硅微加工工艺

合集下载

硅微粉-塑料

硅微粉-塑料

1、来源硅微粉是由天然石英(SiO2)或熔融石英(天然石英经高温熔融、冷却后的非晶态SiO2)经破碎、球磨(或振动、气流磨)、浮选、酸洗提纯、高纯水处理等多道工艺加工而成的微粉。

2、理化性能硅微粉比重为2.6左右,耐火度大于1600℃,莫氏硬度为7.0,是一种无毒、无味、无污染的无机非金属材料。

由于它具有耐温性好、耐酸碱腐蚀、介电性能优异、热膨胀系数低、导热系数高、悬浮性能好、高绝缘、硬度大等优良的性能,被广泛应用于化工、电子、集成电路、电器、塑料、涂料、高级油漆、橡胶、国防等领域。

随着高技术领域的迅猛发展,硅微粉亦将步入新的历史发展时期。

3、硅微粉在橡塑材料中的作用(1)耐磨橡胶制品包括橡胶板、管、带、辊,它要求混炼胶具有很好的渗透性和较强的粘结性,试验结果证明,填充硅微粉的混炼胶充分体现了胶料稀、渗透性好、分散性好、粘结性强等独特性能,有利于混炼胶在帆布上的擦涂和增强了胶片与帆布之间的粘着强度,制品的扯断强度、永久变形等机械性能均有明显改善,尤其增强了橡胶制品的耐磨性。

(2)准球形硅微粉用于环氧树脂绝缘封装材料中,可大幅度增加填充量,降低混合材料体系的粘度,改善加工工艺性能,提高混合料的渗透能力,降低固化物的膨胀系数和固化过程的收缩率,减小热胀差。

(3)含水量小于0.1%的硅微粉,用于密封胶中可提高胶体的粘接强度、屈服值、剪切力稀释指数。

具有增稠、补强作用、抗撕裂、抗老化作用。

(4)硅微粉,主要成分是二氧化硅,作为塑料的填料,主要应用于聚乙烯( PE )、聚甲基丙烯酸甲酯( PMMA )、环氧树脂( EP )、硅胶等材料中,可提高制品的耐热、耐水气性,减少应力开裂。

硅微粉的技术指标4、改性硅微粉我司改性硅微粉指:采用特定的改性剂,通过特定的工艺过程对硅微粉进行表面活化处理而得。

改性后的硅微粉在树脂基体中分散更均匀,树脂与硅微粉之间的相界面结合力更强,从而使得橡塑制品的物理化学性能更加优越。

我司可根据客户的要求对各种型号硅微粉进行表面活性处理。

第五讲微细加工技术

第五讲微细加工技术

组成微系统。
1
硅膜片电容式压 力传感器
(1)在单晶硅基底上,用各向异性腐蚀技术(体去除加工)制成一个三 维空腔,空腔上形成一个硅膜片,直径1000微米,厚20微米。 (2)在硅基底上沉积SiO2掩膜作绝缘层(厚度几个微米);在绝缘层上 蒸镀直径700微米,厚20微米的金属电极。 (3)通过光刻、照相、腐蚀、镀层等微电子工艺制作集成电路IC。 (4)在电极与集成电路周围用键合技术制作支承,分别把镀层电极和屏 蔽层(静电盾)的玻璃衬底与支承用键合技术连接。 (5)通过预留连接孔与外部连接引线,电容电极间隙在1~5微米之间。测 量时感知电容与校正电容比较,产生。通过改变刻蚀剂的成分配 比、浓度、温度可以获得不同的刻蚀速率。
12
(2)各向异性刻蚀 对硅的各向异性刻蚀是制造微机械结构的关键技术之一, 利用这种技术能够制造出微传感器和执行器的精密三维结构。 由于单晶硅为各向异性体,表现在化学刻蚀性方面也为各向异 性,即在各向的刻蚀速率不同。刻蚀速率与晶向、掺杂浓度及 外加电压有关。沿主晶面(100)的刻蚀速率最快,沿(111) 面最慢,刻蚀速率比约为400﹕1。(110)面的刻蚀速率介于 两者之间。
又分为常压化学气相淀积、低压化学气相淀积、等离子强化
化学气相淀积3种方法。
24
化学气相沉积(CDV) 如图,高温使含有待沉积物质的化合物升华成气体,与另一 种气体化合物在一个反应室中进行反应,生成固态的沉积物 质,使之沉积在衬底上而生成薄膜。
25
• 目前主要用到的化学气相沉积法有: 常压化学气相淀积(APCVD):经常用来淀积二氧 化硅膜。 APCVD淀积的薄膜台阶覆盖能力较差。 低压化学气相淀积(LPCVD):具有良好的台阶覆 盖能力。 等离子增强化学气相淀积(PECVD):采用等离子 体把电能耦合到气体中,促进化学反应的进行,从 而来淀积薄膜的方式。

