关联规则挖掘综述
颜雪松,-关联规则挖掘综述

收稿日期:2001 12 14;修返日期:2002 04 28基金项目:湖北省自然科学基金资助项目(2001ABB006)关联规则挖掘综述*颜雪松,蔡之华,蒋良孝,贺 毅(中国地质大学信息工程学院,湖北武汉430074)摘 要:介绍了关联规则挖掘的一般概念,并进一步导出它的一般框架;同时对一些典型算法进行了分析和比较,介绍了关联规则的应用;最后展望了关联规则挖掘的未来研究方向。
关键词:关联规则;频繁项目集;深度优先遍历;宽度优先遍历中图法分类号:TP301 6 文献标识码:A 文章编号:1001 3695(2002)11 0001 04Survey of Association Rule MiningYAN Xue song,CAI Zhi hua,JIANG Liang xiao,HE Yi(Colle ge o f Information Enginee ring ,China Unive rsit y o f Geosc ienc es,Wuhan Hubei 430074,China)Abstract:In this paper we explain the fundaments of association rule mining and moreover derive a general framework.At the sametime compares and analyses some typical algorithms,introduces the application of the association rules.At the end,views some future directions in association rule generation.Key w ords:Association Rule;Frequent Itemsets;DFS;BFS1 引言面对海量的存储数据,如何从中发现有价值的信息或知识是一项非常艰巨的任务。
关联规则挖掘综述

关联规则挖掘综述关联规则挖掘是数据挖掘中的一种重要技术,它可以通过分析数据集中的项之间的关系,发现其中的规律和模式。
在实际应用中,关联规则挖掘可以帮助企业和组织发现消费者的购买习惯、市场趋势、产品组合等信息,从而更好地制定营销策略和提高销售额。
关联规则挖掘的基本思想是通过计算支持度和置信度来确定项之间的关联程度。
支持度指的是在数据集中同时出现两个或多个项的频率,而置信度则是指在出现一个项的情况下,另一个项出现的概率。
通过设定支持度和置信度的阈值,可以筛选出具有一定关联程度的项集,从而发现其中的规律和模式。
关联规则挖掘的算法主要包括Apriori算法、FP-Growth算法和Eclat 算法等。
其中,Apriori算法是最早被提出的关联规则挖掘算法之一,它通过逐层扫描数据集来生成频繁项集。
FP-Growth算法则是一种基于树结构的算法,它通过构建FP树来快速发现频繁项集。
Eclat算法则是一种基于垂直数据格式的算法,它通过交换和合并项集来发现频繁项集。
除了基本的关联规则挖掘算法外,还有一些扩展算法和改进算法。
例如,基于时间序列的关联规则挖掘算法可以用于分析时间序列数据中的项之间的关系;基于多层次关联规则挖掘算法可以用于分析多个层次之间的关系;基于模糊关联规则挖掘算法可以用于处理数据集中存在模糊关系的情况。
关联规则挖掘在实际应用中有着广泛的应用。
例如,在零售业中,可以通过关联规则挖掘来发现消费者的购买习惯和偏好,从而制定更加精准的营销策略;在医疗领域中,可以通过关联规则挖掘来发现疾病之间的关联性,从而更好地预防和治疗疾病;在金融领域中,可以通过关联规则挖掘来发现不同金融产品之间的关系,从而更好地进行风险控制和资产配置。
总之,关联规则挖掘是一种重要的数据挖掘技术,它可以帮助企业和组织发现数据集中的规律和模式,从而更好地制定营销策略和提高业务效率。
随着数据量的不断增加和数据挖掘技术的不断发展,关联规则挖掘将在更多的领域中得到广泛的应用。
关联规则挖掘综述

关联规则挖掘综述1引言数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database),在最近几年里已被数据库界所广泛研究,其中关联规则(Association Rules)的挖掘是一个重要的问题。
