可变增益放大器
可变增益放大器vga原理

可变增益放大器vga原理
可变增益放大器(VGA)在无线通信的收/发信机模拟前端中起着至关重要的作用。
其原理是,通过对信号进行放大或衰减,以满足不同的信号处理需求。
VGA通常用于补偿射频模块和中频模块的增益衰减,将输出信号放大到
A/D转换器需要的幅度。
此外,VGA还通过AGC环路改变接收机的增益,调整各级信号动态范围,稳定输出信号功率。
在VGA电路中,有几个重要的性能指标,包括IIP3和THD。
由于VGA的输出信号幅度很大,因此这两个指标尤其重要。
此外,为了实现宽增益范围调节,同时保持不同增益输入功率下恒定的输出建立时间,VGA的增益与控制电压需要成dB线性关系。
VGA增益步长越小越精确,对ADC的要求也越低。
数字控制的VGA电路提供了30 dB的增益控制范围,使用7 b精确控制增益大小,具有较小的面积和功耗。
以上信息仅供参考,如有需要,建议查阅专业书籍或文献或咨询专业人士。
AD8370应用指南( 可变增益放大器)

AD8370是美国AD公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数以及优良的失真性能和较宽的带宽,可以广泛应用于差分ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口、单端差动转换器中。
文章介绍了AD8370的基本原理及应用设计方法。
关键词:AD8370;数字控制;可变增益;放大器1 概述AD8370是美国AD(ANALOG DEVICES INC)公司推出的一种低成本、数字控制的可变增益放大器,它具有高IP3和低噪声系数。
由于其具有优良的失真性能和较宽的带宽,所以特别适合作为现代接收器设计中的增益控制器件应用。
图1是AD8370的原理框图。
在宽输入动态范围应用中,AD8370可提供两种输入范围,分别对应于高增益模式和低增益模式。
它内部的一个7位衰减器在提供28dB的衰减范围时,分辨率高于2dB,而在22dB的衰减范围时,分辨率高于1dB。
AD8370的输入增益选择范围为17dB,可输出低失真的高电平。
AD8370可通过在PWUP引脚上输入合适的逻辑电平来上电或者断电。
当关闭电源时,AD8370的消耗电流小于5mA,并可提供优良的输入输出隔离。
AD8370采用ADI 高速XFCB方法,因而可在宽带情况下提供高频率和低失真特性,其典型静态电流为78mA。
AD8370可变增益放大采用的是密集的16脚TSSOP封装,工作温度范围为-40℃~+85℃。
其主要特点如下:●差动输入为200Ω;●差动输出为100Ω;●噪声系数为7dB(最大增益时);●频带宽度可从低频到700MHz(-3dB);●具有40dB的精确增益范围;●带有串行7位接口;●可通过管脚编程低、高增益,其中低增益范围为-11~17dB,高增益范围为+6~34dB;●输入动态范围很宽;●单电源可低至3V。
AD8370可应用于差动ADC驱动器、IF采样接收器、射频/中频放大中间级、SAW滤波器接口以及单端差动转换等领域。
ad603手册

ad603手册1. 简介AD603是ADI(Analog Devices Inc.)推出的一款低噪声,宽带可变增益放大器。
该芯片内部集成了一个控制电压输入端,可通过调节该输入电压实现增益的控制。
本手册将为您介绍AD603的主要特性,电路连接,使用方法和一些应用示例。
2. 主要特性2.1 低噪声:AD603采用了高性能放大器核心,能够在低噪声环境下提供出色的信号放大效果。
2.2 宽带性能:该芯片的带宽范围从DC到40MHz,可以满足多种应用场景的需求。
2.3 可变增益:AD603的增益范围为-14dB到20dB,通过控制电压输入端的电压,可以轻松地调节增益。
2.4 供电电压范围:AD603可以在单电源供电下工作,供电电压范围为5V到15V,非常适合嵌入式系统等低功耗应用。
2.5 稳定性:该芯片具有良好的温度稳定性和电源稳定性,保证了信号放大的一致性和可靠性。
