数字图像处理教程(matlab版)
MATLAB之数字图像处理教程

矩阵的创建(续)
1、直接输入法-在命令窗口按规则输入方式创建矩阵
函数文件(续)
将上述程序存为文件sgn.m,便可以将其作为普 通的MATLAB函数来使用: >>x=4/3*pi; ↙ y=3*sgn(sin(x)) ↙ 显示结果为: y= -3
三、MATLAB的常用命令
MATLAB可以通过菜单对工作着的窗口进行 操作,也可以通过键盘在命令窗口输入命令进行 操作,下面给出几个常用的通用命令。 quit 关闭MATLAB exit 关闭MATLAB clc 清除MATLAB命令窗口中的所有显示内容 clear 清除工作空间中保存的所有变量 其他命令可以在学习应用中逐步熟悉。
(4)当前路径窗口(Current Directory)
当前路径窗口也称为当前目录窗口。可以显 示或改变当前目录。 当前目录指的是MATLAB运行文件时的工作 目录。只有在当前目录或搜索路径下的文件 及函数可以被运用或调用,如果没有特殊指 明,数据文件也将储存在当前目录下。 如果要建立自己的工作目录,在运行文件前 必须将该文件所在目录设置为当前目录。
(2)工作空间(Workspace)
工作空间用于保存MATLAB变量的信息。 在工作空间可以对变量进行观察、编辑、保 存和删除。 保存在工作空间中的自定义变量,直到使用 了“clear”命令清除工作空间或关闭了 MATLAB系统才被清除。 在命令窗口中键入“whos”命令,可以显示出 保存在工作空间中的所有变量的名称、大小、 数据类型等信息,如果键入“who”命令,则 只显示变量的名称。
函数文件(续)
实现符号函数
1, x 0, y sgn( x) 0, x 0, 1, x 0
MATLAB中的图像处理技术详解

MATLAB中的图像处理技术详解图像处理是一门涉及数字图像获取、处理、分析和展示的学科,其在各个领域都有重要的应用。
而MATLAB作为一种强大的科学计算软件,提供了丰富的图像处理工具包,可以帮助用户轻松地进行各种图像处理操作。
本文将详细介绍MATLAB中常用的图像处理技术,包括图像读取、图像显示、灰度转换、滤波操作、边缘检测以及图像分割等。
1. 图像读取和显示首先,在MATLAB中进行图像处理的第一步是读取图像。
MATLAB提供了imread函数,可以快速读取各类图像文件,例如JPEG、PNG、BMP等。
读取的图像可以是灰度图像,也可以是彩色图像。
读取之后,我们可以使用imshow函数将图像显示在MATLAB的图像窗口中,便于后续处理和分析。
2. 灰度转换在实际的图像处理应用中,有时候我们需要将彩色图像转换为灰度图像,以方便后续的处理和分析。
MATLAB提供了rgb2gray函数,可以将彩色图像转换为灰度图像。
转换后的灰度图像只包含一个通道,每个像素点的取值范围为0~255,表示灰度级。
3. 滤波操作滤波操作是在图像处理中常用的一种方法,其可以对图像进行平滑或者增强等处理。
MATLAB中提供了丰富的滤波函数,例如均值滤波、中值滤波、高斯滤波等。
这些滤波函数可以通过设置不同的参数来控制滤波效果,比如滤波窗口的大小、滤波核函数等。
4. 边缘检测边缘检测是图像处理中的一个重要任务,其可以帮助我们识别图像中的边缘信息,进而进行物体检测和分割。
MATLAB中提供了多种边缘检测算法,包括Sobel 算子、Canny算子等。
这些算法可以根据不同的应用场景选择合适的边缘检测方法,并根据需要调整相应的参数。
5. 图像分割图像分割是将图像分成若干个不同区域或者物体的过程,其在图像处理和计算机视觉中具有重要的意义。
MATLAB中提供了多种图像分割算法,例如基于阈值的分割、基于区域的分割以及基于边缘的分割等。
这些算法可以根据要求对图像进行有效的分割,以满足用户的实际需求。
(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
MATLAB图形图像处理2课件

• imfilter是用来实现线性空间滤波的函数,其基本语法格式 为:
• hp = imfilter(p, w, filter_mode, boundary_options, size_options)
• 其中hp为经过滤波后输出的图像,p为原图像,参数w为滤 波模板,filter_mode指定滤波过程中使用相关核(corr)还 是卷积核(conv)。boundary_options控制边界填充方式为 边界复制(replicate)、边界循环(circular)还是边界对 称(symmetric)。size_options可以为same或者full两者之 一。如 hp = imfilter(p, w, ’replicate’)
• subplot(1,3,3);imshow(p2);
• 图3.33 拉普拉斯波和高斯-拉普拉斯滤波((a)原 图像;(b)拉普拉斯滤波后图像;(c)高斯-拉普拉 斯滤波后图像)
3.7 图像的空间变换
• 图像的空间变换也称为图像的几何变 换,是指将用户获得或设计的原始图像, 按照需要产生大小、形状和位置的变化。 图像几何变换是图像显示技术中的一个重 要组成部分,常用的图像几何变换主要包 括图像的缩放、图像的剪切及图像的旋转 等内容。
• p = imread('football.jpg');
• I = rgb2gray(p);
• imhist(I);
3.5.3直方图均衡化
• 通过直方图均衡化做适当的调整,即把一幅已知灰 度概率分布图像中的像素灰度做某种映射变换,使 它变成一幅具有均匀概率分布的新图像,使图像视 觉效果更加清晰。
• imnoise是MATLAB提供的图像噪声模拟函数,其 基本语法格式为:
实验一 MATLAB数字图像处理初步

实验一MATLAB数字图像处理初步一、实验目的1、熟悉及掌握在MATLAB中能够处理哪些格式图像。
2、熟练掌握在MATLAB中读取图像,并获取图像的大小、颜色、高度、宽度等等相关信息。
3、掌握在MATLAB中按照指定要求存储一幅图像的方法。
4、熟悉数字图像矩阵的格式转换二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类: 亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
