亚微米级Al2O3p6061Al铝基复合材料扩散焊接工艺研究

合集下载

6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究

6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究

6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究胡勤;王进华;吕娟;邢志媛;吴岳壹【摘要】采用挤压铸造浸渗成型的方法制备了6061铝合金约束直径为6 mm的Al2O3陶瓷球复合材料,并通过12.7 mm穿燃弹和30 mm穿甲弹打靶试验,验证了复合材料的抗弹性能,得到了靶体破坏与弹丸侵彻特征.结果表明:密度为3.3~3.4 g/cm3的复合材料其抗12.7 mm穿燃弹和30 mm穿甲弹的质量防护系数分别大于2.2和1.7.6061铝合金约束陶瓷球复合材料受力时相邻球体间发生碰撞将弹丸集中冲击载荷变成局部分布载荷,同时软质的合金与硬质的陶瓷球交替排布起到了分散能量和加快弹丸冲击力的激波反射,这是提高复合材料的抗弹性能的原因所在.【期刊名称】《振动与冲击》【年(卷),期】2018(037)018【总页数】6页(P165-169,183)【关键词】复合材料;挤压铸造;金属约束陶瓷;抗弹性能【作者】胡勤;王进华;吕娟;邢志媛;吴岳壹【作者单位】中国兵器科学研究院宁波分院,浙江宁波315100;中国兵器科学研究院宁波分院,浙江宁波315100;中国兵器科学研究院宁波分院,浙江宁波315100;中国兵器科学研究院宁波分院,浙江宁波315100;中国兵器科学研究院宁波分院,浙江宁波315100【正文语种】中文【中图分类】TJ81+0.4装甲车辆的发展趋势是“轻量化”,因此设计的防弹材料的密度要尽可能小。

目前世界各国都非常注重战车的机动性能,而战车的整体质量是影响这一性能的关键因素,要求研制的防弹材料具有更高的性能质量比。

轻质陶瓷装甲材料作为一种优良装甲防护材料的研制和推广应用受到各个国家的普遍重视。

目前世界各国研究机构都在进行金属/非金属约束陶瓷复合材料的研究工作,陶瓷颗粒增强的复合装甲材料是一种重要的发展趋势[1-3]。

各国研究机构以及装甲公司对金属或非金属约束陶瓷球复合材料的结构设计、制备工艺和材料性能等方面进行了多方面的研究,Wang等[4]对聚合物约束均质陶瓷球材料进行了设计和12.7 mm穿燃弹性能测试,该材料在重量较轻的情况下表现出优异的抗弹性能。