3. 电路连接AD603的电路连接非常简单,下面是一种常见的连接方式:3.1 高频输入端(INHI和INLO):将要放大的信号输入到INHI和INLO引脚,可以通过串联电容和电阻来完成信号的直流分离和控制输入阻抗。
3.2 控制电压输入端(VGAIN):通过改变VGAIN引脚的电压,可以实现对增益的控制,增益和控制电压之间存在线性关系。
3.3 电源端(VD+和VD-):将正负电源连接到VD+和VD-引脚,供芯片工作所需的电能。
3.4 输出端(OUTHI和OUTLO):从OUTHI和OUTLO引脚输出放大后的信号,可以通过串联电阻和电容来滤除直流分量和控制输出阻抗。
4. 使用方法AD603的使用方法非常简单,下面是一般的步骤:4.1 电路连接:按照上述的电路连接方式,将AD603与其他电路元件连接好。
4.2 供电:将适当的电源电压接入VD+和VD-引脚,确保芯片正常工作。
4.3 增益控制:通过控制电压输入端(VGAIN)的电压,调节增益到合适的值。
20可变增益放大器的设计

DA转换器构成的可编程增益放大器 除法器型可编程增益放大器
可编程仪表放大器
• PGA205
(有电阻型,引脚型,数字型)
模拟开关的基本原理
模拟开关的结构是将n沟道MOSFET与p沟道MOSFET并联,可使信号在两个方向上同等顺畅地通过,因而 也没有严格的输入端与输出端之分。n沟道与p沟道器件之间承载信号电流的多少由输入与输出电压比决 定。两个MOSFET由内部反相与同相放大器控制下导通或断开。这些放大器根据控制信号是CMOS或是 TTL逻辑、以及模拟电源电压是单或是双电源,对数字输入信号进行所需的电平转换。(CD4066没有电 平转换)。
模拟开关的应用
3、音频信号的失真问题
音频信号对失真的要求都比较高,模 拟开关在切换音频信号时由于导通电 阻随信号变化(即非线性)产生了信 号失真。
模拟开关的应用
4、高频或视频的特殊要求:
RON和寄生电容之间的平衡对视频信号非常重要。RON较大的传统模拟开关需要额外增益级来补偿插 入损耗。同时,低RON开关具有较大寄生电容,减小了带宽,降低视频质量。低RON开关需要输入缓冲器, 以维持带宽,但是这会增加元件数量。L、T型开关适合高频开关,有比较高的隔离度,可以利用单刀双 置。
电阻越小、越平坦越好
模拟开关的基本原理
模拟开关CD4051-53特性
通路电阻与电源电压、输入电压的关系
通路电阻与温度、输入电压的关系
模拟开关CD4051-53参数
模拟开关CD4051-53参数
模拟开关CD4051-53参数
sgm3157工作原理

sgm3157工作原理
SGM3157是一种快速可变增益放大器,它可以在晶体管、集成电路或线性分
立件应用中取代多个技术变量增益放大器。
SGM3157采用可变增益设计,以提供从区域到大小(A-E)范围的强大和可靠的增益补偿。
经过多年的研究,该器件的设计融合了许多卓越的性能,使其能够无缝地完全高效和动态地在多种特定应用中提供动态范围和灵活性。
SGM3157使用一个简单的反馈集成电路(PLC)来控制增益,而不是传统的
技术变量控制器(TCVC)。
PLC可以更精确地控制增益变化,从而避免由于噪声或失真的风险,从而消除有害的干扰影响,从而获得更优质的信号。
此外,PLC
还可以确保增益的一致性,以最大程度地限制由其他噪声或失真的影响造成的影响,最大程度地改善系统的性能。
除了技术变量控制领域外,SGM3157增益放大器还可以用于非线性控制领域。
由于其具有高度可编程的可靠性,它可以用来实现高可靠性的非线性调整,以更具灵活性地处理输入和输出范围,并避免由系统失真、大量计算量和低可靠性造成的问题。
此外,SGM3157还提供了一个非常简单的用户界面,可以通过GUI(图形用
户界面)快速完成增益设置的灵活性,并且可以调整增益的小单位,大大提高其效率和灵活性。
此外,它还可以支持实时监视,这样可以确保增益的稳定性。
总的来说,SGM3157是一种可靠的多功能增益放大器,它可以有效解决噪声
及失真影响的问题,并且可以提供快速和灵活的增益设置和监控功能。