规定双精度型归一化亮度图像的取值范围是[0,1](2) 二值图像一幅二值图像是一个取值只有0和1的逻辑数组。
而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。
《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验一.实验目的及要求1、熟悉并掌握MA TLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的增强技术。
二、实验设备MATLAB 6.5 以上版本、WIN XP 或WIN2000 计算机三、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。
熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
(可将每段程序保存为一个.m文件)1.直方图均衡化clear all; close all % Clear the MATLAB workspace of any variables% and close open figure windows.I = imread('pout.tif'); % Reads the sample images ‘pout.tif’, and stores it inimshow(I) % an array named I.display the imagetext(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I) % Create a histogram of the image and display it in% a new figure window.[I2,T] = histeq(I); % Histogram equalization.figure, imshow(I2) % Display the new equalized image, I2, in a new figure window.text(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I2) % Create a histogram of the equalized image I2.figure,plot((0:255)/255,T); % plot the transformation curve.imwrite (I2, 'pout2.png'); % Write the newly adjusted image I2 to a disk file named% ‘pout2.png’.imfinfo('pout2.png') % Check the contents of the newly written file2.直接灰度变换clear all; close allI = imread('cameraman.tif'); 注意:imadjust()功能:调整图像灰度值或颜色映像表,也可实现伽马校正。
matlab图像处理教程1

基本概念一点通从理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
空间坐标(x,y)的数字化称为图像采样,而幅值数字化称为灰度级量化。
对一幅图像采样时,若每行(横向)采样数为M,每列(纵向)采样数为N,则图像大小为M*N个像素,f(x,y)表示点(x,y) 处的灰度值,则F(x,y)构成一个M*N 实数矩阵****************************经验分享:“像素”的英文为“pixel”,它是“picture”和“element”的合成词,表示图像元素的意思。
我们可以对“像素”进行如下理解:像素是一个面积概念,是构成数字图像的最小单位。
****************************把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。
量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。
量化的方法包括:分层量化、均匀量化和非均匀量化。
分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗至最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。
当图像的采样点数一定时,采用不同量化级数的图像质量不一样。
量化级数越多,图像质量越好;量化级数越少,图像质量越差。
量化级数小的极端情况就是二值图像。
****************************经验分享:“灰度”可以认为是图像色彩亮度的深浅。
图像所能够展现的灰度级越多,也就意味着图像可以表现更强的色彩层次。
如果把黑——灰——白连续变化的灰度值量化为256个灰度级,灰度值的范围为0~255,表示亮度从深到浅,对应图像中的颜色为从黑到白。
****************************因此,对数字图像进行处理,也就是对特定的矩阵进行处理。
在C语言中,对M×N数字图像处理的核心代码如下:for (j=1;j<N+1;j++)for(i=1;i<M+1;i++){对I(i,j)的具体运算};在Matlab中,对M×N数字图像处理的核心代码如下:for i=1:Nfor j=1:M对I(i,j)的具体运算endend一幅数字图像可以用一个矩阵来表示,对数字图像进行处理,实质上就是对特定的图像矩阵进行变换的过程,因此,图像变换是数字图像处理技术的基础。
数字图像处理ch01(MATLAB)-课件

2024/10/12
第一章 绪论
17
2024/10/12
第一章 绪论
18
2024/10/12
第一章 绪论
19
2024/10/12
第一章 绪论
20
<2>几何处理
放大、缩小、旋转,配准,几何校正,面积、周长计算。
请计算台湾的陆地面积
2024/10/12
第一章 绪论
21
<3>图象复原
由图象的退化模型,求出原始图象
图像处理是指按照一定的目标,用一系列的操 作来“改造”图像的方法.
