铁道车辆轮对结构与轮轨接触几何关系 (1)
列车轮轨接触几何参数

轮轨接触几何参数轮轨接触几何参数(wheel-rail contact geometry parameters)由轮轨接触几何关系所确定的轮对和钢轨上的一系列几何量。
主要包括下述11种参数。
车轮名义宜径由于车轮踏面具有斜度,各处直径是不相同的,根据规左,车辆在离轮缘内侧面70mm处(车辆)或73mm处(机车)测量得到的直径为剑义直径,该圆称为滚动圆。
车轮名义直径的大小影响机车车辆的性能。
中国客车标准轮径为915mm,货车标准轮径为 840mm,内燃机车标准轮径为1050mm,电力机车标准轮径为1250mm。
车轮滚动接触半径车轮在钢轨上滚动时接触点处的车轮半径(图中的门和「2)。
由于轮对沿钢轨向前滚动时,会一而相对钢轨横向移动、一而又绕通过其质心的铅垂轴转动,车轮和钢轨的接触点位置是在不断变化的,车轮滚动接触半径也是在不断变化的。
轮轨接触角过轮轨接触点的公切线与车轴中心线的夹角(图中的61和62)。
在车辆运行过程中它是一个不断变化的:go车轮踏面曲率半径轮轨接触点处车轮踏而横断而外形的曲率半径(图中的R1和R2)。
对于锥形踏而车轮,车轮踏而曲率半径为无穷大。
轨头截面曲率半径伦轨接触点处轨头横断而外形的曲率半径(图中RT1和RT2)o轮对侧滚角如果轮对离开轨道中心线位置而相对于轨道横向移动时,由于车轮踏而具有锥度,轮对左右车轮的滚动接触半径具有差別,这样车轴中心线相对于其原来的水平位置会产生一个夹角,此夹角即定义为轮对侧滚角(图中的<pW)o轮对横移量由于车伦踏而有锥度,轮对沿轨道向前运动时总是会伴随轮对相对轨道中心线横向移动,此移动量即为轮对横移量(图中的yw)。
轮对摇头角由于车轮踏而锥度的存在,轮对沿轨道向前运动时除了伴随轮对相对轨道中心线横向移动外,轮对还会绕通过其质心的铅垂轴转动,转动的角度即为轮对摇头角。
轮缘内侧距轮对两轮缘的内侧而间的距离即为轮缘内侧距(图中的b),对于标准轨距,轮缘内侧距为(1 353+2) mm<>轨距两根钢轨头部内侧间与轨道中心线相垂直的水平距离,并规左在轨顶下16mm处测崑世界上大部分国家均采用1435mm的标准轨距,即准轨。
轮轨接触几何关系

轮轨接触⼏何关系轮轨接触⼏何关系班级:学号:姓名:轮轨接触⼏何关系是轮轨关系研究的基本内容,它不仅关系到车辆的动⼒学性能,也关系到轮轨之间的磨耗。
其研究结果可以⽤于横向稳定性计算、随机响应计算及动态曲线通过计算等,还可以⽤于轨道⼏何参数和轮轨外形的合理选择。
选择合适的轮轨⼏何,不仅可以改善车辆的动⼒学性能,还能降低轮轨间的磨耗,减少制造和维修成本,提⾼车辆的可靠性,延长车轮的使⽤寿命。
本⽂采⽤Simpack软件模拟轮轨接触,选⽤的车轮踏⾯为S1002,轨头为CHN_60。
1. S1002踏⾯外形S1002外形轮廓由车轮踏⾯作⽤区域之外的倒⾓、外侧斜度区域A、踏⾯区域B和C、踏⾯外形轮廓与轮廓外部区域的连接区域D、70o轮缘⾓长度区域E和轮缘区域F、G、H构成。
其中,外侧斜度区域A的斜度值可从6.5%⾄15%;踏⾯区域B和C由两段凹凸⽅向不同的⾼次曲线构成;连接区域D为⼀段半径为13mm的圆弧;70o轮缘⾓长度区域E为⼀条切线段;当车轮直径≥760mm时,轮缘⾼度h为28mm,轮缘区域F、G、H分别由半径为30mm、12mm和20.5mm的三段圆弧构成。
随着轮缘厚度的变化,轮缘及其踏⾯的连接区域也随之变化。