pga可编程增益放大器原理

pga可编程增益放大器原理1.引言1.1 概述可编程增益放大器(Programmable Gain Amplifier,PGA)是一种用于信号处理和调节的电路器件。
它是一种特殊的增益放大器,可以通过改变放大倍数来调整信号的幅度。
在很多应用中,信号的幅度常常需要进行调节,以满足系统对信号灵敏度和动态范围的要求。
传统的解决方法是使用固定增益的放大器,但这种方法在应对不同幅度的信号时存在一定的局限性。
与传统的固定增益放大器不同,PGA具有可编程的增益调节功能。
通过改变输入和输出之间的放大倍数,PGA能够根据实际需求灵活地调整信号的幅度,从而更好地适应不同的应用场景。
可编程增益放大器通常由放大电路和数字控制系统组成。
放大电路负责对信号进行放大处理,而数字控制系统通过用户界面或者计算机接口等方式,向放大电路发送控制信号,以调整放大倍数。
这种数字控制的特性使得PGA更加灵活可靠,并且可以实现更为精确的增益调节。
在实际应用中,PGA广泛用于各种需要信号调节的领域,如通信系统、音频处理、医疗设备等。
它可以用于增强信号弱化后的信号,调节信号的动态范围,提高系统的灵敏度和精度,同时还可以减少噪声和失真的影响。
本文将详细介绍可编程增益放大器的基本原理和工作原理,并对其应用前景进行展望。
通过深入了解PGA的原理和特点,读者能够更好地了解和应用可编程增益放大器,为相关领域的研究和开发提供一定的参考和指导。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍了整篇文章的组织和结构。
通过明确阐述文章的组织框架和各个章节的内容安排,读者可以更好地理解整篇文章的逻辑脉络。
文章结构部分应包括以下内容:首先,介绍整篇文章的目的和意义。
可以说明可编程增益放大器在电子领域的重要性和应用前景,引发读者的兴趣。
然后,明确文章的章节安排。
可以简要介绍每个章节的主要内容和要点,以及各个章节之间的逻辑关系。
接着,说明各个章节的篇幅安排。
AGC工作原理

AGC工作原理引言概述:自动增益控制(AGC)是一种在电子设备中常见的技术,用于调节信号的增益,以保持信号的稳定性。
本文将详细介绍AGC的工作原理,包括其基本原理、应用场景、工作流程、控制方法以及优缺点。
一、基本原理:1.1 反馈机制:AGC通过引入反馈机制来实现信号增益的自动调节。
它通过对输入信号进行采样并与预设的参考信号进行比较,从而确定信号增益的调整方向和幅度。
1.2 可变增益放大器:AGC系统中常使用可变增益放大器来实现信号增益的调节。
可变增益放大器根据反馈信号的大小,自动调整放大器的增益,以保持输出信号在一个合适的范围内。
1.3 控制电路:AGC系统还包括一个控制电路,用于根据反馈信号的变化,调整可变增益放大器的增益。
控制电路通常采用反馈控制算法,根据输入信号的特性和设定的参考信号,计算出合适的增益值。
二、应用场景:2.1 无线通信:在无线通信系统中,AGC广泛应用于接收机中,用于调节接收信号的增益。
它可以自动适应信号强度的变化,保持信号在接收机中的合适水平,从而提高信号的质量和可靠性。
2.2 音频处理:在音频设备中,AGC用于调节音频信号的增益,以保持音频的稳定性。
它可以自动调整音频信号的音量,使得不同的音频源在输出时具有相似的音量水平。
2.3 图像处理:在图像处理领域,AGC可以用于调节图像的亮度和对比度。
它可以根据图像的特性,自动调整图像的亮度和对比度,以提高图像的可视性和质量。
三、工作流程:3.1 采样:AGC系统首先对输入信号进行采样,获取输入信号的幅度信息。
3.2 反馈:采样得到的信号与预设的参考信号进行比较,得到反馈信号。
3.3 调节:根据反馈信号的大小,控制电路计算出合适的增益值,并将其应用于可变增益放大器,实现信号增益的调节。
四、控制方法:4.1 开环控制:AGC系统中的控制电路可以采用开环控制方法。
在开环控制中,控制电路根据预设的参考信号和输入信号的特性,计算出合适的增益值,并直接应用于可变增益放大器。
可变增益放大器

