平行线的判定习题课
平行线的判定和性质的综合运用(习题课)

教学设计——平行线的判定与性质的综合运用三台外国语学校刘发冬一、教材分析(一)本课的地位和作用本节教材是在学生学习了平行线的有关概念及性质和判定后,对其进行一个综合的有效运用,是技能的培养。
本课时在中考当中存在着很重要的地位,它不仅是学习初中几何阶段的基础,同时也是中考高频的考点。
更是对学生数学思想以及逻辑推理的引领。
(二)教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标1、知识目标:(1)、复习平行线的判定和性质定理,旧知再认。
(2)、学会对知识进行分类整理,掌握推理(证明)的书写方法。
(3)、掌握本节常见常见辅助线作法。
2、能力目标:通过计算,提高综合运用知识分析问题和解决问题的能力。
通过作图形的辅助线,体会辅助线在几何解题中的妙用。
同时培养学生自主探索的能力和合作交流的能力;3、情感与价值目标:通过旧知的复习,让学生学会温故知新。
通过一题多解让学生学会从不同的角度去思考问题。
通过同桌的讨论、交流和解决问题的过程,让学生更多的展示自己,建立自信,树立正确的价值观。
(三)教学重点、难点我从新课程标准出发,在吃透教材基础上,确立了如下的教学重点、难点重点:熟练运用平行线的性质和判定解决相关问题难点:(1)能正确的书写简单的推理(证明)过程。
(2)掌握本课时的常用辅助线作法。
二、教法设想在本节课教学中,我从学生思维的起点出发,突出教师为主导、学生为主体的教学原则,在组织教学中,我主要采用了多媒体教学和自主探究法,让学生在老师的引导下提出问题,自主探索、合作交流,收获新知;通过尝试应用,巩固实践,来深化新知,感受收获的喜悦。
实行合作交流、点对点的辅导,采用兵教兵的策略,让大家获得更多的学习兴趣。
本堂课中,我安排了几次同桌交流、小组讨论的活动,让学生自主学习,然后相互讨论,分享方法。
还有能够在推理、思考的过程中学会交流,进行体验。
三、学法研究教学中重视指导学生掌握一些最基本的学习方法和数学思想。
平行线的习题课

B 【总结归纳】 学习反思
2
C
鸡西市第十九中学初二数学组
3
1
鸡西市第十九中学初二数学组
5.如图,修高速公路需要开山洞,为节省时间,要在山两面 A,B 同时开工,•在 A 处测得洞的走向是北偏东 76°12′,那么在 B 处 应按什么方向开口,才能使山洞准确接通,请说明其中的道理.
6.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过 镜子反射∠1=∠2,∠3=∠4,请你解释为什么开始进入潜望镜的光 线和最后离开潜望镜的光线是平行的.
(图 1)
(图 2)
(图 3)
3.如图 3,已知∠1+∠2=180°,∠3=∠B,试判断∠AED 与∠C 的大小关系,并对结论 进行说理.
4.如图,直线 DE 经过点 A,DE∥BC,∠B=44°,∠C=85°.⑴求∠DAB 的度数;⑵求∠EAC 的度数;⑶求∠BAC 的度数;⑷通过这道题你能说明为什么三角形的内角和是 180°吗? D A E
鸡西市第十九中学初二数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课题 判定及性质习题课 2011 年 月 日 加深对平行线的判定及性质的理解及其应用. 平行线的判定及性质的应用. 灵活运用平行线的判定及性质去推理证明.