粉末冶金法制备铝基复合材料的研究

粉末冶金法制备铝基复合材料的研究

粉末冶金法制备铝基复合材料的研究粉末冶金法是一种制备金属基复合材料的有效方法,具有制备的复合材料成分均匀、性能优异、成本低廉等优点。

铝基复合材料作为一种高性能的金属基复合材料,在航空、汽车、机械等领域得到了广泛应用。

本文将围绕粉末冶金法制备铝基复合材料展开,探讨其制备工艺、性能评价、应用领域及未来发展趋势。

粉末冶金法制备铝基复合材料的工艺流程主要包括以下几个步骤:原材料准备:选用纯度较高的铝粉、增强相(如SiC、Al2O3等)及适量的粘结剂。

混合与压制:将原材料按照一定的比例混合,加入适量的润滑剂,然后压制成型。

烧结:将压制成型后的生坯在高温下进行烧结,使得铝粉与增强相充分融合。

热处理:对烧结后的材料进行热处理,以进一步优化材料的性能。

通过以上步骤,制备出具有特定形状和性能的铝基复合材料。

与传统的铸造方法相比,粉末冶金法具有更高的成分均匀性、更细的晶粒结构和更好的力学性能。

铝基复合材料因其具有优异的力学性能、耐腐蚀性和抗高温性能,在航空、汽车、机械等领域得到了广泛应用。

在航空领域,铝基复合材料主要用于制造飞机发动机零部件、机身结构件等。

其轻质高强的特点使得飞机能够减轻重量,提高飞行效率。

在汽车领域,铝基复合材料主要用于制造汽车零部件,如发动机缸体、活塞、齿轮等。

其高强度和抗疲劳性能能够提高汽车的安全性和使用寿命。

在机械领域,铝基复合材料可用于制造各种高强度、轻质的机械零件,如传动轴、支架、齿轮等。

其优良的耐腐蚀性和高温稳定性使得铝基复合材料成为理想的机械零件材料。

铝基复合材料的性能取决于其组成和制备工艺。

在力学方面,粉末冶金法制备的铝基复合材料具有高强度、高硬度、低塑性等特点,其力学性能优于传统铸造铝材。

耐腐蚀性方面,由于增强相的加入,铝基复合材料的耐腐蚀性能得到显著提高。

抗高温性能方面,通过选用合适的增强相和热处理工艺,可以使得铝基复合材料在高温下保持优良的性能。

随着科技的不断发展,粉末冶金法制备铝基复合材料在未来将面临新的挑战和机遇。

La_(2)O_(3)-Y_(2)O_(3)复掺制备高强韧Al_(2)O_(3)陶瓷基板

La_(2)O_(3)-Y_(2)O_(3)复掺制备高强韧Al_(2)O_(3)陶瓷基板

第42卷 第6期Vol.42No.62021年12月Journal of Ceramics Dec. 2021收稿日期:2021‒07‒12。

修订日期:2021‒09‒14。

Received date: 2021‒07‒12. Revised date: 2021‒09‒14.基金项目:广东省“珠江人才计划”本土创新科研团队项目 Correspondent author: NIE Guanglin (1990-), Male, Ph.D.; (2017BT01C169);广东省基础与应用基础研究基金项目(2020 WU Shanghua (1963-), Male, Ph.D., Professor.A1515010004);绿色建筑材料国家重点实验室开放基金(2019 E-mail: **************************;************.cn GBM03)。

通信联系人:聂光临(1990-),男,博士;伍尚华(1963-),男, 博士,教授。

DOI: 10.13957/ki.tcxb.2021.06.016La 2O 3-Y 2O 3复掺制备高强韧Al 2O 3陶瓷基板刘磊仁1,聂光临1,黄丹武1,赵振华1,包亦望2,伍尚华1(1. 广东工业大学 机电工程学院,广东 广州 510006;2. 中国建筑材料科学研究总院有限公司 绿色建筑材料国家重点实验室,北京 100024)摘 要:Al 2O 3作为应用最广的陶瓷基板,优异的力学强度、韧性与导热性能是确保其安全可靠服役的前提。

稀土金属氧化物(La 2O 3、Y 2O 3)掺杂是提升Al 2O 3陶瓷力学性能的有效方法,然而,单一掺杂的强化效果有限,因此,采用La 2O 3-Y 2O 3复掺的方法以望进一步提升Al 2O 3陶瓷基板的抗弯强度与断裂韧性,并在此基础上探讨了La 2O 3-Y 2O 3复掺对Al 2O 3陶瓷热导率的影响规律。

6063铝合金真空钎焊工艺研究

6063铝合金真空钎焊工艺研究

6063铝合金真空钎焊工艺研究周运海【摘要】对6063铝合金进行真空钎焊试验.研究了加热梯度、焊接温度对焊缝致密度和气密性的影响.结果表明,随着加热梯度的增加,母材熔蚀情况逐渐消失;焊接温度由610℃降至590℃,在600℃获得密封腔体焊缝致密,气密性达1.5MPa.【期刊名称】《金属加工:热加工》【年(卷),期】2017(000)020【总页数】3页(P68-70)【关键词】铝合金;真空钎焊;加热梯度;焊接温度【作者】周运海【作者单位】安徽博微长安电子有限公司【正文语种】中文由于6063铝合金具有比强度大、比刚度高、质量轻、耐蚀性、导电导热性能好等优点,且6063铝合金属于可热处理强化铝合金,可在焊接后进行热处理对强度进行回复,因此在航空、航天、船舶等领域应用广泛。