可变负载 Ic1 可变增益放大器1
输出
Q7 Ic2
输入—— 差分放大器 Q8 , Q9 基极
偏置—— Q6 ,Q7镜像电流源
改变增益方式——放大器偏置电流受 Ic2 控制
前置中放特点:
二极管 Q1,Q2 Q3,Q4 ,Q5 镜像电流源
二极管电流受 I c1 控制
输
入
二极管等效电阻受 Ic1 控制
iD
单端输入方式, 输入阻抗为 Zin 200 。 片内带有平方律检波器 单电源供电2.7V~5.5V。
控制 内部结构:
电压
高 斯内 插 器
gm
gm
输入
0dB -5dB -10dB
200
-45dB
电阻梯形网络
42.5dB
输出缓冲 输出
电阻网络5dB的衰减步进,总衰减为45dB
后置放大器具有42.5dB的固定增益 跨导级取加权平均,实现连续平滑的衰减功能 Gain(dB)= 50 VGAIN 5 (增益增加模式) Gain(dB)= 45 50 VGAIN (增益减小模式)
改变偏置电流 I EE可以线性地控制放大器的增益
放大器的线性性能分析
输出电压为
q vo (i1 i2 )RC IEE RCth 2kT vin
Vin 26mV时,输出与输入间才呈线性关系 RC
Vcc i1 i2
RC
描述放大器非线性失真的主要的指标
增益1dB压缩点 Pin1dB
三阶互调失真比 IM 3
前置
中放
输入
VD 前置中放等效电路
前置中放 VCC
前置 中放
R1 R2
输出
Q1
Q2
Q3
Q4 Q5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子设计竞赛题目:可变增益放大器学院:自动化工程学院班级:08级自动化二班学号:200840604055姓名:杨嘉伟时间:2010年11月16日设计任务一、题目设计制作一个增益可变的交流放大器。
二、要求1.基本部分(1)放大器增益可在0.5倍、1倍、2倍、3倍四档间巡回切换,切换频率为1Hz;(2)可以随机对当前增益进行保持,保持时间为5s,保持完后继续巡回状态;(3)对指定的任意一种增益进行选择和保持(保持时间为5s),保持完后返回巡回状态;(4)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍;2.发挥部分(1)对于不同的输入信号自动变换增益:a.输入信号峰值为0—1V,增益为3;b.输入信号峰值为1—2V,增益为2;c.输入信号峰值为2—3V,增益为1;d.输入信号峰值为3V以上,增益为0.5;(2)通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、2、3倍。
基础部分一、设计方案及组成框图分析设计要求,确定大致思路如下:①这个电路可以采用反相比例放大器实现对输入信号进行放大。
A u=-R f/R 控制反相比例放大电路的反馈电阻实现放大器增益的变换, 即控制R f的阻值。
输出信号经过反相跟随器,使输入信号与放大信号同相。
②想实现R f的自动变换,需的使用模拟开关进行控制。
而要想实现电路的自动切换,需要使用多谐振荡器输出脉冲进行控制。
③要想对一种增益进行选择和保持,需要用一个单稳态触发器来实现电路这一功能。
④想随机和任意地对一种增益选择和保持,需要用到触发式单刀双掷开关以及逻辑与、逻辑或构成逻辑电路对其进行控制。
⑤最后该电路主要部分,则通过计数器计数来控制模拟开关。
另外想实现显示这一功能,需的加一个译码器驱动数码管,实现增益档位的显示。
如上所示流程图:由555组成的多谐振荡电路产生频率为1Hz的振荡波形,由555组成的单稳态实现对增益保持5秒的功能。
用74LS90实现计数器功能,用模拟开关CD4052来控制接入放大器的反馈电阻的变换,从而实现增益为0.5倍,1倍,2倍,3倍的切换。
用CD4511来驱动数码管。
由uA741及其外围电路组成的反相放大器实现电压的放大。
二、各单元电路设计及原理分析1、由NE555组成的多谐振荡器工作原理:如上接图,555定时器接成多谢振荡器,输出1Hz 的时钟脉冲,信号从3脚输出。
