第八章地下水的补给与排泄
【范例一】地下水补给、径流、排泄条件

3.4.1 含水岩组与富水性1、含水岩组根据地层岩性或相似及组合特征,赋存空间等,将勘查区及其周围划分为松散岩、碎屑岩类二类含水岩组。
松散岩类含水岩组由第四系残坡积层粘土组成;碎屑岩类含水岩组由下三统,中三叠百蓬组的砂岩、泥岩、粉砂岩组成。
2、含水岩组的富水性(1)松散岩类含水岩组的富水性该类含水岩组的地下水赋存于空隙中,地下水类型为孔隙水,由于赋存空间细小,储水条件差,估富水性弱,水量贫乏。
(2)碎屑岩类含水岩组的富水性该类含水岩组的地下水赋存于砂岩,泥岩、粉砂岩构造风化裂隙中,地下水类型为构造裂隙水,赋存空间窄小,储水条件较差,根据1:20万东兰幅区域水文地质普查资料,枯水期径流模数小于3L/s.km2,泉水流量小于1L/s,为富水性弱,水量贫乏。
3.4.2 地下水补给、径流、排泄条件1、松散岩类孔隙水补给、径流、排泄条件:该型地下水补给来源为大气降水、次为碎屑岩构造裂隙水侧向补给,受大气降水、构造裂隙水侧向补给的地下水在孔隙中运动,由高处往低处运移,于低洼之处以泄流或季节性泉形式排泄于地表。
2、碎屑岩类构造裂隙水补给、径流、排泄条件:该类型地下水补给来源主要为大气降水,大气降水在山脊或斜坡通过构造风化裂隙以渗入方式补给地下水,地下水在构造风化网状裂隙中运动,顺着含水层倾斜方向,由山脊、斜坡想附近上烈溪沟底运移,于该溪沟底部和两侧以泄流或泉水形式排泄于地表,汇集而成地表,溪流,流向由东向西,最终汇入红水河。
勘查区位于碎屑岩分布区,所处地势较高,为地下水补给、径流区,滑坡后缘及中部为补给区,本次所布置ZK2、ZK5、ZK6、ZK7、ZK9钻孔未发现地下水位,在滑坡前缘附近为地下水径流区,所布置ZK1、ZK3、ZK4、ZK8钻孔均发现有地下水位,埋深3.0~5.4m,标高597~605.6m。
地下水的补给与排泄

第七章地下水的补给与排泄第一节地下水的补给含水层或含水系统从外界获得水量的过程称作补给。
补给研究包括补给来源、补给条件与补给量。
地下水补给来源有天然与人工补给。
天然补给包括大气降水、地表水、凝结水和来自其他含水层或含水系统的水;与人类活动有关的地下水补给有灌溉回归水、水库渗漏水,以及专门性的人工补给(利用钻孔)。
一、大气降水对地下水的补给(1)大气降水入渗机制松散沉积物中的降水入渗存在活塞式与捷径式两种(见图7-1):活塞式下渗是入渗水的湿锋面整体向下推进,犹如活塞的运移如图7-1(a)。
图7—1活塞式与捷径式下渗(a)活塞式下渗;(b)捷径式与活塞式下渗的结合图7—2 降水入渗过程中包气带水分分布曲线—残留含水量;—饱和含水量活塞式下渗过程:a)雨季之前()时,包气带水分分布曲线如图7—2(a)所示,近地表面水分出现亏缺。
b)雨季初期~时,入渗的降水首先补充包气带水分分布曲线的亏缺部分,如图7—2(a)和所示。
c)随着降雨的继续,多余的入渗水分开始下渗,近地表面出现高含水量带,水分分布特征如图7—2(b)时的状况;如果连续降雨高含水量带将向下推进,如果此时停止降雨,高含水量带的水分向下缓慢消散(如图7—2(b)所示)。
d)停止降雨后,理想情况下,包气带水分向下运移最终趋于稳定,不下渗也无蒸发、蒸腾时,含水层获得补给,地下水水位抬升,此时均质土包气带水分分布如图7-2(c)所示。
活塞式下渗是在理想的均质土中室内试验得出的。
实际上,从微观的角度看,并不存在均质土。
尤其是粘性土,捷径式入渗往往十分普遍。
捷径式入渗:当降雨强度较大,细小孔隙来不及吸收全部水量时,一部分雨水将沿着渗透性良好的大孔隙通道优先快速下渗,并沿下渗通道水分向细小孔隙扩散。
存在比较连续的较强降雨时,下渗水通过大孔道的捷径优先到达地下水面。
如图7-1(b)所示。
捷径式下渗与活塞式下渗比较,主要有两点不同:(a)活塞式下渗是年龄较新的水推动其下的年龄较老的水,始终是老水先到达含水层;捷径式下渗时新水可以超前于老水先到达含水层;(b)对于捷径式下渗,入渗水不必全部补充包气带水分亏缺,即可下渗补给含水层。
第8章 地下水渗流分析