2024/10/12
第一章 绪论
7
➢图象处理技术的分类(从方法上进行分类)[2]
1.模拟图象处理(光学图像处理等)
用光学、电子等方法对模拟信号组成的图像,用光学器 件、电子器件进行光学变换等处理得到所需结果(哈哈 镜、望远镜,放大镜,电视等).
2024/10/12
第一章 绪论
22
<4>图象重建[3]
[3]此图像来自罗立民,脑成像,
2024/10/12
第一章 绪论
23
/zhlshb/ct/lx.htm
2024/10/12
第一章 绪论
图形用户界面,动画,网页制作等
2024/10/12象处理的基本概念,和基 本问题,以及一些典型的应用。
2024/10/12
第一章 绪论
33
提问
摄像头(机),扫描仪,CT成像装置,其他图象成像装置
2)图象的存储
各种图象存储压缩格式(JPEG,MPEG等),海量图象数据库技术
3)图象的传输
内部传输(DirectMemoryAccess),外部传输(主要是网络)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/3、图像的几何变换
二、图像镜像
B=imtransform(A,TFORM,method); TFORM=makeform(transformtype,Matrix);%空间变换结 构
Method合法值 ‘bicubic’ ‘bilinear’ ‘nearest’
含义 双三次插值 双线性插值 最近邻插值
‘log’ ‘prewitt’ ‘sobel’
功能 平均模板 圆形领域的平均模板 高斯模板 拉普拉斯模板 高斯-拉普拉斯模板 Prewitt水平边缘检测算子 Sobel水平边缘检测算子
/4、空间域图像增强 四、中值滤波
中值滤波本质上是一种统计排序滤波器。中值不同于均值,是指排序 队列中位于中间位置的元素的值。中值滤波并非线性滤波器。对于某 些类型的随机噪声具有非常理想的降噪能力。典型的应用就是消除椒 盐噪声。
添 加 高 斯 白 噪 声
添 加 椒 盐 噪 声
/4、空间域图像增强 二、空间域滤波
滤波过程就是在图像f(x,y)中逐点移动模板,使模板中心和点(x,y)重合,滤波器 在每一点(x,y)的响应是根据模板的具体内容并通过预先定义的关系来计算的。
W(-1,-1) W(-1,0) W(-1,1)
W(0,-1) W(0,0) W(0,1)
数字图像处理
浙江大学
/1、图像的读取和显示 /2、图像的点运算 /3、图像的几何变换 /4、空间域图像增强 /5、频率域图像增强 /6、彩色图像处理 /7、形态学图像处理 /8、图像分割 /9、特征提取
/1、图像的读取和显示
一、图像的读取
A=imread(FILENAME,FM T)
FILENAME 指定图像文件的完整路径和文件名。如果在work工作目录下 只需提供文件名。FMT为图像文件的格式对应的标准扩展名。 I_1=imread('D:\10.06.08nir\TTC10377.BMP');%读入图像 二、图像的写入
c为尺度比例常数,s为源灰度值,t为变换后的目标灰 度值。k为常数。灰度的对数变换可以增强一幅图像 中较暗部分的细节,可用来扩展被压缩的高值图像中 的较暗像素。广泛应用于频谱图像的显示中。
Warning:log函数会对输入图像矩阵s中的每个元素进行
操作,但仅能处理double类型的矩阵。而从图像文件中得到的 图像矩阵大多是uint8类型的,故需先进行im2double数据类型 转换。
图像直方图归一化
imhist(I);%灰度直方图
I=imread(‘red.bmp’);%读入图像 figure;%打开新窗口 [M,N]=size(I);%计算图像大小 [counts,x]=imhist(I,32);%计算有32个小区间的灰度直方图 counts=counts/M/N;%计算归一化灰度直方图各区间的值 stem(x,counts);%绘制归一化直方图
逆 时 针 度
30
/4、空间域图像增强 一、噪声添加
h=imnoise(I,type,parameters);
type为噪声类型,合法值如下:
‘gaussian’
高斯白噪声:幅度为高斯分布,功率谱均匀分 布
‘salt&pepper’
黑点如胡椒,白点如盐粒。由图像传感器、传 输信道、解码处理、图像切割等产生的黑白相 间的亮暗点噪声。
thresh=graythresh(I);%自动设定所需的最优化阈值
OTSU算法:最大类间方差法自动单阈值分割。
Kapur算法:一维直方图熵阈值算法
niblack算法:局部阈值分割 阈值的计算公式是T = m + k*v,其中m为以该像素点为中心的区域的平 均灰度值,v是该区域的标准差,k是一个系数。
原 图 像 及 直 方 图
图像变暗后灰度均衡化 图像变亮后灰度均衡化
/3、图像的几何变换
一、图像平移
正变换
1 0 0
[ x1 y1 1] [ x0 y0 1] 0 1 0
Tx
Ty
1
逆变换
1
0 0
[x0 y0 1] [x1 y1 1] 0
1 0
Tx
Ty
1