某雷达组件属薄壁腔体结构,为减轻重量、提高强度,采用 6063 铝合金。

该零件为两面对称焊接,焊接面为整个接触面,适合采用真空钎焊进行焊接,但6063铝合金固相线温度为615℃,与目前的钎料熔点接近,真空钎焊过程中钎焊温度和保温时间难以确定。

为实现雷达薄壁结构件精密焊接成形,采用真空钎焊进行该结构件焊接,试验不同加热保温工艺对焊接质量的影响,以获得最佳的工艺参数。

(1)试验材料试验母材选择6063,厚度30mm,钎料选择4004,厚度0.15mm,其主要化学成分及熔化范围如表1、表2所示。

(2)试验方法将6063铝合金加工成带有型腔的试件,利用中国电子科技集团公司第二研究所研制的ZHS150真空钎焊炉进行真空钎焊试验。

主要试验参数:加热温度梯度、焊接温度,加热时保证炉内气压低于6.67×10-3 Pa,焊接后采用专用泄漏检测系统SY-SLBFYT进行气密性检测;无损检测在超声C扫UT-Scan上进行,研究试件在不同加热温度梯度和焊接温度对焊接质量的影响。

试验分两组进行:①研究加热温度梯度变化对焊接质量的影响,将试件分别在400~610℃之间以不同温度梯度加热至焊接温度。

氧化铝纤维增强氧化铝基复合材料研究进展

氧化铝纤维增强氧化铝基复合材料研究进展

第42卷第11期2023年11月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.11November,2023氧化铝纤维增强氧化铝基复合材料研究进展孙敬伟1,王洪磊1,2,周新贵1(1.国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073;2.中南大学轻质高强结构材料重点实验室,长沙㊀410083)摘要:与传统金属材料相比,氧化铝纤维增强氧化铝基(Al 2O 3/Al 2O 3)复合材料因具有比强度高㊁密度低㊁耐高温和抗氧化等特点,已经成为新一代备受国内外学者关注的航空航天热结构复合材料㊂本文介绍了目前常用的氧化铝纤维及其基本性能,总结了Al 2O 3/Al 2O 3复合材料中常用的界面相及其对复合材料性能的影响规律,归纳了Al 2O 3/Al 2O 3复合材料的制备工艺及性能,指出了该材料未来的发展趋势,旨在为国内Al 2O 3/Al 2O 3复合材料的研究提供借鉴和参考,促进Al 2O 3/Al 2O 3复合材料在航空航天领域热端高温部件上的广泛应用㊂关键词:氧化铝;复合材料;纤维;界面相;制备工艺中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)11-4092-21Research Progress of Al 2O 3Fiber Reinforced Al 2O 3Matrix CompositesSUN Jingwei 1,WANG Honglei 1,2,ZHOU Xingui 1(1.Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science andEngineering,National University of Defense Technology,Changsha 410073,China;2.National Key Laboratory of Scienceand Technology on High-Strength Structural Materials,Central South University,Changsha 410083,China)Abstract :Compared with traditional metal material,Al 2O 3fiber reinforced Al 2O 3matrix (Al 2O 3/Al 2O 3)composites have become a new generation of thermos-structured composites for aerospace that have attracted much attention from scholars all over the world due to their high specific strength,low density,high temperature resistance and oxidation resistance.This paper introduces the commonly used Al 2O 3fibers and their basic properties,summarizes the frequently