增益精确的可变增益放大器
VCA810中文资料

VCA810高增益调节范围,宽带,可变增益放大器VCA810特点:1、高增益调节范围:±40分贝2、微分/单端输出3、低输入噪声电压:2.4nV/√Hz的4、恒定带宽与增益:达到35MHz5、较高的分贝/ V的增益线性度:±0.3分贝6、增益控制带宽:25MHz的7、低输出直流误差:<±40mv8、高输出电流:±60毫安9、低电源电流:24.8毫安(最大为-40° C至+85° C温度范围)主要应用领域:光接收器时间增益控制、声纳系统、电压可调主动滤波器、对数放大器、脉冲振幅补偿、带有RSSI的AGC接收机、改善更换为VCA610芯片描述:VCA810是直流耦合,宽带,连续可变电压控制增益放大器。
它提供了差分输入单端输出转换,用来改变高阻抗的增益控制输入超过- 40DB增益至+40 dB的范围内成dB/ V的线性变化。
从±5V电源工作,将调整为VCA810的增益控制电压在0V输入- 40DB增益在-2V输入到+40 dB。
增加地面以上的控制电压将衰减超过80dB的信号路径。
信号带宽和压摆率保持在整个增益的不断调整range.This40分贝/ V的增益控制精确到±1.5分贝(±0.9分贝高档),允许在一个AGC应用的增益控制电压为接收使用信号强度指示器(RSSI)的精度为±1.5分贝。
出色的共模抑制,并在两个高阻抗输入的共模输入范围,允许VCA810提供差分接收器的操作与增整。
以地为参考的输出信号。
零差分输入电压,给出了一个很小的直流偏移误差0V输出。
低输入噪声电压,确保在最高增益设置好输出信噪比。
在实际应用中,脉冲前沿的信息是至关重要的,和正在使用的VCA810,以平衡不同的信道损耗,群延迟变化最小增益设置将保留优秀的脉冲边沿信息。
一种改进的输出阶段提供足够的输出电流来驱动最苛刻的负载。
虽然主要用于驱动模拟到数字转换器(ADC)或第二阶段的放大器,±60毫安输出电流将轻松驱动双端接50Ω线或被动的后过滤超过±1.7V输出电压范围的阶段。
【国家自然科学基金】_可变增益放大器_基金支持热词逐年推荐_【万方软件创新助手】_20140803

推荐指数 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
科研热词 可变增益放大器 锗硅 超宽带 自动增益控制 电流平方 有源可调衰减器 数字反馈回路 异质结双极晶体管 助听器 低噪声放大器 wimax无线接收机 esd cmos cmmb
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
科研热词 预失真 自动增益控制 系数 直流失调抵消 电致伸缩效应 混频器 正交频分复用 正交多项式 无线局域网 掺铒光纤放大器 接收机 指数发生电路 增益平坦 增益可调 可变增益放大器 功率放大器 伪指数 cmos 802.11b
科研热词 cmos 高精度 跨阻放大器 读出电路 误差放大器 自动调零 结型场效应管 程控 相关双采样 改进型可变增益放大器 宽带 失调消除 多栅管 增益可调 可变增益放大器 可变增益 压控电阻 共源共栅 低噪声放大器(lna) 低噪声 乒乓结构 x射线探测
推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6
科研热词 电路设计 射频放大器 可变增益 wcdma sige hbt
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
推荐指数 3 1 1 1 1 1 1 1 1 1 1 1 1 1
2014年 序号 1 2 3 4 5
2014年 科研热词 逐束团 电子学 束流位置检测器 大动态范围 中国散裂中子源 推荐指数 1 1 1 1 1
可编程增益放大器的分析与设计

可编程增益放大器的分析与设计随着科技的不断发展,可编程增益放大器(Programmable Gain Amplifier,PGA)在电子电路领域中得到了广泛应用。
它具有可以根据需要调整增益的特点,在信号处理、传感器接口、音频设备等方面发挥着重要的作用。
本文将对可编程增益放大器的原理、特点和设计方法进行分析与探讨。
可编程增益放大器的基本原理是通过调节放大器的增益来实现信号的放大或衰减。
常见的可编程增益放大器一般由可变电阻网络和运算放大器构成。
可变电阻网络通过改变电阻值来调整放大器的增益,而运算放大器则起到放大信号的作用。
通过这两个部分的协同工作,可编程增益放大器可以实现不同增益的选择。