学习内容
数学
课型 人教版
新课
七年级上
学法指导
一、学前准备 通过前面的学习,你知道判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定公理: ⑷平行线的判定定理 1: ⑸平行线的判定定理 2: ⑹平行线的判定推论: 通过前面的学习,你还知道两条直线平行有哪些性质吗? ⑴根据平行线的定义: ⑵平行线的性质公理: ⑶平行线的性质定理 1: ⑷平行线的性质定理 2: ⑸平行线间的距离 . 二、探索思考 练习:让我先试试,相信我能行. 1.如图 1,若∠1=∠2,那么_____∥______,根据___ 若 a∥b,•那么∠3=_____,根据___
平行线习题课

七年级数学科备课设计
一、巩固旧知,激趣导入:
⑴平行线的定义:
⑵平行线的传递性:
⑶平行线的判定公理:
:
:
⑹平行线的判定推论:
⑴根据平行线的定义:
⑵平行线的性质公理:
:
:
⑸平行线间的距离.
二、感受定义,达成目标:
___ __
___ __
1) (图2) (图3) (图4)
∠2,∴_____∥_____,根据__ _____.
B=_____,根据___ _____.
∥CD,那么________=•_______;•若∠1=•∠2,
.如右图所示,潜望镜中的两个镜子是互相平行放置的,光线经过
,请你解释为什么开始进入潜望镜的光
,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角
上有一点
恰好与OB平
(图1)(图2)
3,已知∠1+°,∠3=∠B,试判断∠的大小关
系,并对结论进行说理.
.如图,直线DE经过点DAB的度
数;⑵求∠EAC的度数;⑶求∠的度数;⑷通过这道题你能说明为什么
A
D E。
人教版七年级下册数学平行线及其判定第2课时平行线的判定——利用同位角、第三直线 同步练习

5.2 平行线及其判定第2课时平行线的判定——利用“同位角、第三直线”基础训练知识点1 由“同位角相等”判定两直线平行1.如图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为_______________,理由是______________.2.如图,直线a,b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠73.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠C=∠EBD4.如图,已知∠1=∠2,则下列结论正确的是( )A.AD∥BCB.AB∥CDC.AD∥EFD.EF∥BC5.如图,CD平分∠ACE,且∠B=∠ACD,可以得出的结论是( )A.AD∥BCB.AB∥CDC.CA平分∠BCDD.AC平分∠BAD知识点2 由“第三直线”判定两直线平行6.如图,木工师傅利用直角尺在木板上画出两条线段,则线段AB______CD.7.在每一步推理后面的括号内填上理由.(1)如图①,因为AB∥CD,EF∥CD,所以AB∥EF(____________).(2)如图②,因为AB∥CD,过点F作EF∥AB(____________),所以EF∥CD(____________).8.在同一个平面内,不重合的两个直角,如果它们有一条边共线,那么另一条边( )A.互相平行B.互相垂直C.共线D.互相平行或共线9.三条直线a,b,c,若a∥c,b∥c,则a与b的位置关系是( )A.a⊥bB.a∥bC.a⊥b或a∥bD.无法确定易错点填错理由而致错10.如图,已知AB⊥BD于点B,CD⊥BD于点D,∠1=∠2,试问CD与EF平行吗?为什么?解:CD∥EF.理由:因为∠1=∠2( ),所以AB∥EF( ).因为AB⊥BD,CD⊥BD,所以AB∥CD( ).所以CD∥EF( ).提升训练考查角度1 利用“同位角相等”说明两直线平行11.如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,试说明:BE∥AC. 