非稳定流。稳定流为运动参数如流速、流向和水位等不随时间变化的地下水流动。反之,非
稳定流。绝对意义上的稳定流并不存在,常把变化微小的渗流按稳定流进行分析。地下水渗
流按运动形态可分为层流和紊流。层流指在渗流的过程中水的质点的运动是有秩序、互不混
杂的。反之,称为紊流。层流服从达西定律,紊流服从 Chezy 公式,内容详见本手册 3.3 节。
流砂是指土体中松散颗粒被地下水饱和后,由于水头差的存在动水压力即会使这些松散
颗粒产生悬浮流动的现象,如图 8-1 所示。克服流砂常采取如下措施:进行人工降水,使地
下水水位降至可能产生流砂的地层以下;设置止水帷幕如板桩或冻结法用来阻止或延长地下
水的渗径等[6][7]。
初始坡面
流砂后坡面
流砂堆积物
图 8-1 流砂破坏示意图
基坑工程中为避免流砂、管涌,保证工程安全,必须对地下水采取有效的措施。控制地
下水的措施可以从两方面进行,分为堵水措施和降排水措施,详见表 8-8。出于经济和安全 的目的,常把堵水措施与降排水措施结合使用。
基坑工程中的治水措施
表 8-8
分类
说明
钢板桩
其有效程度取决于土的渗透性、板桩的锁合效果和渗径的长度等因素
按埋藏条件分类
埋藏条件
特征
岩溶裂隙潜水 裸露型
赋存于弱岩溶化的薄层灰岩和白云岩的各种裂隙中的水,埋 动态变化复杂, 藏浅,水量丰富而集中,富水程度不均,与地表水联系密切 分布不均一,多
岩溶区 地下暗河水
地下水
由强烈差异溶蚀作用导致岩溶发育的山区中形成地下管道, 见岩溶潜水,其 地下水构成暗河(带),有一定的汇水面积和主要地下河道 矿化度低
埋藏深,地下水矿化度高
往比水平向的大几倍
水文地质学---地下水的补给与排泄

二、间歇性河流对地下水的补给过程
第七章 地下水的补给与排泄
二、间歇性河流对地下水的补给过程 汛期开始,河水浸湿包气带
并发生垂直下渗,使河下潜水 面形成水丘(图a)。
河水不断下渗,水丘逐渐抬 高与扩大,与河水联成一体 (图b)。
汛期结束,河水撤走,水丘 逐渐趋平,使一定范围内潜水 位普遍抬高(图c)。
第七章 地下水的补给与排泄
切穿隔水层的导水断层往往成为基岩含水层之间的联系通路
第七章 地下水的补给与排泄
穿越数个含水层的钻孔或止水不良的分层钻孔, 都将 人为地构成水由高水头含水层流入低水头含水层的通道。
第七章 地下水的补给与排泄
相邻含水层通过其间的弱透水层发生水量交换,称作越流。
越流经常发生于松散沉积物中,粘性土层构成弱透水层。
第七章 地下水的补给与排泄
三、大气降水与地表水作为地下水补给来源的比较
从空间分布上看,大气降水属于面状补给,范围普遍且较 均匀;地表水则可看作线状补给,局限于地表水体周边。 从时间分布比较,大气降水持续时间有限而地表水体持 续时间长,或是经常性的。在地表水体附近,地下水接受 降水及地表水补给,开采后这一补给还可加强,因此地下 水格外丰富。 从总体上说,降水量的多寡决定着一个地区地下水的丰富 程度 就其水源而言,地表水是由大气降水转化而来的,即 使对于干旱山间盆地,作为地下水主要补给来源的河水, 仍然来源于山区降水,或以冰雪形式积累起来的高山降水。
第七章 地下水的补给与排泄
根据Q=KωI,在一维流动条件下,单位水平面积弱透 水层的越流量V为:
H A HB V KI K M
K——弱透水层垂向渗透系数;
I——驱动越流的水力梯度;
HA——含水层A的水头; HB——含水层B的水头; M——弱透水层厚度(等于渗透途径)。 相邻含水层之间水头差愈大,弱透水层厚度愈小而其 垂向透水性愈好,则单位面积越流量便愈大。
水文地质学中的地下水循环过程