可编程增益放大器具有以下几个特点。
首先,它可以根据需要进行增益的调整,从而适应不同的应用场景。
其次,它具有较高的增益精度和稳定性,可以满足对信号处理的高要求。
再次,它可以实现低功耗和低噪声的设计,提高信号的质量。
最后,它具有较好的线性度和带宽,可以满足高速信号处理的需求。
在可编程增益放大器的设计过程中,需要考虑一些关键因素。
首先是电阻网络的选择,不同的电阻网络可以提供不同的增益范围和精度。
其次是运算放大器的选型,需要考虑增益带宽积、输入偏置电流和功耗等指标。
此外,还需要考虑功耗的优化和抗干扰能力的提高。
设计可编程增益放大器的方法主要包括两个方面。
首先是电路拓扑结构的选择,常见的有反馈式、前馈式和混合式等结构。
不同的结构适用于不同的应用场景。
其次是参数的优化和调整,可以通过仿真和实验的方法来确定最佳的参数取值。
同时,还需要考虑可编程增益放大器在整个系统中的匹配和接口的设计。
总而言之,可编程增益放大器作为一种灵活可调的放大器,具有广泛的应用前景。
通过对其原理、特点和设计方法的分析与探讨,可以更好地理解和应用可编程增益放大器。
相信在未来的发展中,可编程增益放大器将在电子电路领域中发挥出更大的作用。
一种基于g_mI_D方法设计的可变增益放大器

一种基于g m /I D 方法设计的可变增益放大器李新,王业飞,杨国坤(沈阳工业大学信息科学与工程学院,辽宁沈阳110870)摘要:提出了一种基于g m /I D 方法设计的可变增益放大器。
设计基于SMIC90nmCMOS 工艺模型,可变增益放大器由一个固定增益级、两个可变增益级和一个增益控制器构成。
固定增益级对输入信号预放大,以增加VGA 最大增益。
VGA 的增益可变性由两个受增益控制器控制的可变增益级实现。
运用g m /I D 的综合设计方法,优化了任意工作范围内,基于g m /I D 和VGS 关系的晶体管设计,实现了低电压低功耗。
为得到较宽的增益范围,应用了一种新颖的伪幂指函数。
利用Cadence 中spectre 工具仿真,结果表明,在1.2V 的工作电压下,具有76dB 的增益,控制电压范围超过0.8V ,带宽范围从34MHz 到183.6MHz ,功耗为0.82mW 。
关键词:g m /I D ;低电压;低功耗;可变增益中图分类号:TN432文献标识码:A文章编号:1674-6236(2012)24-0146-04A variable -gain amplifier design based on g m /I D methodLI Xin ,WANG Ye -fei ,YANG Guo -kun(Shenyang University of Technology ,Shenyang 110870,China )Abstract:A variable gain amplifier (VGA )was designed based on Gm/ID method.The circuit was fabricated by SMIC 90nm CMOS technology model.It consists of a fixed -gain stage ,two variable -gain stages and a gain controller.The fixed gain stage gives pre -amplification in order to boost the VGA ’s maximum gain.The VGA ’s gain tenability is provided by the two variable gain stages which controlled by the gain controller.The design synthesis is simplified and optimized using g m /I D method which enables us to characterize transistors in any operating region based on their gm/ID and VGS relation ,and help us to design the low -voltage low -power circuit.In order to get wider gain rage ,the proposed VGA utilizes a novel pseudo -power exponential