解:因为BE平分∠ABD,所以∠ABE=∠DBE( ).因为∠ABE=∠C,所以∠DBE=∠C,所以BE∥AC( ).12.如图,已知∠1=68°,∠2=68°,∠3=112°.(1)因为∠1=68°,∠2=68°(已知),所以∠1=∠2.所以∥(同位角相等,两直线平行).(2)因为∠3+∠4=180°(邻补角的定义),∠3=112°,所以∠4=68°.又因为∠2=68°,所以∠2=∠4,所以∥(同位角相等,两直线平行).考查角度2 利用“同位角”“第三直线”(平行或垂直)判定平行13.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3=∠4,则a与c平行吗?为什么?解:a与c平行.理由:因为∠1=∠2( ),所以a∥b( ).因为∠3=∠4( ),所以b∥c( ).所以a∥c( ).14.如图,已知∠1=90°,∠2=90°,试说明:CD∥EF.(1)方法一:用“同位角相等”说明.(2)方法二:用“第三直线”说明.探究培优拔尖角度1 利用平行线、垂线的基本事实说明三点共线15.在同一平面内,已知A,B,C是直线l同旁的三个点.(1)若AB∥l,BC∥l,则A,B,C三点在同一条直线上吗?为什么?(2)若AB⊥l,BC⊥l,则A,B,C三点在同一条直线上吗?为什么?拔尖角度2 利用同位角探究两线段的位置关系16.如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F, 问:CE与DF的位置关系怎样?试说明理由.参考答案1.【答案】AB∥CD;同位角相等,两直线平行2.【答案】B3.【答案】D4.【答案】C解:找出∠1和∠2是直线AD,EF被直线CD所截而形成的同位角,因此由∠1=∠2可得出AD∥EF.5.【答案】B6.【答案】∥7.【答案】(1)平行于同一条直线的两条直线平行(2)过直线外一点,有且只有一条直线与这条直线平行;平行于同一条直线的两条直线平行8.【答案】D9.【答案】B解:由平行于同一条直线的两条直线互相平行知选B.10.已知;同位角相等,两直线平行;在同一平面内,垂直于同一条直线的两条直线互相平行;平行于同一条直线的两条直线互相平行分析:本题学生容易混淆判定两直线平行的几种方法,从而导致错误.11.【答案】角平分线的定义;同位角相等,两直线平行12.【答案】(1)a;b (2)b;c13.【答案】已知;同位角相等,两直线平行;已知;同位角相等,两直线平行;平行于同一条直线的两条直线平行14.解:(1)方法一:因为∠1=90°,∠2=90°,所以∠1=∠2.所以CD∥EF.(2)方法二:因为∠1=90°,∠2=90°,所以CD⊥AB,EF⊥AB.所以CD∥EF.15.解:(1)在同一条直线上.理由:因为直线AB,BC都经过点B,且都与直线l平行,而过直线外一点有且只有一条直线与这条直线平行,所以AB,BC为同一条直线,所以A,B,C三点在同一条直线上.(2)在同一条直线上.理由:因为直线AB,BC都经过点B,且都与直线l垂直,而在同一平面内,过一点有且只有一条直线与已知直线垂直,所以AB,BC为同一条直线,所以A,B,C三点在同一条直线上.16.解:CE∥DF.理由如下:因为BD平分∠ABC,CE平分∠ACB,所以∠DBC=错误!未找到引用源。
10.2平行线的判定内错角同旁内角

3
∵ 直线BC,DE相交于点G (已知)
E
F ∠2与∠EGC是对顶角
∠2=∠EGC (对顶角相等)
∠2+∠3=1800(已证)
即:∠3+∠EGC =1800(等量代换)
BCװEF(同旁内角互补,两直线平行)
AB BC
练习题:
A
B
2
C
13
D
E
例2.
如图:∠1=∠2, ∠B+∠BDE=180°.图中哪些 线互相平行?为什么?
A
D
1 2
E
B
FC
判定两条直线平行的方法
文字叙述
符号语言
图形
同位角相等 ∵∠1=∠2 (已知) c
两直线平行
内错角 相等
∴a∥b ∵∠3=∠2 (已知)
1 34
a
两直线平行 ∴a∥b
2
同旁内角互补 ∵ ∠2+∠4=180°.