《硅片加工技术》课件

《硅片加工技术》课件
制和优化。
技术发展的未来展望
新材料的应用
绿色制造的推广
随着新材料技术的发展,未来硅片加 工将更多地应用新材料,以提高硅片 的性能和加工效率。
未来硅片加工将更加注重绿色制造, 通过环保技术的推广和应用,降低生 产过程中的环境污染,实现可持续发 展。
智能化技术的应用
智能化技术将在硅片加工中发挥越来 越重要的作用,如人工智能、大数据 和云计算等,以提高加工过程的自动 化和智能化水平。
05
硅片加工技术的发展趋势 与挑战
技术发展趋势
03
高效化
自动化
精细化
随着对硅片加工效率要求的提高,高效化 的加工技术成为发展趋势。例如,采用更 先进的切割设备和工艺,提高切割速度和 硅片质量。
自动化技术广泛应用于硅片加工过程,包 括自动上下料、自动检测和自动控制等, 以提高生产效率和加工精度。
随着集成电路的发展,硅片加工的精细化 程度不断提高,需要更精确的加工设备和 工艺。
《硅片加工技术》ppt课件
目录
• 硅片加工技术概述 • 硅片加工技术原理 • 硅片加工设备与工具 • 硅片加工技术的应用 • 硅片加工技术的发展趋势与挑战 • 硅片加工技术案例分析
01
硅片加工技术概述
硅片加工的定义与重要性
01
硅片加工的定义
02
硅片加工的重要性
硅片加工是指将硅材料通过一系列的物理和化学处理,加工成具有特 定形状和规格的硅片的过程。
以提高硅片的加工效率,降低生产成本。
案例二:硅片研磨与抛光技术的优化
总结词
硅片研磨与抛光技术的优化是提高硅片表面 质量和光学性能的关键。
详细描述
通过对硅片研磨与抛光技术的优化,可以有 效地降低硅片表面的粗糙度,提高硅片的光 学性能。这种技术可以应用于太阳能电池、 集成电路和微电子器件等领域。通过采用先 进的研磨和抛光设备,选用合适的磨料和抛 光液,优化工艺参数等方式,可以实现硅片 表面的超光滑加工。