function.The Spectre simulation results show that under 1.2V supply voltage the proposed VGA has 76dB gain -range over 0.8V control voltage range ,with 34~183.6MHz bandwidth ,and 0.82mW power consumption.Key words:g m /I D ;low -voltage ;low -power ;variable gain收稿日期:2012-08-28稿件编号:201208154作者简介:李新(1974—),男,辽宁昌图人,博士,副教授。
宽带CMOS可变增益放大器的设计

Fi 2 Co mon- a e s r c u e g. m g t tu t r Fi 3 Si als m i g v ra e ga n s r t r g. gn —um n a ibl i t uc u e
郭 峰 李智群 陈东东 李海松 王志功
( 南 大学 射 频 与 光 电集 成 电路 研 究 所 ,南 京 东 209 ) 10 6
摘 要 :采 用 T MC 0 1 S . 8 m RFCMOS工 艺 设 计 实 现 了一 种 对 数 增 益 线 性 控 制 型 的 宽 带 可 变 增 益 放 大 器 . 电路 采
维普资讯
第2卷 8
第 1 N O. 2 1 28 1
De c., 00 2 7
20 0 7年 1 2月
CH I ES J U RN A L N E O OF EM I S CON D U CTO R S
宽带 C MOS可 变 增 益 放 大 器 的 设 计 *
*东 南 大 学 射 光 所 与 安 宇 科 技 合 作 项 目 t通 信 作 者 malg oe g 9n rp s a tm E i ̄u fn 9 c @ i.i .o n
AGC工作原理

AGC工作原理引言概述:自动增益控制(AGC)是一种在电子设备中常见的技术,用于调节信号的增益,以保持信号的稳定性。
本文将详细介绍AGC的工作原理,包括其基本原理、应用场景、工作流程、控制方法以及优缺点。
一、基本原理:1.1 反馈机制:AGC通过引入反馈机制来实现信号增益的自动调节。
它通过对输入信号进行采样并与预设的参考信号进行比较,从而确定信号增益的调整方向和幅度。
1.2 可变增益放大器:AGC系统中常使用可变增益放大器来实现信号增益的调节。
可变增益放大器根据反馈信号的大小,自动调整放大器的增益,以保持输出信号在一个合适的范围内。
1.3 控制电路:AGC系统还包括一个控制电路,用于根据反馈信号的变化,调整可变增益放大器的增益。
控制电路通常采用反馈控制算法,根据输入信号的特性和设定的参考信号,计算出合适的增益值。
二、应用场景:2.1 无线通信:在无线通信系统中,AGC广泛应用于接收机中,用于调节接收信号的增益。
它可以自动适应信号强度的变化,保持信号在接收机中的合适水平,从而提高信号的质量和可靠性。
2.2 音频处理:在音频设备中,AGC用于调节音频信号的增益,以保持音频的稳定性。
它可以自动调整音频信号的音量,使得不同的音频源在输出时具有相似的音量水平。
2.3 图像处理:在图像处理领域,AGC可以用于调节图像的亮度和对比度。
它可以根据图像的特性,自动调整图像的亮度和对比度,以提高图像的可视性和质量。
三、工作流程:3.1 采样:AGC系统首先对输入信号进行采样,获取输入信号的幅度信息。
3.2 反馈:采样得到的信号与预设的参考信号进行比较,得到反馈信号。
3.3 调节:根据反馈信号的大小,控制电路计算出合适的增益值,并将其应用于可变增益放大器,实现信号增益的调节。
四、控制方法:4.1 开环控制:AGC系统中的控制电路可以采用开环控制方法。
在开环控制中,控制电路根据预设的参考信号和输入信号的特性,计算出合适的增益值,并直接应用于可变增益放大器。
一种增益可控高频宽带放大器的设计

• 128•随着人工智能及物联网技术的不断发展,高频宽带放大器在传输增益和功率放大等技术方面有着越来越高的要求。
本文针对宽带放大器传输增益的稳定性问题,设计了一种增益可控的高频放大模块,能够实现增益高精度可控的技术要求。
利用HMC470为主运算放大器,级联AD8009作为推挽输出后极,通过对主电路嵌入低功耗微处理器MSP430G2553单片机的方式,实现放大器的数控增益。
