随机过程实验报告

随机过程实验报告
随机过程实验报告

随机过程试验报告

班级:

姓名:

学号:

实验三

随机过程-答案

2012-2013学年第一学期统计10本 《随机过程》期中考试 一. 填空题 1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵() ()n ij P p =,二者之间的关系为 (n) n P P = 2.状态i 常返的充要条件为( ) n i i n p ∞ ==∑∞。 3.在马氏链{},0n X n ≥中,记() n i j p ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1. i j p =( ) 1n i j n p ∞ =∑,若i j p <1,称状态i 为 。 二. 判断题 1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若 ( ) 1 01110011111 1,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X =并且满足,则{:0n n X ≥}是一个马氏链。 × 2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。 × 3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。× 4. 若状态i ?状态j ,则i 与j 具有相同的周期。 √ 5. 一个有限马尔科夫链中不可能所有的状态都是暂态。 √ 三. 简答题 1.什么是随机过程,随机序列? 答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。当T 为整数集或正整数集时,则一般称为随机序列。 2 .什么是时齐的独立增量过程?

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

计算机上机实验内容及实验报告要求(完整版)

报告编号:YT-FS-1915-76 计算机上机实验内容及实验报告要求(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

计算机上机实验内容及实验报告要 求(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、《软件技术基础》上机实验内容 1.顺序表的建立、插入、删除。 2.带头结点的单链表的建立(用尾插法)、插入、删除。 二、提交到个人10m硬盘空间的内容及截止时间 1.分别建立二个文件夹,取名为顺序表和单链表。 2.在这二个文件夹中,分别存放上述二个实验的相关文件。每个文件夹中应有三个文件(.c文件、.obj 文件和.exe文件)。 3.截止时间:12月28日(18周周日)晚上关机时为止,届时服务器将关闭。 三、实验报告要求及上交时间(用a4纸打印)

1.格式: 《计算机软件技术基础》上机实验报告 用户名se××××学号姓名学院 ①实验名称: ②实验目的: ③算法描述(可用文字描述,也可用流程图): ④源代码:(.c的文件) ⑤用户屏幕(即程序运行时出现在机器上的画面): 2.对c文件的要求: 程序应具有以下特点:a 可读性:有注释。 b 交互性:有输入提示。 c 结构化程序设计风格:分层缩进、隔行书写。 3.上交时间:12月26日下午1点-6点,工程设计中心三楼教学组。请注意:过时不候哟! 四、实验报告内容 0.顺序表的插入。 1.顺序表的删除。

随机过程上机实验报告讲解.pdf

2015-2016第一学期随机过程第二次上机实验报告 实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方 法,加深对随机过程的理解。 上机内容: (1)模拟随机游走。 (2)模拟Brown运动的样本轨道。 (3)模拟Markov过程。 实验步骤: (1)给出随机游走的样本轨道模拟结果,并附带模拟程序。 ①一维情形 %一维简单随机游走 %“从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p” n=50; p=0.5; y=[0 cumsum(2.*(rand(1,n-1)<=p)-1)]; % n步。 plot([0:n-1],y); %画出折线图如下。

%一维随机步长的随机游动 %选取任一零均值的分布为步长, 比如,均匀分布。n=50; x=rand(1,n)-1/2; y=[0 (cumsum(x)-1)]; plot([0:n],y);

②二维情形 %在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n, 其中(u(k))和(v(k)) 是一维随机游动。例 %子程序是用四种不同颜色画了同一随机游动的四条轨 道。 n=100000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(2,n)<0.5)-1; x=[zeros(1,2); cumsum(z')]; col=colorstr(k); plot(x(:,1),x(:,2),col);

hold on end grid ③%三维随机游走ranwalk3d p=0.5; n=10000; colorstr=['b' 'r' 'g' 'y']; for k=1:4 z=2.*(rand(3,n)<=p)-1; x=[zeros(1,3); cumsum(z')]; col=colorstr(k); plot3(x(:,1),x(:,2),x(:,3),col);