strel %用来创建形态学结构元素 translate(SE,[y x])%原结构元素SE上y和x方向平移 imdilate%形态学膨胀
/2、图像的点运算
三、灰度的Gamma变换
y x esp
其中,x、y的取值范围为[0,1]。esp为补偿系数,r则为Gamma系数。 Gamma变换是根据r的不同取值选择性的增强低灰度区域的对比度 或者高灰度区域的对比度。
J=imadjust(I,[low_in high_in],[low_out high_out],gamma)
figure;%创建一个新的窗口
figure;subplot(m,n,p);imshow(I);
Subplot(m,n,p)含义为:打开一个有m行n列图像位置的窗口, 并将焦点位于第p个位置上。
/1、图像的读取和显示 四、图像的格式转换
im2bw(I,LEVEL);
阈值法从灰度图、RGB图创建二值图。LEVEL为指定的阈值;(0,1)。
h=medfilt2(I1,[m,n]);
m和n为中值滤波处理的模板大小,默认3*3
/4、空间域图像增强
五、图像锐化
图像锐化主要用于增强图像的灰度跳变部分,主要通过运算导数(梯度) 或有限差分来实现。主要方法有:Robert交叉梯度,Sobel梯度,拉普拉 斯算子,高提升滤波,高斯-拉普拉斯变换。
原图像
水平镜像图像
垂直镜像图像
/3、图像的几何变换
三、图像转置
A=imread('nir.bmp'); tform=maketform('affine',[0 1 0;1 0 0;0 0 1]); B=imtransform(A,tform,'nearest'); figure;imshow(A); figure;imshow(B);imwrite(B,'nir转置后图像.bmp');
W(1,-1) W(1,0) W(1, 1)
f(x-1,y-1) f(x-1,y) f(x1,y+1)
f(x,y-1) f(x,y) f(x,y+1)
f(x+1,y- f(x+1,y) f(x+1,y+
1)
1)
B=imfilter(f,w,option1,option2,…);
f 为要进行滤波操作的图像。 w为滤波操作使用的模板,为一个二维数组,可自己定义。 option1……是可选项,包括: 1、边界选项(’symmetric’、’replicate’、’circular’) 2、尺寸选项(’same’、’full’) 3、模式选项(’corr’、’conv’)
参数transformtype指定了变换的类型,常见的’affine’为二维或 多维仿射变换,包括平移、旋转、比例、拉伸和错切等。
Matrix为相应的仿射变换矩阵。
A=imread('nir.bmp'); [height,width,dim]=size(A); tform=maketform('affine',[-1 0 0;0 1 0;width 0 1]); B=imtransform(A,tform,'nearest'); tform2=maketform('affine',[1 0 0;0 -1 0;0 height 1]); C=imtransform(A,tform2,'nearest'); figure;imshow(A); figure;imshow(B);imwrite(B,'nir水平镜像.bmp'); figure;imshow(C);imwrite(B,'nir垂直镜像.bmp');
I=imread('nir.bmp'); figure;imshow(imadjust(I,[],[],0.75)); %gamma=0.5 title('Gamma 0.5');
原
图 像
NIR
Gamma 0.5
Gamma 1.5
四、灰度阈值变换及二值化
f
x
0 255
x x
T T
T为指定阈值
BW=im2bw(I,level);%level为人工设定阈值范围为[0 ,1]
原 图 像
滤 波 后 图
像
/4、空间域图像增强 三、滤波器设计
h=fspecial(type,parameters)
parameters为可选项,是和所选定的滤波器类型type相关的 配置参数,如尺寸和标准差等。
type为滤波器的类型。其合法值如下:
合法取值 ‘average’
‘disk’ ‘gaussian’ ‘laplacian’
DA
DMax A0
DA
Hi
i0
[J,T]=histeq(I);%J为输出图像,T为变换矩阵
图像易受光照、视角、方位、噪声等的影响。使得同一类图像的不同变形 体之间的差距有时大于该类图像与另一类图像之间的差距,影响图像识别、 分类。图像归一化就是将图像转换到唯一的标准形式以抵抗各种变换,从 而消除同类图像不同变形体之间的外观差异。也称为图像灰度归一化。
/2、图像的点运算
二、灰度的线性变换
DB f DA f ADA fB
Fa>1时,输出图像的对比度将增大;Fa<1时,输出图像对比度将减小。 Fa=1且Fb非零时,所有像素的灰度值上移或下移,使整个图像更暗或 更亮。Fa<0,暗区变亮,亮区变暗。
/2、图像的点运算