它的频率计算公式为:221)2(44.11C R R T f +==在此,选取C 2为10uF ,经计算选取R1=R2=48K Ω。
滤波电容C 1=10nF 。
用Proteus 仿真得波形:2、由NE555组成的单稳态触发器工作原理:如上图,555定时器接成单稳态触发器,当摆动开关KEY0,给555一个低电平的触发脉冲时,输出5S 的高电平暂稳态,信号从3脚输出。
它的暂稳态持续时间计算时间为: 111.1C R t w =在此,选取=1R 460K Ω,uFC 101=。
滤波电容nFC 102=。
用Proteus 仿真得波形:3、逻辑控制电路逻辑控制电路由两个或门,四个与非门,一个74Ls90构成,如下图:工作原理:此部分通过三个触发开关KEY0,KEY1,KEY2对题目的(2)和(3)要求进行控制。
其中KEY0对要求(2)控制,KEY1和KEY2对要求(3)控制。
KEY0与KEY1的输出相与,二者任意一个开关触发都会触发555单稳态触发器,KEY1的触发还能使U2(74Ls90)计数。
1Hz 振荡脉冲与5S 暂稳态脉冲相或,U1D 输出信号为四进制计数器的计数脉冲。
工作时,起始状态U2的Q0输出低电位,触发KEY0,可以随机对当前增益保持5S ,然后返回巡回状态;触发KEY1时,U2计数Q0输出高电平,锁存U3B 输出高电平,此时使当前增益巡回暂停,人工触发KEY2为四进制计数器提供脉冲进行计数,指定增益,选好增益后,再触发KEY1,使Q0输出低电平解锁U3B,同时触发单稳态触发器,使指定的增益保持5S返回巡回状态。
4、74Ls90构成的四进制计数器这个电路由74LS90实现,当74LS90的CP端输入一个脉冲信号时,计数器便计一个数,经过内部处理,从Q0 ~ Q3输出二进制编码。
当电路计数到100时,Q2便把1送到2和3脚,使计数器从00在开始计数。
此部分电路图:5、放大器及反馈电阻网络放大器选用uA741,输入电阻R=1k,反馈电阻R1=500Ω,R2=1k,R3=2k,R4=3k。
反馈电阻的自动选择由CD4052实现。
CD4052是一个双4选1的模拟开关集成芯片,它的管脚功能及真值表将在后面详述。
B接四进制计数器的Q1脚,A接四进制计数器的Q0脚,BA的状态控制Y0,Y1,Y2,Y3的开通来选择增益。
当控制端A和B为不同数值时,电路的几种工作状态:当A=0,B=0时,即Y与Y0接通,即此时的增益为0.5倍。
当A=1,B=0时,即Y与Y1接通,即此时的增益为1倍。
当A=0,B=1时,即Y与Y2接通,即此时的增益为2倍。
当A=1,B=1时,即Y与Y3接通,即此时的增益为3倍。
6、反相跟随器工作原理:放大增益为1的反相比例放大器为反相跟随器,选取电阻R1=R3=20k,R2=10k。
7、译码与数码管显示电路设计方案中译码电路由芯片CD4511完成。
其中:A、B、C、D为数据输入端,LT、BL、LE为控制端。
a~g为输出端,其输出电平可直接驱动共阴数码管进行0~9的显示。
LE接低电平,LT、BL接高电平,A、B接计数器的Q0、Q1端。
显示用共阴数码管:共阴数码管的管脚图如下所示,a~g端可直接与CD4511的Qa~Qg端相连。
因此,八段LED显示管与4511连接方式如下:CD4511的13脚(A)接数码显示管的7脚;CD4511的12脚(B)接数码显示管的6脚;CD4511的11脚(C)接数码显示管的4脚;CD4511的10脚(D)接数码显示管的2脚;CD4511的 9 脚(E)接数码显示管的1脚;CD4511的15脚(F)接数码显示管的9脚;三、总体电路图四、用Proteus仿真:增益为0.5时:增益为1时:增益为2时:增益为3时:五、各集成芯片介绍(1) NE555555是一种广泛应用于数字电路中的集成定时器,它的内部电路由分压器,电压比较器,简单SR锁存器,放电三极管以及缓冲器组成,其内部结构图如下:在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳态和无稳态的组合等。