2பைடு நூலகம்
D
F
符号语言: ∵∠1=∠2(已知) ∴AB∥CD(内错角相等,两直线平行。)
巩固练习
例1、已知:∠1=∠A=∠C,
(1)从∠1=∠A,可以判断哪两条直线平行?它的依 据是什么? CB∥DA(同位角相等,两直线平行)
(2)从∠1=∠C,可以判断哪两条直线平行?它的依 据是什么? CD∥AB(内错角相等,两直线平行)
E
A
3B
1
2
C
D
解:AB∥CD,理由如下:
∵∠1=∠2(已知)
F
∠1=∠3(对顶角相等)
∴∠2=∠3(等量代换)
∴AB∥CD (同位角相等,两直线平行。)
得出结论
北师大版八年级数学上册第七章《平行线的判定》课时练习题(含答案)

北师大版八年级数学上册第七章《3.平行线的判定》课时练习题(含答案)一、选择题1.如图,直线a 、b 被直线c 所截.若∠1=55°,则∠2的度数是( )时能判定a ∥b .A .35°B .45°C .125°D .145° 2.如图,给下列四个条件:①12∠=∠;②3=4∠∠;③5B ∠=∠;④180B BAD ∠+∠=°.其中能使//AB CD 的共有( )A .1个B .2个C .3个D .4个 3.如图,直线a b ,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .3=4∠∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠4.如图,下列条件中,能判断直线a ∥b 的有( )个.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A .1B .2C .3D .45.如图,要使AD BC ∥,则需要添加的条件是( )A .A CBE ∠=∠B .AC ∠=∠ C .C CBE ∠=∠D .180A D ︒∠+∠= 6.如图,把一副直角三角板如图那样摆放在平行直线AB ,CD 之间,∠EFG =30°,∠MNP =45°.则:①EG PM ∥;②∠AEG =45°;③∠BEF =75°;④∠CMP =∠EFN .其中正确的个数是( )A .1B .2C .3D .47.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是( )A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB二、填空题9.如图,请填写一个条件,使结论成立:∵__________,∴//a b.10.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是____________________11.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中假命题的是___.(填写序号)12.如图,点E是CD上的一点,Rt△ACD≌Rt△EBC,则下结论:①AC=BC,②AD∥BE,③∠ACB=90°,④AD+DE=BE,成立的有_____个.13.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)14.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),下列条件①∠BAD =30°;②∠BAD =60°;③∠BAD =120°;④∠BAD =150°中,能得到的CD ∥AB 的有__________.(填序号)三、解答题15.如图,利用尺规,在ABC 的边AC 上方作CAE ACB ∠=∠,若AB BC ⊥,证明:AB AE ⊥(尺规作图要求保留作图痕迹,不写作法).16.如图,已知∠1=∠3,AC 平分∠DAB ,你能推断出哪两条直线平行?请说明理由.17.如图,已知∠1=∠2,∠3+∠4=180°,请说明AB //EF 的理由.18.如图,已知AGF ABC ∠=∠,12180∠+∠=︒.(1)试判断BF 与DE 的位置关系,并说明理由;(2)若BF AC ⊥,2140∠=︒,求AFG ∠的度数.19.如图,在ABC 中,90C ∠=︒,顶点B 在直线PQ 上,顶点A 在直线MN 上,BC 平分PBA ∠,AC 平分MAB ∠.(1)求证:PQ //MN ;(2)求QBC NAC ∠+∠的度数.20.已知:如图,A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:(1)BC=EF;(2)BC∥EF参考答案1.C2.B3.C4.C5.A6.C7.C8.C9.∠1=∠4(答案不唯一)10.①④11.③12.113.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)14.①④.15.