关联规则是发现交易数据库中不同商品(项)之间的联系,这些规则找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。
发现这样的规则可以应用于商品货架设计、货存安排以及根据购买模式对用户进行分类。
Agrawal等于1993年[1]首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。
他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。
最近也有独立于Agrawal的频集方法的工作[18,19],以避免频集方法的一些缺陷,探索挖掘关联规则的新方法。
同时随着OLAP技术的成熟和应用,将OLAP和关联规则结合[20,21]也成了一个重要的方向。
也有一些工作[6]注重于对挖掘到的模式的价值进行评估,他们提出的模型建议了一些值得考虑的研究方向。
本文第二部分是对关联规则基本概念的介绍,提出了关联规则的分类方法;第三部分是对挖掘算法的介绍,从经典的apriori开始,然后描述了对该算法的优化拓展,接着讲述脱离apriori算法的方法,最后是多层、多维的关联规则挖掘;第四部分归纳出关联规则价值衡量方法,主要从两个方面进行考虑:系统客观层面和用户主观层面;最后展望了关联规则挖掘的未来研究方向。
2关联规则的基本概念2.1基本概念和问题描述设I={i1, i2,…, im}是二进制文字的集合,其中的元素称为项(item)。
记D为交易(transaction)T的集合,这里交易T是项的集合,并且TÍI 。
对应每一个交易有唯一的标识,如交易号,记作TID。
关联规则挖掘算法综述

关联规则挖掘算法综述关联规则挖掘算法是数据挖掘中常用的一种算法,用于发现数据集中项之间的相关性。
其主要应用于市场营销、购物篮分析、推荐系统、质量控制等领域,具有很高的实用价值。
本文将就关联规则挖掘算法进行综述。
一、算法概述关联规则挖掘算法是通过寻找数据集中某些项之间的关联规则来实现的,这些关联规则通常用“如果……那么……”的形式表示,如:如果用户购买了咖啡和糖,那么他们可能也会购买牛奶。
其中,“如果”部分被称为先决条件,而“那么”部分称为结果。
在关联规则挖掘算法中,常用的度量方式有支持度和置信度。
支持度表示数据集中同时包含 A 和 B 的概率,置信度表示同时购买 A 和 B 的顾客中,有多少比例购买了 B。
常见的关联规则挖掘算法有 Apriori 算法、FP-Growth 算法、ECLAT 算法等。
二、Apriori 算法Apriori 算法是最早提出的关联规则挖掘算法,其核心思想是利用先验知识,减少候选项集的数量,从而缩短生成关联规则的时间。
该算法的主要步骤如下:1. 找出所有单项集;2. 如果某项集的支持度不低于阈值,则该项集为频繁项集;3. 利用频繁项集生成新的候选项集;4. 如果所有候选项集的支持度都不低于阈值,则从中选出频繁项集;5. 重复第 3 步和第 4 步,直到找不到新的频繁项集为止。
该算法的优点是简单易懂,容易实现。
缺点是计算效率低,对于大规模数据集处理较慢。
三、FP-Growth 算法FP-Growth 算法是另一种比较常见的关联规则挖掘算法,它可以从数据集直接构建频繁项集树,避免了需要生成 candidate set 时的大量的计算。
该算法的主要步骤如下:1. 获取单项集;2. 利用这些单项集和事务数据构建FP树;3. 从FP树中抽取频繁项集;4. 对于每个频繁项集,生成相关规则。
该算法的优点是计算效率高,能够处理大规模数据集。
缺点是实现较为复杂。
四、ECLAT 算法ECLAT 算法是 Apriori 算法的优化版,其核心思想是利用数据集的交集,递归处理候选项集。
关联规则挖掘Apriori算法研究综述

关键词 :关联 规则 ;海量数据 ;算法优化 ;发展 趋势 中图分类号 : P 1 T 3 1 文献标 志码 : A 文章 编号 :0 6 8 2 (0 0 — — 3 1 0 — 2 82 1 )9 1 0 2 1
A r v e e i w o s o i tv r e m i ng Apr o i l rt f a s c a i e ul ni i r a go ihm
f u e e e o m e t a e f r c se ut r d v l p n r o e a t d.