S1002踏⾯外形如图1-1所⽰。
图1-1 S1002踏⾯外形2. CHN_60轨⾯形状CHN_60钢轨顶⾯采⽤80-300-80的复合圆弧,具有与车轮踏⾯相适应的外形,能改善轮轨接触条件,提⾼抵抗压陷的能⼒;同时具有⾜够的⽀承⾯积,以备磨耗。
CHN_60踏⾯外形如图2-1所⽰。
图2-1 CHN_60轨⾯截⾯形状3. 轮轨⼏何关系参数轮轨⼏何关系重要参数有:车轮和钢轨型⾯、轨距、轨底坡、轮缘内侧距、名义滚动圆距轮对中⼼距离和车轮名义直径。
其⼏何关系平⾯图(见图3-1)和影响轮轨接触⼏何关系参数的平⾯图(图3-2)如下所⽰。
图3-1 轮轨接触⼏何关系平⾯图图3-2 影响轮轨接触⼏何关系平⾯图4. 轮轨接触⼏何关系的特征参数在机车车辆动⼒学研究中,除了要计算处接触点位置和相应参数值,另外,还要研究和动⼒学性能直接相关的轮轨关系特征参数,它们分别是:等效锥度、等效接触⾓、轮对重⼒刚度和重⼒⾓刚度。
第14周 轮轨接触几何关系与力学原理

步骤②
xc xo2 lx Rw tg w Rw 2 2 2 yc yo2 l l tg l 1 l 1 tg w yw x y w z x 2 1 lx zc zo2
R l l tg 1 l
w 2 x 2 x z
w
ly
轮缘 滚动圆直径 轮缘内侧距 车轮踏面斜度
轮缘: 轮缘是保持车辆沿钢轨运行,防止车轮脱轨的重要部 分。 滚动圆直径: 车轮直径大小,对车辆的影响各有利弊:轮径 小可以降低车辆重心,增大车体容积,减小车辆簧下质量, 缩小转向架固定轴距,对于地铁车辆还可以减小建筑限界, 降低工程成本;但是,小直径车轮可使车轮阻力增加,轮轨 接触应力增大,踏面磨耗较快,通过轨道凹陷和接缝处对车 辆振动的影响增大。轮径大的优缺点则与之相反。
第三节
轮轨接触状态认识
钢轨轨头外形 轮轨接触状态 轮轨接触几何参数
50kg/m钢轨外型尺寸
60kg/m钢轨外型尺寸
UIC54 钢轨外型
UIC60 钢轨外型
10 0
z/mm
-10 -20 -30 -40 -40
R50 R60
-20
0 y/mm
20
40
一点接触 踏面接触
两点接触 踏面接触 轮缘接触
sp 回转蠕滑率:
w1 r1 v
微量弹性变形 微量弹性滑动 蠕滑
蠕滑率
3、蠕滑力:
切平面 弹性滚动体 正压力 接触处 切平面法线方向 切向力
纵向蠕滑力 横向蠕滑力 回旋蠕滑力矩
轮轨接触蠕滑力示意图
介于纯滚动和纯滑动之间 蠕滑率较小时:线性关系 比例系数—蠕滑系数
蠕滑率较大时:非线性关系 极限值—摩擦力
铁道车辆轮对结构与轮轨接触几何关系 1

铝合金
质量轻,耐腐蚀,但强度较低。
其他合金材料
如镍合金、钛合金等,具有特殊 性能,但成本较高。
02
轮轨接触几何关系
轮轨接触几何模型
点接触模型
假设轮轨接触点处的曲率中心与接触点重合,适用于 小变形和弹性接触。
面接触模型
考虑轮轨接触面的形状和曲率变化,适用于大变形和 塑性接触。
混合接触模型
结合点接触和面接触的特点,考虑轮轨接触的复杂性 和非线性特性。
垂直反力
车轮垂直于轨道方向产生的力,与轨道承受的重 量和轮轨接触点的分布有关。
轮对与轨道的相互作用模型
弹性接触模型
将轮轨接触视为弹性接触,通过 弹性力学理论描述轮轨接触点的 应力分布和变形。
有限元模型
利用有限元方法模拟轮轨接触和 应力分布,考虑了材料的非线性 特性和复杂的边界条件。
轮对与轨道的相互作用的影响因素
铁道车辆轮对结构与 轮轨接触几何关系
目录