利用AD 软件仿真测试表明,该设计增益精确可控,稳定性较强,抗干扰能力较好,能够使用在高品质音响、民用雷达通信等场合。
1.引言随着电子、通信技术的飞速发展,增益可控制的宽带放大器发挥着越来越重要的作用(张玉钱,一种高增益宽带视频放大器设计:南京:南京理工大学,2015)。
在雷达通信、信号传输、电子测距等应用电路中,不仅要求高频放大器达到宽带的状态,还要求具有较精确的放大增益。
增益可控的宽带放大器件的发展,与集成运放在各行业的发展息息相关(杨洪文,可调节的宽带放大器在测试中的优势:国外电子测量技术,2017)。
目前,国内外对于可控的高增益宽带放大器的研究处于快速发展阶段。
何晓丰等(何晓丰,马成炎,叶甜春,王良坤,莫太山,数字控制增益可配置的射频宽带放大器:浙江大学学报(工学版),2012)提出了一种带单端转差分功能的大动态范围的数字控制增益可配置的射频宽带放大器,用于双频段电视射频接收机的前端,提供了更高的线性度。
高瑜宏等(高瑜宏,朱平,一种高增益带宽积CMOS跨导运算放大器:微电子学,2017)设计了一种高增益可控的运算放大器,提出的多级前馈补偿结构改善了DC增益和增益带宽积,通过相位补偿的方式对放大增益进行控制。
本文使用单片机数字控制的方式,设计了一种增益可控的高频放大模块,不仅能够实现较高的直流增益,还具备增益高精度可控的技术要求。
2.放大器系统组成本设计主要由可控增益电路、单片机最小系统、电源模块组成,系统结构如图1所示。
高精度VGA概论

MT-072
选择这些电阻是为了产生1、10、100和1000的十倍频程增益,但是,如果需要其他增益, 可以轻松更改电阻值。理想情况下,应该使用一个调整电阻网络,以获得初始增益精度和 低温漂特性。20 pF的反馈电容确保了稳定性,并在切换增益时保持输出电压不变。开关的 控制信号会先将第一个开关关闭几纳秒,然后再开启第二个开关。在此期间,运算放大器 为开环。如果没有电容,输出会开始摆动。相反,电容会在开关期间保持输出电压不变。 由于两个开关同时断开的时间非常短,因此只需要20 pF。对于较慢的开关,可能需要较大 的电容。 增益为1000时,VGA的输入电压噪声频谱密度仅为1.65 nV/√Hz (1 kHz),略高于仅使用AD797 时的噪声性能。出现增加的原因在于ADG412的噪声以及流过RON的AD797电流噪声。 VGA的精度对于决定系统整体精度非常重要。AD797的偏置电流为0.9µA,流过35 Ω RON时, 结果会额外导致31.5 µV的失调误差。与AD797的失调相加后,总VOS变为71.5 µV(最大值)。 失调温度漂移受偏置电流和 R ON变化的影响。计算显示,总温度系数从 0.6 µV/ºC 增加至 1.6 µV/ºC。请注意,尽管这些误差很小(最后可能无关紧要),但仍然需要知道它们的存在。 在实际应用中,电路精度和增益TC将由外部电阻决定。共模范围、输入偏置电流等输入 特性完全取决于AD797。 DAC编程VGA 另一种VGA结构在运算放大器的反馈环路中利用一个DAC来调整数字控制下的增益,如 下面的图 8所示。 DAC的数字码控制其相对于基准输入 VREF的衰减,其功能类似于电位 计。衰减反馈信号可以增加闭环增益。 这种同相VGA要求使用带电压模式输出的乘法DAC。请注意,乘法DAC具有宽基准电压 范围,其中包括零。对于 VGA的多数应用来说,基准输入必须能够处理双极性信号。 AD7846是一款符合这些要求的16位转换器。在本应用中,它采用标准的二象限乘法模式。 OP213是一款低漂移、低噪声放大器,但放大器的选择非常灵活,具体取决于计划的应 用。输入电压范围取决于AD7846的输出摆幅,比正电源低3 V,比负电源高4 V。反馈环路 中使用了一个1000 pF的电容以保持稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增益精确的可变增益放大器 时间:2009-08-03 13:13:54 来源:山西电子技术 作者:李 丹,闰涛涛,陈东坡,周健军 上海交通大学 引 言 可变增益放大器是GPS接收机中的一个关键模块,它与反馈环路组成的自动增益控制电路为模/数转换器(ADC)提供恒定的信号功率。模拟信号控制增益的VGA增益连续变化,但是线性度较差。 这里采用电阻形式的负反馈的放大器来设计一个0~30 dB增益变化的中频可变增益放大器,VGA的增益精度并不取决于工艺、电压和温度等因素对电阻、MOS管开关的影响,增益误差在各个工艺角下都小于5%。