光刻胶热熔法制备硅微透镜产品的方法及系统

光刻胶热熔法制备硅微透镜产品的方法及系统

一、概述光刻技术是当代微纳加工领域中的重要工艺之一,其应用广泛,包括半导体制造、光学元件制造等。

其中,光刻胶热熔法制备硅微透镜是一种常见且有效的方法。

本文将对光刻胶热熔法制备硅微透镜产品的方法及系统进行探讨和介绍,以便读者对这一工艺有更深入的了解。

二、光刻胶热熔法制备硅微透镜的基本原理1. 光刻胶的选择和涂布光刻胶是光刻工艺中的关键材料,选择合适的光刻胶对于制备硅微透镜至关重要。

常见的光刻胶有正胶和负胶两种。

正胶通常用于制备光刻胶模板,而负胶则用于制备光刻胶模具。

在制备硅微透镜时,首先需要选择合适的光刻胶,并将其均匀涂布在硅基片表面。

涂布工艺的精准度和一致性对于后续的制备工艺至关重要。

2. 光刻胶的光刻图案制备光刻是通过将光刻胶暴露在特定光照条件下,形成所需图案的工艺。

光刻胶的选择、光刻胶的暴露时间和光刻机的参数设置都会对光刻图案的质量产生影响。

在制备硅微透镜时,光刻图案的设计和制备是必不可少的步骤。

通过精确的光刻工艺,可以在光刻胶上形成微透镜的轮廓图案。

3. 热熔硅的填充和加工热熔硅是一种常用的材料,可用于填充光刻胶模具中形成微透镜的凸起结构。

在制备过程中,需要将热熔硅预热至一定温度,并在光刻胶模具中进行填充和加工。

热熔硅的填充和加工工艺涉及到温度控制、压力控制等多个参数的调节,对于最终微透镜产品的质量具有重要影响。

4. 后续工艺及检测在热熔硅填充和加工完成后,需对微透镜产品进行后续工艺,如去除残留的光刻胶、清洗表面等步骤。

对于制备出的微透镜产品需要进行质量检测,包括形貌观测、光学特性测试等。

三、硅微透镜制备系统的研究和设计1. 光刻机光刻机是光刻工艺中不可或缺的设备,其性能对于光刻图案的质量和精度具有重要影响。

在制备硅微透镜时,需要选择合适的光刻机,并进行参数设置和调节,以实现所需的微透镜结构。

2. 热熔设备热熔设备用于预热和加工热熔硅材料,其稳定的温度控制和压力控制对于微透镜产品的质量至关重要。

硅微粉简介及用途

硅微粉简介及用途

硅微粉简介及用途摘要:按照体颗粒形状分类的方法将硅微粉分为角形硅微粉和球形硅微粉,通过机械破碎等得到硅微粉产品。

本文论述了硅微粉产品的宽广应用领域,以及国内硅微粉产品生产与需求概况及其生产技术。

关键词:硅微粉;制备工艺;加工技术;用途1 绪论安米微纳-H系列硅微粉{二氧化硅微粉}主要成份为SiO2,是冶炼硅铁合金和金属硅时被烟气带出炉外的无晶形细颗粒,具有优越的火山灰性能。

近年来随着归家环保法规的逐步落实和人们环保意识的提高以及硅微粉应用领域的日益扩大,硅系铁合金生产厂相继新建或配套改造了烟气净化系统,即硅微粉生产系统。

回收硅微粉,尽可能的使废物资源化和无害化,减少工业生产对人类和环境的影响,既有经济效益,又有社会和环境效益。

12 硅微粉性能及用途安米微纳-H系列硅微粉是用二氧化硅(SiO2)又称石英的材料经过破碎、提纯、研磨、分级等工艺精细加工而成,其纯度高、色泽白、颗粒级配合理,有着独特的性能和广泛的用途。

2. 1 H系列硅微粉性能(1)具有良好的绝缘性:由于硅微粉纯度高,杂质含量低,性能稳定,电绝缘性能优异,使固化物具有良好的绝缘性能和抗电弧性能。

(2)能降低环氧树脂固化反应的放热峰值温度,降低固化物的线膨胀系数和收缩率,从而消除固化物的内应力,防止开裂。

(3)抗腐蚀性:硅微粉不易与其他物质反应,与大部分酸、碱不起化学反应,其颗粒均匀覆盖在物件表面,具有较强的抗腐蚀能力。

2(4)颗粒级配合理,使用时能减少和消除沉淀、分层现象;可使固化物的抗拉、抗压强度增强,耐磨性能提高,并能增大固化物的导热系数,增加阻燃性能。

(5)经硅烷偶联剂处理的硅微粉,对各类树脂有良好的浸润性,吸附性能好,易混合,无结团现象。

(6)硅微粉作为填充料,加进有机树脂中,不但提高了固化物的各项性能,同时也降低了产品成本。

32.2 几种主要用途硅微粉的理化指标2.2.1 电子及电器工业用硅微粉电子及电器工业用硅微粉(SJ/T10675-2002)产品分类及代号:用于电工行业有普通硅微粉(PG)、普通活性硅微粉(PGH)、电工级硅微粉(DG)、电工级活性硅微粉(DGH)。