水文地质学中的地下水循环过程地下水循环是指水文地质学中地下水在地下环境中的循环过程。
地下水循环是地表水和大气水循环过程的延伸和补充,对维持地下水资源的供应与调控起着重要作用。
下面将对地下水循环的主要过程进行详细介绍。
地下水的形成:地下水的形成主要是通过大气降水和地表径流的入渗作用,将水分输送到地下,形成地下水。
地表径流主要是指雨水在地表流动,未被植物吸收和蒸发的水。
径流水通过渗透过程形成地下水。
地下水的补给:地下水的补给主要有两种方式:自然补给和人工补给。
自然补给主要通过大气降水和地表水的入渗作用补给地下水。
大气降水是地下水的重要补给源,是地下水循环的驱动力之一、而地表水的入渗作用是指地表水渗透到地下形成地下水而补给地下水。
人工补给是指人类活动产生的废水经过净化后引入地下层,增加地下水的含水量。
地下水的储存:地下水主要储存在地球表面以下一定深度的岩层中,这些岩层被称为含水层。
地下水的储存主要依赖于地下岩层的孔隙和裂隙中的水贮存。
地下岩层通常具有不同的透水性,透水性好的岩层被称为含水层。
地下岩层一般分为三种状态:饱和带、过渡带和不透水带。
饱和带是指岩石孔隙或裂隙中被水填充的区域,水饱和度为100%;过渡带是指饱和带上方逐渐由水饱和向气相逐渐过渡的区域;不透水带是指介于饱和带和地下水层以下,岩层中含水饱和度较低或完全无水的区域。
地下水的运动:地下水的运动是指地下水随着地表水和大气水进行水循环的运动。
地下水通过孔隙和裂隙的连通性进行流动,主要包括渗流和流通两种方式。
渗流是地下水通过水文岩层中的孔隙和裂隙,在重力的作用下,向下渗透并汇集到深层,形成水块或水冠。
流通是指地下水沿着相对连通的岩层间空隙或裂隙,由高压区流向低压区的过程。
地下水的排泄:地下水排泄通常通过泉水和井泉来实现。
泉水是地下水自然排出地表的方式,泉水包括冒泉、流泉和涌泉等形式。
井泉是人工开凿或钻探的地下水源,通过井泉可以将地下水抽取到地表供人们使用。
地下水的补给、排泄与径流

– 强径流带的意义
• 三、径流强度、居留时间和水质的关系
地下水的补给、排泄与径流
四、地下水径流量计算
1. 地下水径流模数(Mc)
• 每平方公里含水层面积上地下水的流量。升/秒·平方公里。
Mc
(一株大的植物,犹如一台生物抽水机)
成年树木的耗水 能力
饥饿草原护田对潜水位的影响
地下水的补给、排泄与径流
第三节 地下水的径流
地下水的补给、排泄与径流
一、径流方向、强度的影响因素
• 径流的定义:地下水由补给区向排泄区流动的过程称作径 流。 最简单的情况下,含水层自一个集中补给区流向集 中排泄区,具有单一径流方向。
•2、标准退水曲线法 –具体步骤: •确定标准退水线:图5-30 •确定洪峰段 •确定起涨点A和退水点B •将标准退水线绘于过程线上(图5-29)求出基流
–适用:河流与潜水无直接水力联系、地下水径流不受河水涨落影响。 –优点:一定程度反映了地下水泄流规律
•3、库捷林分割法(图5-31) –适用:河水与潜水有直接水力联系 –原理:枯水期,河流由地下水泄流组成,洪水期,地下水泄 流为零。
地下水的补给、排泄与径流
对于潜水来说, 山区地下水的 循环属于渗 入—径流型
干旱半干旱地区地形低平的细土堆积平原,径流很弱。 属于渗入—蒸发型
地下水的补给、排泄与径流
•径流强度
• 可用单位时间通过单位断面的流量表示,即以渗透流速 衡量。
• 根据达西定律V=KI 故径流强度与 含水层的透水性成正比 补绐区及排泄区之间的水位差成正比 与补给区到排泄区的距离成反比 与含水系统的构造有关 • 构造开启程度,图5-36 • 断层的导水性,图5-37
地下水的补给与排泄