1 可变增益放大器原理 模拟电路需要对信号进行放大或衰减,这一功能可由可变增益放大器(VGA)实现。它在无线通信的收/发信机模拟前端中,起着至关重要的作用。图1是用于GPS的接收机模拟前端图。处于基波频率的VGA补偿射频模块和中频模块的增益衰减;VGA将输出信号放大到A/D转换器需要的幅度。AGC环路改变接收机的增益,调整各级信号动态范围,稳定输出信号功率的作用。
对于VGA电路,IIP3和THD是重要的指标,因为它的输出信号幅度很大。其次,为了实现宽增益范围调节,同时保持不同增益输入功率下恒定的输出建立时间,要求VGA的增益与控制电压成dB线性。VGA增益步长越小越精确,则对ADC的要求越降低。在文中,数字控制的VGA电路提供了30 dB的增益控制范围,使用7b精确控制增益大小,所耗面积和功耗小。
2 可变增益放大器结构与性能比较 VGA主要分为开环和闭环两种结构。一种常见的开环结构是文献[1]采用的Gilbert结构,如图2所示电路。Ms上加一个基准电压,电压Vc控制耦合电流的大小,起到改变增益的作用。但是此结构电路堆叠了四层电路,限制了输出电压的摆幅,而且此电路不能实现指数增益的控制。这些运用最广泛的开环结构中,可变增益放大器主要基于简单差分,或者是伪差分对,使用源极反馈技术,模拟乘法器和使用二极管连接的MOS管作为负载等技术。这些结构最大的问题就是线性度和失真度的问题。 因为负反馈电路具有稳定输出,降低非线性失真的作用,所以闭环结构呈现更好的线性度。常见的闭环电路结构中的VGA使用电阻阵列实现增益控制,例如将电阻和MOS管串联,控制MOS管开关的通断状态实现阻值的变化,进而改变放大器的增益。因为继承电路中的电阻、MOS管开关都受到工艺、电压、温度的影响,难以实现精确的阻值,所以PGA的增益精度有限。文献[9]使用电流分割技术,实现了精确的增益控制,文献[10]对电阻网络进行了改进,但是这些电路复杂,额外电路也增加了功耗。这里在没有增加任何设计复杂性的情况下,实现了较为精确的增益控制。
3 高性能VGA结构和实现 为了达到要求的增益控制范围和步长,使用两个级联的VGA。第一个部分的VGA实现6 dB步长的增益控制,另一个部分实现精准的O.5 dB步长。因此整个VGA实现了粗调和细调(见图2)。 当运算放大器的增益足够大时,闭环VGA的增益等于两个电阻的比值:Gain=-Rf/Rs,改变电阻可以实现增益的变化。粗调的阻值变化很大,改变反馈Rf,会影响粗调输出节点的极点;电阻Rs可变,它对前级将形成变化的负载效应。选择改变Rs,在前级增加缓冲电路进行隔离。 首先进行第一级6 dB步长增益的考虑:取Rf=R0,Rs=R1,实现3 dB的增益,那么Rf不变,Rs=2R1,则实现9 dB的增益。同理:当Rs=4R1,实现15 dB增益;当Rs=8R1,实现21 dB增益;当Rs=16R1,实现27 dB增益。 为了更好地匹配,对与电阻串联的MOS管开关尺寸按图3比例设计,Rs等于MOS管的导通电阻和多晶硅电阻,MOS导通电阻与W/L成反比。 再考虑第二级O.5 dB步长增益可以发现,O.95转化为dB值等于-0.445 5 dB。0.9为-0.915 dB,0.85为-1.412 dB,O.8为-1.938 dB,0.75为-2.499 dB,O.7为-3.098 dB。1~0.7之间O.05的间隔对应于dB中基本接近于0.5 dB的间隔。使用这个规律,设计可以如下:
两级VGA就可以实现O~29.5 dB(2.5 dB+27 dB=29.5 dB)增益控制,且步长可以比较精准地达到O.5 dB。由于设计中用的都是电阻的相对值,所以电阻、MOS管开关都受到工艺电压和温度等因素VGA的增益精度的影响会很小。 如图4所示,可变电阻R1是用多晶硅电阻和工作在晶体管区的MOS开关来实现的。开关电阻通常被用在低失真可调模拟模块。MOS晶体管的非线性将产生谐波以及交调失真,这将会降低整个电路的线性度。在文献[11]中,推导出一个近似的公式来接近开关管的非线性特性。
输入电压Vin被转换成非线性电流Iin流入电流模式的VGA放大器。在弱非线性网络中,已经使用Vol-terra级数推导出非线性谐波失真(HD2和HD3)。
式中:Vin是输入的电压的峰值;R1等于R1α+Rds的总和;α2,α3是二次、三次非线性系数。因此如果把开关管放置在运放的虚地端(即运放的输入端),则HD2和HD3近似等于0。
4 版图与后仿真结果 图5是用SMIC 0.18μm CMOS工艺实现的VGA版图,芯片面积为:510μm×160μm,整个版图包括VGA核心部分,直流偏移消除模块,和CMOS源极跟随缓冲电路,恒定Gm的偏置电路。