NE555时基电路封装形式有两种,一是DIP双列直插8脚封装,另一种是SOP-8小型(SMD)封装形式。
其他HA17555、LM555、CA555分属不同的公司生产的产品。
内部结构和工作原理都相同。
输入控制端有直接复位Reset端,通过比较器A1,复位控制端的TH、比较器A2置位控制的T。
输出端为F,另外还有集电极开路的放电管DIS。
它们控制的优先权是R、T、TH。
各管脚功能如下:(2)74LS3274LS32是4-2输入或门,各管脚排列如下图。
部分参数表:(3)74Ls9074LS90是一个计数器,它的各管脚排列及内部结构图如下:各管教排列:内部结构图:(4)UA741UA741是一个反相比例运算放大器,它在电路中的主要作用是实现对信号的放大。
管教排列及功能图:(5)CD4052CD4052是一个双4选1的模拟开关集成芯片.。
它的管脚图如下所示:它的真值表如下所示:(6) CD4511其封装图如下:CD4511真值表:(7)共阴极LED显示器其封装图如下:发挥部分一、设计方案及组成框图分析设计要求,确定大致思路如下:①要求根据输入信号的峰值变换增益,可以通过峰值检测电路将交流信号转化成稳定的直流峰值电压输出。
②要自动变化增益,可将峰值电压与基准电压比较得到相应的逻辑状态,然后进行编码。
③将编码值接到基础部分中的译码显示部分和模拟开关,来选择增益并对其显示。
二、各单元电路设计及原理分析1、峰值检测电路工作原理:如上图,放大器采用LM324运算放大器,通过二极管整流和电容的滤波得到稳定的峰值电压。
此电路参数选取R1=900k,C1=4.7uF。
2、电压比较电路其中的运算放大器采用集成电路LM324。
它是由四个相同的运算放大器构成的,其封装及内部结构如下所示:基准电压:有题目要求,基准电压为1V,2V,3V,采用一个串联的电阻网络对一个固定的电压进行分压得到的。
综合得出电压比较电路的电路图如下:3、编码电路要把测试结果显示出来必须对结果进行编码译码,所以要设计编码电路对比较结果进行二进制编码,这里我们采用集成芯片8位优先编码器CD4532,其封装图如下:其中:D0~D7为数据输入端,EI为控制端,Q0~Q2为输出端,VDD接电源VSS接地端,Gs、Eo为功能扩展端。
CD4532真值表:VDD 接高电平,VSS接低电平,输入端D3——D1分别接比较电路的四个运放输出端,D0接高电平,D7——D4则接低电平。
根据要求编码结果应为:输入信号峰值为0—1V,编码为二进制数3;输入信号峰值为1—2V,编码为二进制数2;输入信号峰值为2—3 ,编码为二进制数1;输入信号峰值为3V以上,编码为二进制数0;所以输出Q1,Q0应各接非门,电路图如下:三、总体电路图其他部分和基础部分一致,可得总体电路图如下:用Proteus仿真:1、输入电压为0.5V,f=1kHz2、输入电压为1.5V,f=1kHz3、输入电压为2.5V,f=1kHz4、输入电压为3.5V,f=1kHz安装调试及性能检测一、安装调试这次设计的安装调试只完成了基础部分,因为用的是面包板,对面包板的操作和使用不是很熟悉。
在安装过程中,以集成电路为中心,并根据输入输出分离的原则,以适当的间距来安排其他元件。
根据仿真好的电路图有电路图左到右安装。
注意地线,电源线,尽可能归并统一。
安装完成后,需详细检查电路图,看是否会漏线,或者接错线。
拿到元件的时候首先要做的就是用仪器把每个元件测量一遍,看是否是要求中需要的与它的标称值相不相等,因为虽然元件的质量虽然比较好,但依然会有可能有故障或者误差比较大的。
元件会较多,但测量不要嫌麻烦,真正做到疏而不漏。
但是也有不成功的地方,在设计中我用的是触发式单刀双掷开关,而实验室只有简单的单刀单掷开关,控制单稳态时,只要把7脚线除掉,可以用单刀单掷进行悬空触发,但用单刀单掷悬空触发不足以做人工脉冲和为74Ls90提够脉冲,所以对要求(3)未能调试成功。
二、性能检测接入电源,数码管显示从0自动巡回到3,间隔1s。
跳变过程中,随机触发保持按钮,维持此时数码管上的数字5秒,再触发顺序跳变。