K e r s a s caie r ls;m asv aa; o t iain; d v lp na rn s y wo d : so itv ue s ie d t pi z t m o e eo me tlte d
Abs r c : Th a s ca i l i i g e h i ue s a i o tn e h q e n daa m i i g r s a c .Ap i r l o i m i l s i a ta t e s o it ve r e m n n t c n q i n mp ra t t c ni u i t n n e e r h o ro i g rt a h s a c a sc l a g rt m o a s c a i e u l s Ho lo h i f s o i t r e . v w t d g u t r ls f h e s o i t d a a e fo o i o t he u e o t a s c a e d t s t r m t e a a a e n h I d veo m e t h d t b s i t e T e l p n p o e s s mp ra t r c s i i o t n wi i c e sn o ma sv d t c le to a d t r g . I t i p pe h p i c p e a d p i z to i e o h t n ra ig f s i e aa o lc i n n so a e n h s a r t e rn i l s n o tmi ai n d a f Ap i r a g rt m a e ic s e a d e e a c a s c l p i i ai n l o i m s r a a y e a t e a e i .Fi a l t e r n s f ro i l o h i r d s u s d n s v r l ls ia o t z to a g rt m h a e n l z d t h s m tme nl y h te d o
关联规则挖掘综述

5.1 算法的基本思想: Apriori 算法主要工作在于寻找频繁项集。通过先计算所有的 候选 1- 项集的集合 C1。找出所有的频繁 1- 项集 L1。然后根据频 繁 1- 项集 L1 确定候选 2- 项集的集合 C2。从 C2 中找出所有的频 繁 2- 项 集 L2。 再 根 据 频 繁 2- 项 集 L2 确 定 候 选 3- 项 集 的 集 合 C3。从 C3 中找出所有的频繁 3- 项集 L3。如此下去直到不再有候 选项集。算法 Apriori: L1=find_frequent_1- itemsets(D); for(k=2;LK- 1! =NULL;K++) {Ck=aprori_gen(Lk- 1); //由 Lk- 1 经过连接和剪枝产生 K 候选项集 for each transaction t∈D //扫 描 所 有 的 事 务 {Ct=subset(Ck,t); //从 t 中取得是候选集的子集 for each candidate c∈Ct c.count++;} Lk={c∈Ck|c.count>=min_sup} }Return L=UkLk; 在 论 文 中 , Agrawal 等 引 入 了 修 剪 技 术 ( Pruning) 来 减 小 候 选 集 Ck 的大小, 利用我们前面介绍过得性质: 频繁项集的所有非空 子集都必须也是频繁的。 这个修剪过程可以降低计算所有的候选集的支持度的代价。 在论文[1]中, 还引入了杂凑树( Hash Tree) 方法来有效的计算每个 项集的支持度。 5.2 算法的性能分析 在 apriori 算 法 中 , Ck 中 的 每 个 元 素 需 要 在 交 易 数 据 库 中 进 行验证以决定是否加入 Lk, 它可能需要重复地扫描事务数据库, 这里的验证过程是算法性能的一个瓶颈。当数据库很大的时候, 就会需要很大的 I/O 负载。 5.3 算法的改进 虽然 aprori 算法自身提供了一些改进, 但是仍然不能令人满 意, 所以人们提出了很多解决的方案, 旨在提高原算法的效率。涉 及 散 列 和 事 务 压 缩 的 变 形 可 以 用 来 使 得 过 程 变 得 更 有 效 。其 他 变 形涉及划分数据( 在每一部分上挖掘, 然后合并结果) 和数据选样 ( 在数据子集上挖掘) 。这些变形可以将数据扫描次数减少到两次
关联规则挖掘研究综述

项集 x的支持度 Sp r X 描述了项集 x的 upt ) o (
重 性 .