硅基micro oled工艺流程

硅基micro oled工艺流程

硅基micro oled工艺流程随着科技的不断发展,微型oled技术逐渐成为显示技术的热门研究领域。

硅基micro oled作为oled技术的一种重要类型,其制备工艺流程显得尤为关键。

下面,我们将针对硅基micro oled的工艺流程做一详细介绍。

一、基础材料准备1. 硅基衬底材料硅基衬底通常选用具有良好晶体质量和平整度的硅衬底材料,例如硅衬底晶圆。

2. 光刻胶材料光刻胶是用于制备图案的关键材料之一,通常选择适合硅基材料的光刻胶。

3. 金属蒸发材料金属蒸发材料通常用于制备电极材料和金属反射层,例如铝、银、金等金属材料。

4. 有机发光材料有机发光材料是硅基micro oled的发光材料,通常需要选择发光效率高、色彩纯净的有机材料。

二、制备工艺流程1. 硅基衬底预处理将硅基衬底进行清洗、去氧化处理等表面处理工艺,以提高衬底的平整度和附着性。

2. 光刻胶涂布将光刻胶均匀涂布在硅基衬底表面,并通过特定工艺进行旋转和烘烤,形成一定厚度且平整的光刻胶层。

3. 光刻胶图案制备利用光刻技术,将所需的图案图形转移到光刻胶上,形成光刻胶图案。

4. 金属蒸发在光刻胶图案上,进行金属蒸发工艺,形成相应的金属电极结构和金属反射层。

5. 有机材料沉积利用有机分子沉积技术,在金属电极结构上沉积有机发光材料,并通过热蒸发或溅射等工艺使其形成均匀的有机薄膜。

6. 电极制备在有机发光材料上进行金属蒸发或其他工艺,形成另一层金属电极,完成电极制备。

7. 封装工艺将制备好的硅基micro oled芯片与玻璃基板进行粘接、密封和灌封等封装工艺,形成成品硅基micro oled器件。

三、性能测试与品质保障在制备完成的硅基micro oled器件上,需要进行发光均匀性、亮度、寿命等性能测试,并进行严格的品质保障,保证器件的稳定性和可靠性。

通过以上对硅基micro oled工艺流程的介绍,相信大家对硅基micro oled的制备工艺有了更清晰的了解。

(完整版)MEMS的主要工艺类型与流程

(完整版)MEMS的主要工艺类型与流程

MEMS的主要工艺类型与流程(LIGA技术简介)目录〇、引言一、什么是MEMS技术1、MEMS的定义2、MEMS研究的历史3、MEMS技术的研究现状二、MEMS技术的主要工艺与流程1、体加工工艺2、硅表面微机械加工技术3、结合技术4、逐次加工三、LIGA技术、准LIGA技术、SLIGA技术1、LIGA技术是微细加工的一种新方法,它的典型工艺流程如上图所示。

2、与传统微细加工方法比,用LIGA技术进行超微细加工有如下特点:3、LIGA技术的应用与发展4、准LIGA技术5、多层光刻胶工艺在准LIGA工艺中的应用6、SLIGA技术四、MEMS技术的最新应用介绍五、参考文献六、课程心得〇、引言《微机电原理及制造工艺I》是一门自学课程,我们在王跃宗老师的指导下,以李德胜老师的书为主要参考,结合互联网和图书馆的资料,实践了自主学习一门课的过程。

本文是对一学期来所学内容的总结和报告。

由于我在课程中主讲LIGA技术一节,所以在报告中该部分内容将单列一章,以作详述。

一、什么是MEMS技术1、MEMS的概念MEMS即Micro-Electro-Mechanical System,它是以微电子、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执行器和微系统等。

一般认为,微电子机械系统通常指的是特征尺度大于1μm小于1nm,结合了电子和机械部件并用IC集成工艺加工的装置。

微机电系统是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导产业之一。

MEMS技术自八十年代末开始受到世界各国的广泛重视,主要技术途径有三种,一是以美国为代表的以集成电路加工技术为基础的硅基微加工技术;二是以德国为代表发展起来的利用X射线深度光刻、微电铸、微铸塑的LIGA( Lithograph galvanfomung und abformug)技术,;三是以日本为代表发展的精密加工技术,如微细电火花EDM、超声波加工。

MEMS工艺

MEMS工艺
Ø 硅片本身不被加工,器件的结构部分由淀 积的薄膜层加工而成,结构与基体之间的 空隙应用牺牲层技术,其作用是支撑结构 层,并形成所需要形状的最基本过程,在 微器件制备的最后工艺中解牺牲层。
PPT文档演模板
MEMS工艺
Ø 表面微加工过程特点:
Ø添加——图形——去除 Ø添加:薄膜沉积技术 Ø图形:光刻 Ø去除:腐蚀技术
PPT文档演模板
MEMS工艺
2.残余应力
在微机械加工中是固有的
PPT文档演模板
MEMS工艺
3.存在于薄膜结构中本身的应力
Ø由微加工过程中原子结构局部变化产 生的
Ø例如,过量掺杂会导致结构在表面微 加工后产生很大的残余应力
PPT文档演模板
MEMS工艺
粘连
Ø两个分离薄片粘附在一起的现象称为 粘连;
PPT文档演模板
MEMS工艺
PPT文档演模板
MEMS工艺
表面微机械加工的特点
Ø 1、在表面微机械加工中,硅片本身不被刻 蚀,没有穿过硅片,硅片背面也无凹坑。
Ø 2、表面微机械加工适用于微小构件的加工, 结构尺寸的主要限制因素是加工多晶硅的 反应离子刻蚀工艺。
Ø 3、形成层状结构的特点为微器件设计提供 较大的灵活性。
Ø酒精、液态CO2置换水; Ø依靠支撑结构防止塌陷。
PPT文档演模板
MEMS工艺
PPT文档演模板
典型牺牲层腐蚀工艺
Ø 氧化,做体硅腐蚀掩膜层; Ø 光刻氧化层,开体硅腐蚀窗口; Ø 体硅腐蚀出所需底层结构; Ø 去除SiO2; Ø 生长或淀积牺牲层材料; Ø 光刻牺牲层材料成所需结构; Ø 生长结构材料; Ø 光刻结构材料; Ø 牺牲层腐蚀,释放结构层; Ø 防粘结处理。
MEMS工艺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档