• 轮对结构 • 轮轨接触几何关系 • 轮对与轨道的相互作用 • 轮轨接触的磨损与损伤 • 轮对与轨道的设计优化
01
轮对结构
轮对的组成
01
02
03
车轮
包括轮缘、踏面和轮毂, 是直接与轨道接触的部分, 承受车辆重量和传递制动 力。
车轴
连接车轮的轴,通过轴承 支撑车轮转动,传递牵引 力和制动力。
通过建立动力学模型,模拟列车运行过程 中轮对与轨道的动态响应,预测和解决潜 在的振动和稳定性问题。
实验设计法
优化算法
通过实验手段获取轮对与轨道在实际运行 中的性能数据,为设计提供依据和验证。
利用数学优化算法,如遗传算法、粒子群 算法等,对轮对与轨道的结构参数进行优 化,实现轻量化和性能提升。
轮轨接触几何关系探讨

轮轨接触几何关系探讨卜庆萌指导教师姚林泉摘要: 轮轨接触几何关系在高速、安全的轨道交通中具有重要的作用。
本文根据我国使用的三种主要车轮踏面的轮廓线,采用对其一、二阶导函数比较分析的方法研究它们的光滑度。
同时考察不同规格钢轨的光滑度以及与各车轮踏面相配合的结果。
从轮轨几何光滑接触的角度,指出了较优的车轮踏面,较优的轮轨配合以及几何优化原则。
关键字:轮轨关系,接触几何,车轮踏面,钢轨Abstract: The geometric relation of wheel-rail contact plays an important part in fast and safety rail transportation. Based on the three main Chinese wheels, we work out the first and second derivative of the contours in order to compare their smoothness. Also we research the smoothness of different rails and the effect to work in different wheels. From the aspect of that wheel and rail contact in smoothness, the better interface, the better coupling of wheel-rail and the principle of geometric optimization are shown.Keywords: wheel-rail relation,contact geometry,wheel treads,rail1 引言随着铁路列车运行速度、运载重量和运输密度的大幅度提高,机车车辆与轨道结构之间的相互作用引发的问题更加严重,也更趋复杂。
铁道车辆轮对结构与轮轨接触几何关系_2022年学习资料

5.车轮踏面设置要求-①进行方内-对脱轨安全性要高;-对中性能强;->-运行稳定性要好-不发生蛇行运动】线通过性能要好-曲线通过时产生的横向力-要小-能够顺利通过道岔;-耐磨性要好,即使产生了磨耗,其形状变化也 要小。-踏面设计目的性问题-23
2轮对形状尺寸与线路相互关系-轮缘-滚动圆直径-轮缘内侧距-●车轮踏面斜度-5
2轮对形状尺与线路相互关系-轮缘:轮缘是保特车辆沿钢轨运行,防止车轮-脱轨的重要部分。-滚动圆直径:车轮直 大小,对车辆的影响各-有利弊:轮径小可以降低车辆重心,增大车体-容积,减小车辆簧下质量,缩小转向架固定轴,对于地铁车辆还可以减小建筑限界,降低-工程成本但是,小直径车轮可使车轮阻力增-加,轮轨接触应力增大,踏面 耗较快,通过-轨道凹陷和接缝处对车辆振动的影响增大。轮-径大的优缺点则与之相反。-6