114最小支持度( .. 支持度 闽值) 与频繁项集
最小支持度 ( i m m Spo ) M n u upr 表示发现关联 i t
规则要求数据项必须满足 的最小支持 阈值 ,记为
维普资讯
第2卷 5
第1 期
成都大学学报 ( 自然科 学版 )
Jun l f h n d nvri N trl cec ) o ra o e g uU ies y( aua i e C t S n
V 1 5 N . o. o 1 2
Ma . o 6 t2 o
dne 定义为: ec) C ndneR = upr X )Sp r X o e ( ) Spo ( UY /up t ) i f c t o ( 规则的置信度描述了规则的可靠程度. 1 17最 小置信 度 ( .. 置信度 阈值 )
性质 1 任何频集的子集必定是频集. 性质 2 任何非频繁项集 的超集必定是非频
近几年里 已被 业界 所广 泛研 究 ,其 中关联 规则
集 D 即事务数据库 ) ( .
1 13数 据 项集 的 支持度 ..
( s c t nR l ) As ii ue 的挖掘就是其中一个重要的研 o ao s 究热点.关联规则可以发现交易数据库 中不同商
品( 之间的联系 ,通过规则可找出顾客购买行 项) 为模式,如购 买某 一 商品对 购买其 他商 品的影 响.发现这样 的规则可 以应用于 商品货架设计 、
识 发 现 ( n we g i o eyi a bs ) K o l e Ds vr n D t ae ,在 最 d c a
关联规则挖掘算法综述

关联规则挖掘算法综述论文导读:一个大型数据库,其各个字段之间存在着各种各样的关系,这些关系就隐含在数据库所包含的数据中,关联规则挖掘的目的是找出这些隐藏的关联。
4)频繁项集:支持度不小于用户给定的最小支持度的项集。
Apriori性质:频繁项集的所有非空子集都必须也是频繁的。
通过实验可以发现寻找频繁集主要的计算是在生成频繁2-项集Lk上,Park等就是利用了这个性质引入hash技术来改进产生频繁2-项集的方法。
的置信度最低。
关键词:关联规则,频繁集,Apriori,FP-tree,支持度,置信度一、关联规则挖掘简介一个大型数据库,其各个字段之间存在着各种各样的关系,这些关系就隐含在数据库所包含的数据中,关联规则挖掘的目的是找出这些隐藏的关联。
1、问题描述与基本概念1)、问题描述关联规则的挖掘问题可形式化描述如下:设I={i 1 ,i 2 ,…,i m }是由m个不同的项目组成的集合,给定一个事务数据库D,其中的每一个事务T是I中一组项目的集合,即,T有唯一的标识符TID.一条关联规则就是一个形如的蕴含式,其中, 。
关联规则成立的条件是:①它具有支持度S,即事务数据库D中至少有S%的事务包含X∪Y;②它具有置信度C,即在事务数据库D所包含X的事务中,至少有C%的事务同时也包含Y,关联规则的挖掘问题就是在事务数据库D中找出具有用户给定的最小支持度和最小置信度的关联规则。
2)、基本概念:1)项集:项的集合。
2)k项集:包含k个项的项集。
3)项集的出现频率:包含项集的事务数目。
4)频繁项集:支持度不小于用户给定的最小支持度的项集。
5)频繁k项集:支持度不小于用户给定的最小支持度的k项集。
2、关联规则分类:3、关联规则价值衡量方法1)、主观兴趣度度量:用户决定规则的有效性、可行性,没有统一的标准。
2)、客观兴趣度度量:①“支持度—置信度”框架:②兴趣度:③IS度量:二、关联规则的挖掘算法挖掘关联规则可以分解为以下两个过程:①找出存在于事务数据库中的所有频繁项集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关联规则挖掘综述