图6~图8给出了VGA在Candence环境下用Spectre工具模拟得到的后仿真结果。图6为输入阶越跳变,得到的输出瞬态响应曲线。 图7为不同的数字增益设置对应的VGA增益。图8是放大器不同增益的频域响应。其增益从0 dB变化到29.5 dB,其中0.5 dB一档。
5 结 语 本文介绍一种O.18μm CMOS工艺实现,应用于GPS全球定位系统得可变增益放大器。文中巧妙地应用反馈系统中环路稳定性理论设计放大器;在增益步长的控制上,增益随bit线性化,并保证增益精度不受工艺角偏差影响。仿真结果表明,该放大器适合在接收机模拟前端中使用。 通用可变增益放大器 悬赏分:20 | 提问时间:2010-8-13 18:43 | 提问者:2008051318
1.基本要求
(1)放大器的低频及直流最大不失真输入、输出信号幅度不低于±3V; (2)放大器的电压增益可设为三档:0.10—1.00,1.0—10.0,10—100,放大器在同一档位时增益线性度不低于1%,分辨力不低于1%; 增益为100时,在DC—1MHz带宽范围内,输出大信号幅度波动不超过5%; 增益为100时、输入端短路,输出端电压值不超过±5mV; ,并有过压保护能力;或50(5)输入端阻抗可开关设置为大于10M 或0。(6)放大器输出端阻抗可开关设置为50 2.发挥部分 (1)放大器的低频及直流最大不失真输入、输出信号幅度不低于±8V; (2)放大器的增益可设为四档:0.100—1.000,1.00—10.00,10.0—100.0,100.0—1000,放大器在同一档位时线性度不低于0.5%,分辨力不低于0.1%; (3)增益为1000,在DC—5MHz带宽范围内,输出大信号幅度波动不超过5%; ,在DC—5MHz频段内,大信号输出时波形失真度小于2%;,外接负载50(4)放大器输出端阻抗为50 (5)增益为1000时、输入端短路,输出端电压值不超过±20mV; (6)整体电路成本低,电路工艺简单; (7)其他。
基于可变增益放大器AD604的超声衰减补偿电路 作者: | 出处:电子发烧友 | 2010-10-27 11:16:13 | 阅读 440 次 基于可变增益放大器AD604的超声衰减补偿电路,AD604是一种低噪声、高精度、双通道、可变增益放大器。它具有增益的分贝数和增益控制电压成正比的特性
AD604是一种低噪声、高精度、双通道、可变增益放大器。它具有增益的分贝数和增益控制电压成正比的特性,特别适合于超声仪器中的时间增益补偿电路的应用。文中介绍了AD604的特点、结构和使用方法,并介绍了一种基于该芯片的超声衰减补偿的典型应用电路。
AD604是Analog Devices(AD公司)的产品。和同类产品相比,AD604具有超低噪声、高精度、增益连续可调,且增益的分贝(dB)数和增益的控制电压成正比的特点。而医用超声仪器的时间增益控制(TGC)电路要求其增益与控制电压呈指数关系,也就是增益的分贝(dB)数和控制电压成线性关系。因此,在这方面, AD604是一个理想的超声TGC放大器,它能有效减小送入A/D转换器的信号动态范围。
1 引脚功能 AD604采用24脚封装,并有DIP、SSOP和SOIC三种封装形式,其管脚排列如图1所示。各引脚的功能说明如下: PAI1/PAI2:前置放大器正输入; PAO1/PAO2:前置放大器输出; FBK1/FBK2:前置放大器反馈端; COM1/COM2:信号地;当其接正电源时,前置放大器通道被关闭; -DSX1/-DSX2:微分衰减器信号输入负端; +DSX1/+DSX2:微分衰减器信号输入正端; VGN1/VGN2:增益控制输入端以及电源关闭端。接地时,该衰减通道被关闭;否则随着正电压的增加,增益将逐渐增加; VREF:两个通道的增益控制档。当其电压为+2.5V时,增益为20dB/V,而当电压为+1.67V时,增益为30dB/V; VOCM:输出信号的共模信号控制端。用以确定这部分电路中直流信号的中值电压; OUT1/OUT2:信号输出端; VPOS/VNEG:接正/负电源; GND1/GND2:接地端。
2 内部结构及工作原理 AD604是一个双通道可变增益放大器。它的每一个通道都是由一个低噪声前置放大器和一个可变增益放大器(XAMP)组成。同时XAMP又由一个高精度受控微分衰减器、一个增益控制单元、一个固定增益反馈放大器及一个由分立元件R3、 R4组成的VOCM共模电压控制单元组成。其原理如图2所示。AD604的每一个通道都可提供一个范围为48dB的可变增益。