安全通过辙叉-检验B-护轨-T>D2-无护轨与翼轨干-涉时的运行-检验C-T+d<D-无辙岔心干涉时-检验 -T+d>S-t-无钢轨与护轨干涉-9
顺利通过曲线-0+X-↓-R-y-2b-10
轮缘内侧距选取-欧州和日木1360mm-与NP■-由国牲标1253mm-系维劲G1M25mm-11
轮轨间隙计算-标准轨距:1435mm-轮对内侧距:1353mm-轮缘厚度:32mm(单侧,64mm(双侧内轮轨间隙:9=(1435-1353-64/2-欧州轮轨间隙:5.5=(1435-1360-64/2(mm 12
铁道车辆轮对结构与轮轨接触几何关系-1
主要内容-第一节-轮对结构认识-第二节-轮轨接触状态认识-第三节-轮轨接触几何关系求解-第四节-道岔区轮轨 触几何关系-2
第一节轮对结构-1353±1
1轮对设计要求-应该有足够的强度,以保证在容许的最高速-度和最大载荷下安全运行-减轻轮对重量;-应不仅能够 应车辆直线运行,同时又能够-顺利通过曲线和道岔,而且应具备必要的抵-抗脱轨的要求;-应具备阻力小和耐磨性好 优点,这样可以-只需要较小的牵引动力并能够提高使用寿命。-4
【2021年整理】铁道车辆轮对结构与轮轨接触几何关系 (1)

rL=r0- l yw rR=r0+ l yw
rR rL
2 yw
e
rR rL 2 yw
精品课件,可编辑,欢迎下载,
2021最新整理
32
等效斜度
1.2
磨 耗 踏面
0.8
锥形 踏面
l e
0.4
0.00
4
8
12
yw/mm
精品课件,可编辑,欢迎下载, 2021最新整理
16
33
轮对重力刚度
W l - Nl
-20
XP55
S1002 - SYSZ40-00-00-02A for 200 km/h (China) - SYSZ40-00-00-00 for 160 km/h (China) - XP55
-25
30
40
50
60
70
80
90
100
-30
y [mm]
5
z [mm]
0
z [mm]
-5
S1002 -10
2021最新整理
21
车轮外形吻合
• 中国标准 ;
• 中国轨道的典型磨耗型外形SYSZ40-00-00-00 (160 kph) ;
Comparison between Wheel profiles
S1002 - SYSZ40-00-00-02A for 200 km/h (China) - SYSZ40-00-00-00 for 160 km/h (China) - XP55
(
R
) tg(L
)
K gy
Fgy y
W 2y
tg
(
R
) tg( L
)
轮轨接触几何关系及滚动理论

第三节轮轨接触几何关系及滚动理论轨道车辆沿钢轨运行,其运行性能与轮轨接触几何关系和轮轨之间的相互作用有着密切的关系。
同时,由于轮轨的原始外形不同和运用中形状的变化,轮轨之间的接触几何关系和接触状态也是不同和变化的。
米用车轮轴承、滚动是车辆获取导向、驱动或制动力的主要方式,轨道车辆中地铁、轻轨常采用钢轮钢轨方式,而独轨、新交通系统及部分地铁则采用充气轮胎走行在硬质导向路面上。
车轮与导轨间的滚动接触关系决定了它们间的作用力、变形和相对运动。
因此滚动接触直接影响城市轨道车辆的性能、安全、磨耗与使用寿命。