摘要:近年来国内外学者对关联规则进行了大量的研究。
为了更好地了解关联规则的挖掘技术,对研究现状有更深入的了解,首先本文对数据挖掘技术进行了介绍,接着介绍了关联数据挖掘的基本原理,最后对经典的挖掘算法进行分类介绍。
关键词:数据挖掘;关联规则;算法;综述
1.引言
数据挖掘是从海量的数据里寻找有价值的信息和数据。
数据挖掘中常用的算法[1]有:关联规则分析法(解决事件之间的关联问题)、决策树分类法(对数据和信息进行归纳和分类)、遗传算法(基于生物进化论及分子遗传学理论提出的)、神经网络算法(模拟人的神经元功能)等。
数据挖掘最早使用的方法是关联分析,主要应用于零售业。
其中最有名的是售货篮分析,帮助售货商制定销售策略。
随着信息时代的到来,数据挖掘在金融[2]、医疗[3]、通信[4]等方面得到了广泛的应用。
2.关联规则基本原理
设项的集合I = { I1 ,I2 ,...,Im },数据库事务的集合为D,我们用|D|表示事务数据库所有事务的个数,其中用T
表示每个事务,使得T I。
我们用TID作为每个事务的唯一标识符。
用X表示一个项集,满足X T,那么交易T包含X。
根据上述相关描述,给出关联规则的相关定义。
2.1项集支持度
用X表示数据库事务D中的项集,项集X的支持度表示项集X在D中事务数所占的比例,用概率P(X)表示,那么Support(X)=P(X)=COUNT(X)/|D| (1)
2.2关联规则置信度
X Y关联规则的置信度是数据库事务D中包含X Y的事务数与包含X的事务数之比,表示方法如下:
confidence(X Y)= support(X Y)/support(X)= P(Y|X)(2)
3.关联规则算法
3.1经典的Apriori挖掘算法
大多数关联规则的算法是将关联规则挖掘任务分为两个子任务完成。
一是频繁项集的产生,频繁项集的目的是找到大于等于给定的最小支持度阈值的所有项集,这些项集我们称之为频繁项集。
二是规则的产生,即从频繁项集中找到置信度比较高的规则,我们称之为强规则。
Apriori挖掘算法是众多挖掘关联规则中比较经典的算法,它采用布尔关联规则,是一种宽度优先算法。
3.2Apriori算法优化
Apriori算法的思想是每产生一次候选集就需要扫描一次数据库,但是当数据库中的数据庞大,无法直接完全放于内存中,扫描过程中数据需要不断的换入换出,加重了I/O的
负担。
可见当数据信息大的时候,算法效率低下,同时也消耗的大量的内容。
3.2.1哈希表技术(散列项集到对应的桶中):
Park等提出了一种基于散列的产生频繁项集的高效算法DHP算法。
即将产生的所有的候选k-项集(k>1)散列到哈
希表结构对应的桶中并增加对应的桶计数,利用哈希表技
术可以有效减少候选k-项集(k>1)所占用的空间,进而提
高了Apriori算法的效率。
3.2.2 划分技术(为寻找候选项集划分数据):
Savasere等提出了一个基于数据划分的算法,即将数据
库中的记录划分成几个互不相交的块,各块可以高度并行执行,由最小支持度得到每块中对应的最小支持度。
第一次扫描数据库,得到各块的频繁项集,即局部频繁项集。
当算法进行数据库的第二次扫描时,需得到每个候选项集的支持数,进而得到全局频繁项集的值。
3.2.3事务压缩技术(即压缩未来迭代扫描的事务数据):
该技术用于压缩迭代扫描数据库的大小,即将不包含任何k-项集的事务肯定不包含任何(k+l)-项集,这种事务在
以后考虑时,可以加上标记或者删除项集,因为产生j项集
(j>k)时不再需要从数据库加上它们进行扫描,如此就可以减小需要扫描的数据库的规模,从而在一定程度上提高算法的效率。
