , y)=0 x y '=yF x F∂∂∂∂-=y x F F ''-设F(x , y , z)=0y z F z F x z F z F F F zy F F z x ''-=-=∂∂''-=-=∂∂∂∂∂∂∂∂空间曲面的切平面及法线F(x , y , z)=0 M 0(x 0 , y 0 , z 0)n ={x F ∂∂,y F ∂∂,zF ∂∂}0M 曲面法向量切平面()()()0z F y F x F0M 0M 0M 000=-∂∂+-∂∂+-∂∂z z y y x x 法线xFx x ∂∂-0=yF y y ∂∂-0=zF z z ∂∂-0二元函数z=f (x,y)的极值①⎩⎨⎧==∂∂∂00z x z 驻点②A=22x z ∂∂ B=y x z ∂∂∂2 C=22yz ∂∂③B 2-AC <0 有极值⎩⎨⎧小值大值有极 0>A 有极 0<AB 2-AC >0 无极值 B 2-AC=0 失效 二重积分⎪⎪⎩⎪⎪⎨⎧、格林公式、极坐标转换、变换积分次序、直接积分二重积分4321 极坐标 包含原点⎰⎰D)sin ,cos (θθθrdrd r r f=rdr r r f d r )sin ,cos ()(020θθθθπ⎰⎰不包含原点rdr r r f d r r )sin ,cos ()()(21θθθθθβα⎰⎰曲线积分格林公式δd y Px Q Qdy Pdx D⎰⎰⎰∂∂-∂∂=++)(L 积分曲线与路径无关yPx Q ∂∂=∂∂ 级数⎩⎨⎧≤-⎪⎩⎪⎨⎧≤<-=∑∑∑∞=∞=∞=时收敛>时发散级数)(发散(调和级数)当发散当(等比级数) 1 1 1 11 1 1 110p p p nn q q q aaq n p n n n正项级数审敛法 比值审敛法l v u n nn =∞→lim(0<l <+∞)Σu n 和Σv n 有相同的敛散性比较审敛法ρ=+∞→nn n u u 1lim0<ρ<1 Σu n 收敛 ρ>1 Σu n 发散 ρ=1 失效 交错级数 莱布尼茨定理 1、u n 大于u n-1 2、lim u n =0则Σ(-1)n-1u n 收敛 函数展开成幂级数e x=∑∞=0n !n x n=1+x+!22x +…+!n x n +…,R x ∈x -11=∑∞=0n n x =1+x+x 2…+x n +…,|x|<1 ln(1+x)= ∑∞=1n 1-n 1-n x n)( =x-22x +…+(-1)n-1n nx +…,(-1<x ≤1)收敛半径对于Σa n x n R =1lim+∞→n nn a a常微分方程 一阶微分方程 变量可分离方程dxdy=(x)(x)ϕf ⎰⎰+=C dx x f x dy)()(ϕ齐次方程dx dy =)x y (f令u=xy得y=xu则dx dy=u+x dx du f (u)= u+x dxdu一阶线性微分方程 一阶线性齐次微分方程⎰==+'-dxx P Ce y y x P y )( 0)(一阶线性非齐次微分方程⎥⎦⎤⎢⎣⎡+⎰⎰==+'⎰-C dx e x Q e y x Q y x P y dxx P dxx P )()()()()(二阶线性微分方程二阶常系数齐次线性微分方程0=+'+''qy y p y特征方程 r 2+pr+q=0(1)r 1 , r 2为相异实根 xr xr e C e C y 2121+= (2)r 为二重实根 rx e x C C y )(21+=(3)r =α ± iβ )s i n c o s (21x C x C e y xββα+= 二阶常系数非齐次线性微分方程xme x P qy y p y λ)(=+'+'' 特解 x m k e x Q x y λ)(=*其中,⎪⎩⎪⎨⎧=是二重特征根,当是单特征根,当不是特征根,当λλλ210k )(x Q m =a 0x m +a 1x m-1+…+a m-1x+a m线性代数 克莱姆法则⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++线性齐次全为线性非齐次不全为0 , 0 ,212122112222212111212111n n n n nn n n n n n n b b b b b b b x a x a x a b x a x a x a b x a x a x a1、非齐次的解nnn n nna a a a a a a a a 212222111211D = D ≠0 ⎪⎪⎩⎪⎪⎨⎧===DD n D Dn x x x2121D j 是把系数是行列式D 中第j 列元素依次用方程组右端的常数项b 1,b 2…b n 代替后得到的n 阶行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式·平方关系:sin^2 α +cos^2 α =1tan^2 α +1=sec^2 αcot^2 α +1=csc^2 α·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos α+β =cosα·cosβ-sinα·sinβcos α-β =cosα·cosβ+sinα·sinβsin α±β =sinα·cosβ±cosα·sinβtan α+β = tanα+tanβ / 1-tanα·tanβtan α-β = tanα-tanβ / 1+tanα·tanβ·三角和的三角函数:sin α+β+γ =sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos α+β+γ =cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan α+β+γ = tanα+tanβ+tanγ-tanα·tanβ·tanγ / 1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα= A^2+B^2 ^ 1/2 sin α+t ,其中sint=B/ A^2+B^2 ^ 1/2cost=A/ A^2+B^2 ^ 1/2tant=B/AAsinα+Bcosα= A^2+B^2 ^ 1/2 cos α-t ,tant=A/B·倍角公式:sin 2α =2sinα·cosα=2/ tanα+cotαcos 2α =cos^2 α -sin^2 α =2cos^2 α -1=1-2sin^2 αtan 2α =2tanα/ 1-tan^2 α·三倍角公式:sin 3α =3sinα-4sin^3 αcos 3α =4cos^3 α -3cosα·半角公式:sin α/2 =±√ 1-cosα /2cos α/2 =±√ 1+cosα /2tan α/2 =±√ 1-cosα / 1+cosα =sinα/ 1+cosα = 1-cosα /sinα·降幂公式sin^2 α = 1-cos 2α /2=versin 2α /2cos^2 α = 1+cos 2α /2=covers 2α /2tan^2 α = 1-co s 2α / 1+cos 2α·万能公式:sinα=2tan α/2 / 1+tan^2 α/2cosα= 1-tan^2 α/2 / 1+tan^2 α/2tanα=2tan α/2 / 1-tan^2 α/2·积化和差公式:sinα·cosβ= 1/2 sin α+β +sin α-βcosα·sinβ= 1/2 sin α+β -sin α-βcosα·cosβ= 1/2 cos α+β +cos α-βsinα·sinβ=- 1/2 cos α+β -cos α-β·和差化积公式:sinα+sinβ=2sin α+β /2 cos α-β /2sinα-sinβ=2cos α+β /2 sin α-β /2cosα+cosβ=2cos α+β /2 cos α-β /2cosα-cosβ=-2sin α+β /2 sin α-β /2·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα= sinα/2+cosα/2 ^2sinα+sin α+2π/n +sin α+2π*2/n +sin α+2π*3/n +……+sin α+2π* n-1 /n =0 cosα+cos α+2π/n +cos α+2π*2/n +cos α+2π*3/n +……+cos α+2π* n-1 /n =0 以及sin^2 α +sin^2 α-2π/3 +sin^2 α+2π/3 =3/2tanAtanBtan A+B +tanA+tanB-tan A+B =0三角函数的角度换算编辑本段公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin 2kπ+α =sinαcos 2kπ+α =cosαtan 2kπ+α =tanαcot 2kπ+α =cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin π+α =-sinαcos π+α =-cosαtan π+α =tanαcot π+α =cotα公式三:任意角α与 -α的三角函数值之间的关系:sin -α =-sinαcos -α =cosαtan -α =-tanαcot -α =-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin π-α =sinαcos π-α =-cosαtan π-α =-tanαcot π-α =-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin 2π-α =-sinαcos 2π-α =cosαtan 2π-α =-tanαcot 2π-α =-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin π/2+α =cosαcos π/2+α =-sinαtan π/2+α =-cotαcot π/2+α =-tanαsin π/2-α =cosαcos π/2-α =sinαtan π/2-α =cotαcot π/2-α =tanαsin 3π/2+α =-cosαcos 3π/2+α =sinαtan 3π/2+α =-cotαcot 3π/2+α =-tanαsin 3π/2-α =-cosαcos 3π/2-α =-sinαtan 3π/2-α =cotαcot 3π/2-α =tanα以上k∈Z部分高等内容编辑本段·高等代数中三角函数的指数表示由泰勒级数易得:sinx= e^ ix -e^ -ix / 2i cosx= e^ ix +e^ -ix /2 tanx= e^ ix -e^ -ix / ie^ ix +ie^ -ix泰勒展开有无穷级数,e^z=exp z =1+z/1 +z^2/2 +z^3/3 +z^4/4 +…+z^n/n +…此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:对于微分方程组 y=-y'';y=y'''',有通解Q,可证明Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

特殊三角函数值a 0` 30` 45` 60` 90`sina 0 1/2 √2/2 √3/2 1cosa 1 √3/2 √2/2 1/2 0tana 0 √3/3 1 √3 Nonecota None √3 1 √3/3 0导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹 Leibniz 公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程。

相关文档
最新文档