一轮轨接触参数和接触状态当车辆沿轨道运行时,为了避免车轮轮缘与钢轨侧面经常接触和便于车辆通过曲线,左右车轮的轮缘外侧距离小于轨距,因此轮对可以相对轨道作横向位移和摇头角位移。
在不同的横向位移和摇头角位移的条件下,左右轮轨之间的接触点有不同位置。
于是轮轨之间的接触参数也出现变化。
对车辆运行中动力学性能影响较大的轮轨接触几何参数如下(图5一8): 1左轮和右轮实际滚动半径r L ,r R。
当轮对为刚性轮对,轮对绕其中心线转动时,各部分的转速是一致的,车轮滚动半径大,在同样的转角下行走距离长。
同一轮对左右车轮滚动半径越大,左右车轮滚动时走行距离差就加大,车轮滚动半径的大小也影响轮轨接触力。
2左轮和右轮在轮轨接触点处的踏面曲率半径和3左轨相石轨在稚轨接触点处的矶头截曲曲率半径和轮轨接触点处的曲率半径大小将会影响轮轨实际接触斑的大小、形状和轮轨的接触应力。
4左轮和右轮在接触点处的接触角s:和6R,即轮轨接触点处的轮轨公切面与轮对中心。
线之间的夹角。
轮轨接触角的大小影响轮轨之间的法向力和切向力在垂向和水平方向分量的大小。
5轮对侧滚角小w。
轮对侧滚角会引起转向架的侧滚和车体侧滚。
6.轮对中心上下位移Z w。
该量的变化会引起转向架和车体的垂向位移。
研究轮轨接触关系时应特别注意轮轨间的接触状态。
车轮与钢轨之间的接触状态可能有两种,即一点接触和两点接触(图5一9),轮对相对轨道的移动量不大时,一般出现车轮踏面与钢轨顶面相接触,通常为“一点接触”;当轮对相对轨道的横移和摇头角位移量超过一定范围,根据不同轮轨形状特点可能引起车轮踏面和轮缘同时与钢轨顶面和侧面接触,即所谓“两点接触”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
39
专题三:轮对低动力设计方法
F t m V 动量定理:
F m V / t
降低作用力途径有三种:
1. 减小质量; 2. 减小速度变化量; 3. 延长力作用时间。
40
专题三:轮对低动力设计方法
1. 减小簧下质量。目前在减小轮对质量上主要两种方法:①采 用空心车轴。在不降低车轴强度的条件下,尽可能采用空心 车轴,这不仅有利于降低簧下质量,而且还便于车轴疲劳裂 纹内部探伤。②采用小轮径车轮。减小车轮直径同样可以起 到降低轮对质量的作用。 2. 采用合理的车轮踏面。合理的车轮踏面对降低轮轨相互作 用、保证车辆系统具有良好的运行稳定性和曲线通过能力具 有重要的意义。 3. 采用弹性车轮。采用弹性车轮不仅可以降低轮轨噪声,而且 还可以缓和轮轨冲击,降低轮轨动作用力。 4. 严格控制车轮质量,降低车轮动不平衡质量。 车轮设计制 造过程中,应尽可能保证车轮质心与形心重合,严格控制轮 对动不平衡质量,避免质心与形心出现位置偏差时形成轮轨 间持续冲击作用。
W Fgy Fr Fl tg ( r ) tg ( l ) 2
34
轮对重力刚度
锥形踏面
R L l
2l y 2b
ly
b
tg ( R ) R tg ( L ) L
W tg ( R ) tg ( L ) K gy y 2y W w tg ( R ) tg ( L ) l K gy y 2y b Fgy Fgy
采用凹形车轮踏面,不仅可以减缓磨耗,延长使 用寿命,而且有利于车辆曲线通过,并使轮缘力 有所降低。
16
磨耗型踏面(LM)
17
磨耗型踏面(LMA)
18
4. 车轮参数定义
轮对内侧距 滚动圆半径 轮缘 轮缘厚度 轮缘角度 轮缘高度 踏面 等效踏面锥度 回转半径差 接触角度差