3.2.4 连续关联规则算法
C. Hidber提出了一种新型的名为CARMA(连续关联规则的算法挖掘算法)算法,该算法用来在线计算大项集。
随着每个项集的支持区间的减少不断产生大项集。
他已证明:当相应的支持区间的规模快速减少时,CARMA的项集数迅速接近所有大项集的超集。
CARMA的内存效率比Apriori是一个数量级的提高。
当支持度阈值比较低时,Apriori和DIC 落后CARMA,此外,CARMA的内存使用效率是两者的六十倍以上。
3.3基于频繁模式树的算法FP-growth
由Zaki提出的Eclat算法被认为是产生频繁项集的深度优先方式的原型。
在这以后不同深度优先算法被提出,其中由韩家炜等提出的FP-growth算法是最著名和最广泛使用的。
韩家炜等人提出了基于频繁模式树(FP-Tree)的算法。
该算法首先两次扫描事务数据库,得到频繁项目集的支持度,然后将它们降序排序,并且存储到FP-Tree中。
在以后寻找频繁项目集的过程中,不需要再对事务数据库进行遍历,只需要在FP-Tree中寻找新的频繁项目集即可。
3.4并行算法
随着高性能多核处理器的出现,学者们开始借助并行系
统的强大运算能力,将并行算法引入到研究中。
在Bodon工作的基础上,Yanbin Ye等实现了并行Apriori算法,并分析并行计算的性能,分割事务数据库的每个分区执行Apriori算法。
3.5其它关联规则算法
Mohammed J. Zaki等提出了CHARM(闭关联规则挖掘),它在优势主要体现在挖掘所有频繁闭项集。
Hua-Fu Li等提出了就是通过整个历史数据流挖掘所有频繁项集的DSM-FI(数据流挖掘频繁项集),。
Jian Pei等提出了H-mine频繁模式挖
掘算法。
3.6关联规则的评估
3.6.1基于兴趣度约束的关联规则挖掘算法
Silberschatz.A等提出了可执行规则的概念,并统一了关联规则挖掘过程中主客观评价标准。
Srikant R提出了基于项
目约束的关联规则挖掘的概念和相应的算法描述。
Balaji Padmanabhan等提出了一种发现未知模式的置信驱动方法,在挖掘过程中考虑到与置信评判的结合,从而使挖掘出的关联规则更加有效。
3.6.2加权关联规则挖掘算法
Cai等提出了基于K-支持期望的加权关联规则挖掘算法
模型:MINWAL(O)模型和MINWAL(W)模型。
张文献等采用权重集归一化的思想对Cai给出的算法做了改进。
Wei Wang等[5]提出了一个挖掘加权关联规则的方法,其方法不
仅缩短了平均执行时间,但也比已知的方法产生高质量的关联规则。
4.小结
数据挖掘是一门新鲜的学科,有着广阔的应用前景,因而吸引了众多的学者对它进行研究,其中关联规则是其中应用最早也是很重要的一个领域。
关联规则的挖掘受到越来越多的企业和研究者们的重视,算法模型的建立、算法效率的提高、算法的扩展应用、挖掘潜在有趣的规则等具有重大的理论意义和实用价值。
参考文献
[1]方骏,方云,肖杰.数据挖掘的工业标准的现状和展望[J].计算机应用研究,2004,4:8-1。
[2] 余波,朱东华,刘卓君.加权关联规则挖掘算法在电子商务中的应用[J].计算机工程与应用,2008,44(17):128-129.
[3] 刘智,伊卫国,鲁明羽,等.向量法关联规则挖掘在冠心病诊断中的应用[J].计算机工程,2010,36(6):42-44.
[4] 羡晨静,张维石,刘伟光.关联规则分析在电信交叉销售中的应用研究[J].计算机工程与设计,2008,29(22).
[5] 张文献,陆建江.加权布尔关联规则的研究[J].计算机工程,2003,29(9):55-57.。