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应 一、实验目的 通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。 二、实验平台 MATLAB R2014a 三、实验要求 (1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布 序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 (2)设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 (3)随机过程x(n)的理论上的功率谱函数为 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。 (4)根据步骤二产生的数据序列x(n)计算相关函数的估计值 与理论值1.1296、-0.666、0.85、0、0、0的差异。 (5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计 在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。 (6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率, 观察二者是否基本一致。

四、实验代码及结果 A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。 代码实现: 波形图: 分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。 B、设离散时间线性系统的差分方程为 x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000). 画出x(n)的波形图。 代码实现:

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

C程序设计上机实验报告((完整版))

C语言程序设计上机实验报告 学院:机械工程学院 班级:机自161213 姓名:刘昊 学号:20162181310 实验时间:2017 年3 月6 号 任课老师:张锐

C语言程序设计上机实验报告 实验一 一、实验名称: C 程序的运行环境和运行C程序的方法 二、实验目的:了解在 程序 C 编译系统上如何编辑、编译、连接和运行一个 C 三、实验内容: (1). (2). (3). 输入并运行一个简单的C程序。 设计程序,对给定的两个数求和。 设计程序,对给定的两个数进行比较,然后输出其中较大的数。 四、源程序代码: 代码1: 运行结果1:

程序分析1: 该程序用来判断所输入的整数是否为一个素数,如果一个数能被除了 1 和它本身整除,还能被其它数整除,那么它就不是一个素数,因此,用for 循环来进行整除过程的简写。 代码2: 运行结果2:

程序分析2: 简单的使用printf() 和scanf() 函数进行简单的数据运算。代码3: 运行结果3:

程序分析3: 使用if 语句进行判断。 五.实验总结 C语言程序设计上机实验报告 实验二 一、实验名称:顺序结构程序设计 二、实验目的:正确使用常用运算符(算术运算符、赋值运算符)的用法, 熟练掌握算术运算符及其表达式,逻辑运算符和逻辑表达式。 三、实验内容: (1). 编写程序,实现小写字母转大写。

(2). 编写程序,实现输入两个不同类型数据后,经过适当的运算(加、减、乘、除)后输出。 (3). 编写程序,计算三角形面积、立方体的体积和表面积、圆的面积和周长。 (4). 编写程序,实现单字符getchar 和putchar 输入输出。 (5). 编写程序,实现十进制、八进制、十六进制不同数制的输出。 四、源程序代码 代码1: 运行结果1: 程序分析1:

相关正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真 一、实验目的 以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。 二、实验内容 相关正态分布离散随机过程的产生 (1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列 {U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000} 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列 n1=hist(u1,10);%--------------------------hist函数绘制分布直方图 subplot(121);%-----------------------------一行两列中的第一个图 bar(n1); n2=hist(u2,10); subplot(122); bar(n2); 实验结果:

(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000) [][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码: clc; N=100000; u1=rand(1,N); u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n) n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n); 实验结果: (3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α 功率谱函数为

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机实验报告

随机信号实验报告 课程:随机信号 实验题目:随机过程的模拟与特征估计 学院: 学生名称:

实验目的: 1.学会利用MATLAB模拟产生各类随即序列。 2.熟悉和掌握随机信号数字特征估计的基本方法。 实验内容: 1.模拟产生各种随即序列,并画出信号和波形。 (1)白噪声(高斯分布,正弦分布)。 (2)随相正弦波。 (3)白噪声中的多个正弦分布。 (4)二元随机信号。 (5)自然信号:语音,图形(选做)。 2.随机信号数字特征的估计 (1)估计上诉随机信号的均值,方差,自相关函数,功率谱密度,概率密度。 (2)各估计量性能分析(选做) 实验仪器: PC机一台 MATLAB软件 实验原理:

随机变量常用到的数字特征是数字期望值、方差、自相关函数等。相应地,随机过程常用到的数字特征是数字期望值、方差、相关函数等。它们是由随机变量的数字特征推广而来,但是一般不再是确定的数值,而是确定的时间函数。 1.均值:m x(t)=E[X(t)]=;式中,p(x,t)是X(t)的 一维概率密度。m x(t)是随机过程X(t)的所有样本函数在 时刻t的函数值的均值。在matlab中用mea()函数求均值。 2.方差:(t)=D[X(t)]=E[];(t)是t的确定 函数,它描述了随机过程诸样本函数围绕数学期望m x(t) 的分散程度。若X(t)表示噪声电压,则方差(t)则 表示瞬时交流功率的统计平均值。在matlab中用var()函 数求均值。 3.自相关函数:Rx(t1,t2)=E[X(t1)X(t2)];自相关函数就是用来描 述随机过程任意两个不同时刻状态之间相关性的重要数 字特征。在matlab中用xcorr()来求自相关函数。 4.在matlab中可用函数rand、randn、normr、random即可生成 满足各种需要的近似的独立随机序列。 实验步骤: (一)大体实验步骤 (1)利用MATLAB编写程序。 (2)调试程序。

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程试题及解答

2016随机过程(A )解答 1、(15分)设随机过程V t U t X +?=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。 1) 求)(t X 的一维概率密度函数; 2) 求)(t X 的均值函数、相关函数和协方差函数。 3) 求)(t X 的二维概率密度函数; 解: 由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +?=)(也服从正态分布, 且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==?+=?+=+ {}{}{}{}22()()99D t D X t D U t V t D U D V t ==?+=+=+ 故: (1) )(t X 的一维概率密度函数为:()2 22218(1) (),x t t t f x e x --- += -∞≤≤∞ (2) )(t X 的均值函数为:()22m t t =+;相关函数为: {}{} (,)()()()()R s t E X s X t E U s V U t V =?=?+??+ {}{}{} 22()13()413 st E U s t E U V E V st s t =?++??+=?++?+ 协方差函数为:(,)(,)()()99B s t R s t m s m t st =-?=+ (3)相关系数: (,)s t ρρ== == )(t X 的二维概率密度函数为: 2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x e ρ????-----?? +????-++???????? = 2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的 平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解: 到达商店顾客数服从非齐次泊松过程。 将8时至15时平移到0—7时,则顾客的到达速率函数为: 419,04 ()80,47t t t t λ+≤≤?=? <≤? 在10:00—14:00之间到达商店顾客数(6)(2)X X -服从泊松分布,其均值: 6 4 6 2 2 4 (6)(2)()(419)80282m m t dt t dt dt λ-==++=???

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机过程上机实验报告-华中科技大学--HUST

随机实验报告 班级:通信1301班姓名:郭世康 学号:U201313639 指导教师:卢正新

一、模块功能描述 CMYRand类是整个系统的核心,它产生各种随机数据供后面的类使用。可以产生伪随机序列、均匀分布、正态分布、泊松分布、指数分布等多种随机数据。 CRandomDlg类是数据的采集处理类。它可以将CMYRand产生的随机数据处理分析,再送入CScope等类进行模拟示波器显示。 CScope等类是有关示波器显示的类。 二、模块间的关系 CRandomDlg类在整个程序中是一个不可缺少的环节,它调用CMYRand中的函数来产生符合所需分布的随机序列,再将产生的结果统计分析,送到CScope类中的函数进行模拟示波器显示。CMYRand为整个程序的核心,就是这个类产生所需分布的随机序列。CAboutDlg是模拟示波器界面上的有关按钮选项的类。我们在示波器界面上点击一个按钮,它就会执行这个按钮所对应功能,比如点击正态分布,它就会调用CRandomDlg中的对应函数,在调用CMYRand中的产生正态分布的函数,再将结果送到CScope类中进行显示,最后我们可以在示波器上看到图形。 三、数据结构 在本次随机试验中所填写的代码部分并没有用到有关于结构体等数据结构的东西。 四、功能函数 1、 /* 函数功能,采用线性同余法,根据输入的种子数产生一个伪随机数. 如果种子不变,则将可以重复调用产生一个伪随机序列。 利用CMyRand类中定义的全局变量:S, K, N, Y。 其中K和N为算法参数,S用于保存种子数,Y为产生的随机数 */ unsigned int CMyRand::MyRand(unsigned int seed) { //添加伪随机数产生代码 if(S==seed)

随机过程作业题及参考答案(第一章)

! 第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ¥ ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ? ? ?? ? ,;, 。