R50 R60
-20
0 y/mm
20
40
45
2. 轮轨接触状态
一点接触
踏面接触
两点接触 踏面接触 轮缘接触
46
磨耗型踏面轮轨接触
47
钢轨磨耗后轮轨接触状态
48
3. 轮轨接触几何参数
w l rl r rl r wl
yw rr zw rrr rwr
r
49
轮轨接触几何参数
左、右轮实际滚动半径;
8
安全通过辙叉
9
顺利通过曲线
r0 + y r0 - y
o
R
y
2b
10
轮缘内侧距选取
11
轮轨间隙计算
标准轨距:1435mm
轮对内侧距:1353mm
Hale Waihona Puke 轮缘厚度:32mm(单侧),64mm(双侧)
国内轮轨间隙:9=(1435-1353-64)/2 (mm) 欧洲轮轨间隙:5.5=(1435-1360-64)/2 (mm)
19
轮轨接触分析
车轮外形的主要参数
Sd
L3 = 12 mm (Standard China) 中国标准 32 32 -
车轮外形
L3 = 10 mm 32.6 33.2 32.5 32.6
Sh
qR
SYSZ40-00-00-02A (200 kph) SYSZ40-00-00-00 (160 kph) S1002 XP55
重力角刚度
29
等效斜度
Traction motor 牵引马达
Gearbox 齿轮箱
265 kW (360 Hk) max 5000 rpm
Coupling连挂
30
等效斜度(续)
e
31
等效斜度
锥形踏面车轮滚动圆附近成斜率为0.l的直线段, 在直线段范围内车轮踏面斜度为常数。 当轮对中心离开对中位置向右移动横移量yw,那 么左右车轮的实际滚动圆半径分别为:
4
2 轮对形状尺寸与线路相互关系
轮缘
滚动圆直径 轮缘内侧距 车轮踏面斜度
5
2 轮对形状尺寸与线路相互关系
① 轮缘:轮缘是保持车辆沿钢轨运行,防止车轮 脱轨的重要部分。 ② 滚动圆直径:车轮直径大小,对车辆的影响各 有利弊:轮径小可以降低车辆重心,增大车体 容积,减小车辆簧下质量,缩小转向架固定轴 距,对于地铁车辆还可以减小建筑限界,降低 工程成本;但是,小直径车轮可使车轮阻力增 加,轮轨接触应力增大,踏面磨耗较快,通过 轨道凹陷和接缝处对车辆振动的影响增大。轮 径大的优缺点则与之相反。
12
3. 踏面类型
圆筒踏面(踏面为没有锥度的平坦圆筒、日 本轨检车上,有利于轨道高低变形的测定)
圆锥踏面(踏面带有一定的锥度)
圆弧踏面(磨耗型踏面,踏面带有圆弧)
为了使无论哪种踏面形状均能够防止 车轮脱轨, 因而车轮都设有轮缘。 踏面锥度是使轮对具有复原功能和转向功能的 根本原因,也是引起蛇行运动的根源。
左、右轮在轮轨接触点处的踏面曲率半径;
左、右轨在轮轨接触点处的踏面曲率半径;
左轮和左轮与左轨和右轨在轮轨接触点处的接触角;
轮对侧滚角; 轮对中心上下位移; 踏面等效斜度; 重力刚度与重力角刚度。
50
第三节 轮轨接触几何关系求解
轮轨接触几何关系求解发展过程 影响轮轨接触几何关系参数 空间轮轨接触几何关系求解方法 不同踏面轮轨接触状态比较
51
1 轮轨接触几何关系发展过程
八十年代初期 : 研究由分段圆弧组成的磨耗型踏面和磨耗型钢轨相互接 触时的几何参数以及各种因素对它们的影响 八十年代中后期: 研究了任意形状的轮轨空间几何约束关系,并提出了一 个具有足够精度、适用于任意形状的空间几何约束关系 的数学方法及计算程序; 九十年代初期 : 提出了迹线法的思想来处理空间轮轨接触几何关系问题。 基本思路:暂时抛开轨面的形状,仅由轮对的位置(摇头 角、侧滚角)以及踏面主轮廓线参数(滚动半径、接触 角)确定可能的接触点。