解:如图,证明:∠CAE= ∠ACB,∥,BC AE180∴∠+∠=︒,EAB B⊥,即90AB BCB,∴∠=︒-∠=︒-︒=︒,EAB B1801809090∴⊥.AB AE16.解:可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行). 17.解:12∠∠=,AB CD∴,//∠+∠︒=,34180∴,CD EF//∴.AB EF//BF DE,18.解:()1//理由如下:AGF ABC∠=∠,∴,GF BC//∴∠=∠,13∠+∠=︒,1218032180∴∠+∠=︒,∴;//BF DE()2//BF DE,BF AC⊥,DE AC∴⊥,∠=︒,12180∠+∠=︒,2140∴∠=︒,140∴∠=︒-︒=︒.904050AFG19(1)证明:∵BC 平分PBA ∠,∴2PBA ABC ∠=∠,∵AC 平分MAB ∠,∴2MAB CAB ∠=∠,∵90C ∠=︒,∴90ABC CAB ∠+∠=︒,∴∠P AB +∠MAB =2∠ABC +2∠CAB =2(∠ABC +∠CAB )=2×90°=180°, ∴PQ MN ∥;(2)解:由(1)知:PQ MN ∥,∴180ABQ NAB ∠+∠=︒,∵90C ∠=︒,∴90ABC CAB ∠+∠=︒,∴18090270QBC NAC ABQ NAB ABC CAB ∠+∠=∠+∠+∠+∠=︒+︒=︒.20.(1)证明:(1)//AB DE ,A D ∴∠∠=,AF CD =,AC DF ∴=,在ABC 与DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,ABC DEF SAS ∴≅(), BC EF ∴=.(2)(2)ABC DEF ≅,BCA EFD ∴∠∠= ,//BC EF ∴ .。
5.1.2平行线的判定

《平行线的判定》教学反思
对本节课的做法是,对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定进行了灵活的运用。
注重学生的自己分析,启发学生用不同方法解决问题。
探索直线平行的条件。
在教学过程中,主要做到:突出学生是学习的主体,把问题尽量抛给学生解决。
在课程设计中,我注重了以下几个方面:
1、突出学生是学习的主体,把问题尽量抛给学生解决。
这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。
2、多媒体课件的应用广泛。
从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错;利用“几何画板”的直观性,充分说明学生探索的结论是正确的。
这时多种媒体以生动活泼、形象生动的方式进行教学,调动学生加入到学习过程中来,从而提高学生的学习热情,提高学习效率。
3、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。
一堂课下来,遗憾也有不少。
比如一个提问的不到位,上台展示的学生误解了我的意思,竟去书写推证过程(这超出了他们此时的能力范围)。
板书设计。
七年级数学下册平行线的判定课件

在解决三角形的相关问题时,可以利用平行线的性质进行证明和计算,如证明三角形的相似、计算三 角形的面积等。
复杂几何图形中的平行线
复杂几何图形中的平行关系
在复杂的几何图形中,经常需要找出其中的平行线,并利用平行线的性质进行证明和计算。
平行线在复杂几何图形中的应用
平行线在解决复杂几何图形的问题时有着广泛的应用,如计算图形的面积、证明图形的相关性质等。同时,掌握 平行线的性质和判定方法也是解决这类问题的关键。
梯形中的平行线
梯形的一组对边是平行的
梯形只有一组对边是平行的,这也是梯形与平行四边形的主要区别之一。
平行线在梯形中的应用
在解决梯形的相关问题时,经常需要利用平行线的性质,如计算梯形的高、证 明梯形的相关性质等。
三角形中的平行线
三角形中的中位线
三角形的中位线与三角形的两边平行,并且等于第三边的一半。这是三角形中平行线的一个重要应用 。
04 平行线与实际问题联系
实际生活中平行线现象
铁路轨道
铁路轨道是平行线的典型实例, 它们保持固定的间距以确保列车
的平稳运行。
电线杆与电线
在电力传输中,电线杆上的电线 通常保持平行,以减少电磁干扰
和能量损失。
建筑物轮廓线
许多现代建筑物的轮廓线由平行 线构成,这种设计使建筑物显得
简洁、整齐。
平行线在建筑设计中的应用
两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方, 我们把这种位置关系的角称为同位角。
内错角
两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条 被截直线之间,具有这样位置关系的一对角叫做内错角。
同旁内角
两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角, 叫做同旁内角。