】 解: 00 11101222 11

6.窄带随机过程的产生 - 随机信号分析实验报告

计算机与信息工程学院综合性实验报告 一、实验目的 1、基于随机过程的莱斯表达式产生窄带随机过程。 2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、概率密度函数、相关函数及功率谱密度等。 3、掌握窄带随机过程的分析方法。 二、实验仪器或设备 1、一台计算机 2、MATLAB r2013a 三、实验内容及实验原理 基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 实验过程框图如下:

理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为: 01()()cos 2Y Y R G d τωωτωπ∞ = ? /22 1cos 2N A d ωωτωπ?=? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、 ()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密 度图形。 四、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器

随机过程答案-西交大

【第一章】 1.1 证明: ∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈U 且∴1F 是事件域。 ∵222,,,,c A A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω- ∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,c c A A A A F ΦΩ=ΩΦΩ∈U U U U U U ∴2F 是事件域。且12F F ∈。∵2ΩΩ∈∴3F Ω∈ ∴3F 是事件域。且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。 1.2 一次投掷三颗均匀骰子可能出现的点数ω为 (),,,,,,,,16,6,6i j k i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ ∴样本空间()6 1= ,,n i j i k j i j k ==≥≥ΩU 事件(){} ,,|,,i j k A i j k ωω==,,,,,,6,16,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ 事件域2F Ω= 概率测度 ()()() ,,1P 677i j k A i j = --,,,,,,16,6,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤

则(),,F P Ω为所求的概率空间。 1.3 证明: (1)由公理可知()0P Φ= (2)有概率测度的可列可加性可得 ()11 n n k k k k P A P A ==??= ???∑∑ (3)∵,,A B F A B ∈? ∴B A F -∈,()A B A -=Φ 由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+- 即()()()P B A P B P A -=- 有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有() ()1P A P A =- (5) ∵()()()()121212P A A P A P A P A A +=+- 假设 ()()()()()1 121 1111m m m k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=??=-+-+- ???∑∑∑K K U 成 立,则

随机过程实验报告全

随机过程实验报告学院专业学号姓名

实验目的 通过随机过程的模拟实验,熟悉随机过程编码规律以 及各种随机过程的实现方法,通过理论与实际相结合的方式,加深对随机过程的理解。 二、实验内容 (1)熟悉Matlab 工作环境,会计算Markov 链的n 步转移概率矩阵和Markov 链的平稳分布。 (2)用Matlab 产生服从各种常用分布的随机数,会调用matlab 自带的一些常用分布的分布律或概率密度。 (3)模拟随机游走。 (4)模拟Brown 运动的样本轨道的模拟。 (5)Markov 过程的模拟。 三、实验原理及实验程序 n 步转移概率矩阵 根据Matlab的矩阵运算原理编程,Pn = P A n o 已知随机游动的转移概率矩阵为: P = 0.5000 0.5000 0 0 0.5000 0.5000 0.5000 0 0.5000

求三步转移概率矩阵p3 及当初始分布为 P{x0 = 1} = p{x0 = 2} = 0, P{x0 = 3} = 1 时经三步转移后处于状态 3 的概率。 代码及结果如下: P = [0.5 0.5 0; 0 0.5 0.5; 0.5 0 0.5] % 一步转移概率矩阵 P3 = P A3 %三步转移概率矩阵 P3_3 = P3(3,3) %三步转移后处于状态的概率 1、两点分布x=0:1; y=binopdf(x,1,0.55); plot(x,y,'r*'); title(' 两点分 布'); 2、二项分布 N=1000;p=0.3;k=0:N; pdf=binopdf(k,N,p); plot(k,pdf,'b*'); title(' 二项分布'); xlabel('k'); ylabel('pdf'); gridon; boxon 3、泊松分布x=0:100; y=poisspdf(x,50); plot(x,y,'g.'); title(' 泊松分布') 4、几何分布 x=0:100; y=geopdf(x,0.2); plot(x,y,'r*'); title(' 几何分布'); xlabel('x'); ylabel('y'); 5、泊松过程仿真 5.1 % simulate 10 times clear; m=10; lamda=1; x=[]; for i=1:m s=exprnd(lamda,'seed',1); x=[x,exprnd(lamda)]; t1=cumsum(x); end [x',t1'] 5.2%输入:

相关文档
最新文档