能够顺利通过道岔;
耐磨性要好,即使产生了磨耗,其形状变化也 要小。
踏面设计目的性问题
23
两种踏面接触面积比较
锥型踏面轮轨接触斑
磨耗型踏面轮轨接触斑
24
对踏面动力学性能认识差异
一般地,在曲线通过方面采用磨耗型踏面 有利,而在抑制蛇行运动、车体振动方面 锥形踏面有利。
实际上,现阶段研究结果表明,在抑制车 体蛇行运动和提高稳定性方面,磨耗型踏 面有时也能够取得良好的效果。
25
性能认识差异
• 在车轮横移时,磨耗型踏面车轮的接触角差、 滚动半径差要比锥形踏面车轮的变化大,这使 输入车体的能量减少,车体振动激烈程度降低。 • 在适当运行速度下,与采用锥形踏面的车轮相 比,采用磨耗型踏面的车轮,其转向架蛇行运 动波长短、频率高,而且远离了车体的固有振 动频率。
车轮踏面形状对高速动车运动特性的影响 《国外内燃机车》 藤本裕[日本] 1999年第2期
有使轮对恢复到原来对中位置的作用
35
轮对重力刚度
160 120
Kgy / N.m-1
80 40 0 0
磨耗踏面 锥形踏面
4
8 yw/mm
12
16
36
轮对重力角刚度
Fl
Fr
M g FRb sin FL sin
bW sin tg ( R ) tg ( L ) 2 Mg
• • • •
中国标准 ; 中国轨道的典型磨耗型外形SYSZ40-00-00-00 (160 kph) ; S1002欧洲标准外形; XP55 TGV 韩国外形
z [mm]
-5 -10 -15 -20 -25 -30 y [mm] S1002 SYSZ40-00-00-00 for 160 km/h SYSZ40-00-00-02A for 200 km/h XP55
Comparison between Wheel profiles
40 50 60 70 80 90 100
S1002 - SYSZ40-00-00-02A for 200 km/h (China)- SYSZ40-00-00-00 for 160 km/h (China) - XP55 30
5
0
-5
6
(3) 轮对内侧距
7
轮对内侧距
保证轮缘与钢轨之间有一定游(间)隙,可以:
减少轮缘与钢轨磨耗;
实现轮对自动对中作用;
有利于车辆安全通过曲线;
有利于安全通过辙叉; 轮缘与钢轨之间的游(间)隙太小,可能会造成 轮缘与钢轨的严重磨耗; 轮缘与钢轨之间的游(间)隙太大,会使轮对蛇 行运动的振幅增大,影响车辆运行品质;
26
车轮踏面形状和接触参数对从钢轨 向车上输入的能量影响
0.20 0.15
能量输入率
0.10 0.05
0.0
圆弧踏面
第1种变化 第2种变化 锥形踏面
27
两种踏面对线路激扰响应比较
速度V=270km/h,波深a=1.0mm
28
与车轮相关的几个参数
车轮踏面锥度 车轮踏面等效锥度(斜度) 重力刚度
z [mm]
S1002 -10 SYSZ40-00-00-00 for 160 km/h SYSZ40-00-00-02A for 200 km/h -15 XP55
-20 y [mm]
5. 车轮踏面设置要求
对脱轨安全性要高;
对中性能强; 运行稳定性要好(不发生蛇行运动); 曲线通过性能要好(曲线通过时产生的横向力 要小);
41
第二节 轮轨接触状态认识
钢轨轨头外形 轮轨接触状态 轮轨接触几何参数