第七章地下水的补给与排泄第一节地下水的补给含水层或含水系统从外界获得水量的过程称作补给。
补给研究包括补给来源、补给条件与补给量。
地下水补给来源有天然与人工补给。
天然补给包括大气降水、地表水、凝结水和来自其他含水层或含水系统的水;与人类活动有关的地下水补给有灌溉回归水、水库渗漏水,以及专门性的人工补给(利用钻孔)。
一、大气降水对地下水的补给(1)大气降水入渗机制松散沉积物中的降水入渗存在活塞式与捷径式两种(见图7-1):活塞式下渗是入渗水的湿锋面整体向下推进,犹如活塞的运移如图7-1(a)。
图7—1活塞式与捷径式下渗(a)活塞式下渗;(b)捷径式与活塞式下渗的结合图7—2 降水入渗过程中包气带水分分布曲线—残留含水量;—饱和含水量活塞式下渗过程:a)雨季之前()时,包气带水分分布曲线如图7—2(a)所示,近地表面水分出现亏缺。
b)雨季初期~时,入渗的降水首先补充包气带水分分布曲线的亏缺部分,如图7—2(a)和所示。
c)随着降雨的继续,多余的入渗水分开始下渗,近地表面出现高含水量带,水分分布特征如图7—2(b)时的状况;如果连续降雨高含水量带将向下推进,如果此时停止降雨,高含水量带的水分向下缓慢消散(如图7—2(b)所示)。
d)停止降雨后,理想情况下,包气带水分向下运移最终趋于稳定,不下渗也无蒸发、蒸腾时,含水层获得补给,地下水水位抬升,此时均质土包气带水分分布如图7-2(c)所示。
活塞式下渗是在理想的均质土中室内试验得出的。
实际上,从微观的角度看,并不存在均质土。
尤其是粘性土,捷径式入渗往往十分普遍。
捷径式入渗:当降雨强度较大,细小孔隙来不及吸收全部水量时,一部分雨水将沿着渗透性良好的大孔隙通道优先快速下渗,并沿下渗通道水分向细小孔隙扩散。
存在比较连续的较强降雨时,下渗水通过大孔道的捷径优先到达地下水面。
如图7-1(b)所示。
捷径式下渗与活塞式下渗比较,主要有两点不同:(a)活塞式下渗是年龄较新的水推动其下的年龄较老的水,始终是老水先到达含水层;捷径式下渗时新水可以超前于老水先到达含水层;(b)对于捷径式下渗,入渗水不必全部补充包气带水分亏缺,即可下渗补给含水层。
水文地质基础——地下水的补给与排泄

第1节 地下水的补给
Groundwater recharge
补给方式:大气降水入渗、地表水入渗、凝
结水入渗、其他含水层或含水系统 、人工补 给
补给量(Incremeng of aquifer)的确定:
研究每一种补给方式的补给量大小
影响补给量大小的因素:讨论每一种补给
方式的影响因素
第1节 地下水的补给—大气降水入渗补 给 Precipitated water recharge
从上图可以看出: 降雨量与补给量之间呈近似线性关系(定 埋深); 降雨量中有一部分要补充水分亏损,才有 补给地下水;
地下水埋深越浅,补给量越大(定降雨量)
降水强度(rainfall intensity):单位时间内的降水 量。降水强度超过包气带的入渗律时,部分降水 形成地面径流,补给地下水的部分相应减少。
人工回灌
采用有计划的人为措施补充含水量的水量称为人工 补给地下水 。其目的有: 补充、储存地下水资源; 抬高地下水位以改善地下水开采条件; 储存热源以用于锅炉用水; 储存冷源用于空调冷却; 控制地面沉降; 防止海水倒灌与咸水入侵含水层;
第2节 地下水的排泄
Groundwater discharge
补给量≈径流量≈排泄量
故通过估算排泄量(包括泉的总流量、泄流量等) 或径流量 来估算补给量。 山区的入渗系数α是全年降水与河水补给地下水的 量与年降水量的比值: Q
f X 1000
Q — 入渗补给量,数值上等于年地下水排泄量 f — 汇水区面积(km2) X— 年降水量(mm)
有了 的量:
进行排泄。
影响泄流量大小的因素