used interfacial phases in Al 2O 3/Al 2O 3composites and their influence on performance of composites,summarizes the preparation process of Al 2O 3/Al 2O 3composites and their properties,and points out the future development trend of this material,aiming toprovide a reference for the research of Al 2O 3/Al 2O 3composites in China and promote the widespread application of Al 2O 3/Al 2O 3composites in high-temperature components at the hot side of aerospace industry.Key words :Al 2O 3;composite;fiber;interfacial phase;manufacturing process 收稿日期:2023-06-02;修订日期:2023-08-03基金项目:中南大学轻质高强结构材料重点实验室开放课题基金(SYSJJ202104)作者简介:孙敬伟(2000 ),男,硕士研究生㊂主要从事陶瓷基复合材料方面的研究㊂E-mail:sunjingwei0120@通信作者:王洪磊,博士,副教授㊂E-mail:honglei.wang@ 0㊀引㊀言连续纤维增强陶瓷基复合材料具有低密度㊁高强度㊁高模量㊁耐高温和抗磨损等特点[1-4],已被应用于航空航天发动机热端等关键部件[5-7]㊂在发动机实际工况下,高温燃气中的水蒸气会加速航空发动机热端复合材料部件的氧化[8-10],从而减弱复合材料的力学性能和可靠性[11-14]㊂氧化铝纤维增强氧化铝复合材料(简称Al 2O 3/Al 2O 3复合材料)相较于其他陶瓷基复合材料具有较好的抗水蒸气氧化性能[14-17],有效解决了陶瓷基复合材料在特定环境下易氧化的问题,极大拓宽了陶瓷基复合材料在航空航天等领域的应用[16,18-19]㊂目前Al 2O 3/Al 2O 3复合材料作为航空航天领域热端高温部件的新兴候选材料受到了国内外学者的广泛关注[17,20-21]㊂国外对Al 2O 3/Al 2O 3复合材料的研究起步较早,现已对Al 2O 3/Al 2O 3复合材料的制备技术㊁微观结构及第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4093㊀性能展开了系统的基础研究,并进入了工程应用阶段[22-24]㊂美国CHI(Composites Horizons)公司制备的Al2O3/Al2O3复合材料中心锥㊁混合器和核心整流罩部件成功应用到了GE-passport20发动机中,是Al2O3/ Al2O3复合材料在商用航空发动机中最早的应用㊂美国在CLEEN项目[22]中成功制备了Al2O3/Al2O3复合材料中心锥和喷管部件,组成了航空发动机排气部件(中心锥宽1.14m㊁高2.34m,喷管直径1.60m),是迄今为止尺寸最大的Al2O3/Al2O3复合材料航空发动机部件,该部件已完成装机测试,达到TRL(Technology Readiness Level)7水平,进入了最终完善阶段㊂此外美国的罗㊃罗AE3007发动机[25]㊁F414发动机等也都装配了Al2O3/Al2O3复合材料部件㊂德国在HiPOC项目[24,26]成功制备了Al2O3/Al2O3复合材料燃烧室衬套,完成了模拟发动机推力90%的测试,衬套整体保持完整㊂在此基础上,德国DLR[23,27]制备了WHIPOX-Al2O3/ Al2O3复合材料燃烧室衬套,该衬套经10h模拟环境考核后出现裂纹,但部件整体完整,没有出现灾难性破坏㊂同时,Al2O3/Al2O3复合材料也被广泛应用于民用工业领域㊂德国WPS公司[28-29]在Al2O3/Al2O3复合材料部件的工业开发与应用制造方面具有丰富的经验,制备了高温炉部件㊁汽车排气系统㊁陶瓷紧固件和太阳能吸收器等一系列复杂形态Al2O3/Al2O3复合材料部件,其中高温炉部件经500~780ħ的温差热震试验循环107次后未失效,同时,太阳能吸收器热部件的直径可达2.5m,是目前最大的Al2O3/Al2O3复合材料部件㊂受限于高性能Al2O3纤维原材料,我国对Al2O3/Al2O3复合材料的研究起步较晚,虽然近年来在Al2O3/ Al2O3复合材料应用领域取得了一定进展,但仍处于基础研究阶段,尚有许多应用问题需要解决[30-32]㊂本文从氧化铝纤维㊁界面相和复合材料制备工艺的角度出发,重点介绍了Al2O3/Al2O3复合材料制备技术及性能,指出了这一领域未来的发展趋势,期望为国内Al2O3/Al2O3复合材料研究领域的发展提供一些参考㊂1㊀氧化铝连续纤维氧化铝连续纤维的研究始于20世纪70年代,目前只有美国㊁日本㊁德国和中国等国家掌握了其制造技术[33]㊂美国3M公司在1974年首次通过溶胶-凝胶法制备了氧化铝纤维,经过不断优化,推出了Nextel系列氧化铝纤维,其中Nextel610纤维和Nextel720纤维是目前应用最广泛的氧化铝纤维[11,34-35]㊂1.1㊀Nextel610氧化铝纤维Nextel610氧化铝纤维的主要成分为α-Al2O3,含有低于1%(质量分数,下同)的Fe3O4和SiO2,为单相多晶氧化铝纤维㊂在纤维制备过程中,Fe3O4有效提高了α-Al2O3的形核率,降低了α-Al2O3的相变温度, SiO2有效减小了α-Al2O3晶粒的生长速率㊂在Fe3O4和SiO2的共同作用下,氧化铝纤维的烧结温度显著降低且致密度明显上升㊂Nextel610氧化铝纤维是目前室温拉伸强度和拉伸模量最高的氧化铝纤维,但高温处理后纤维中α-Al2O3晶粒迅速长大,纤维缺陷增多,力学性能明显下降㊂Nextel610氧化铝纤维的基础性能如表1所示㊂表1㊀Nextel610氧化铝纤维的基础性能Table1㊀General properties of Nextel610Al2O3fiberTrademark Component Diameter/μm Density/(g㊃cm-3)Tensilestrength/GPaTensilemodulus/GPaFracturestrain/%Nextel61099.0%α-Al2O30.7%Fe3O40.3%SiO210~12 3.90 3.103800.50在高温条件下,Nextel610氧化铝纤维晶粒会显著长大,晶粒生长速率受保温时间影响较大㊂Schmücker 等[36]对Nextel610氧化铝纤维在1300ħ热处理过程中的晶粒长大机制进行了详细研究,发现Nextel610氧化铝纤维中的掺杂元素在α-Al2O3晶界附近偏聚,使得α-Al2O3晶界迁移率降低,α-Al2O3晶粒生长速率较小㊂根据等温生长动力学计算公式(式(1))可得Nextel610氧化铝纤维的生长指数nʈ4,Nextel650和Nextel720氧化铝纤维的生长指数nʈ7㊂但由于Nextel610氧化铝纤维中没有第二相成分抑制晶粒生长, Nextel610氧化铝纤维相较于另外两种氧化铝纤维在高温条件下的晶粒生长速率受保温时间影响较大(如图1所示)㊂根据生长指数n㊁α-Al2O3的晶粒尺寸和温度的关系,计算出了Nextel610氧化铝纤维的晶粒生4094㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图1㊀氧化铝纤维1300ħ热处理后晶粒尺寸与保温时间的关系[36]Fig.1㊀Relationship between grain size and dwell time of Al 2O 3fibers heat-treated at 1300ħ[36]长活化能约为660kJ㊃mol -1㊂D n -D n 0=K (T )ˑt (1)式中:D 为热处理后晶粒尺寸,D 0为原始晶粒尺寸,K为反应常数,t 为热处理时间,n 为生长指数,理想状态下n 为2[37]㊂Nextel 610氧化铝纤维经高温处理后晶粒会显著长大,力学性能下降㊂姜如等[35]对Nextel 610氧化铝纤维在1000~1400ħ进行热处理后发现,纤维经1200ħ热处理后的表面晶粒尺寸明显增大;当热处理温度为1400ħ时,纤维表面缺陷明显增多,纤维经不同温度热处理后的表面形貌如图2所示㊂对不同温度热处理后的纤维进行拉伸强度测试发现,随着热处理温度的升高,纤维的拉伸强度逐渐降低㊂当热处理温度为1200ħ时,纤维的拉伸强度发生突变,强度保留率仅为71.15%㊂不同温度热处理后纤维的晶粒尺寸与拉伸强度关系如图3所示㊂图2㊀不同温度热处理后Nextel 610氧化铝纤维的表面形貌[35]Fig.2㊀Surface morphologies of Nextel 610Al 2O 3fibers heat-treated at different temperatures [35]Nextel 610氧化铝纤维的高温力学性能随测试温度变化显著㊂美国3M 公司[38]报道了Nextel 610氧化铝纤维的高温力学性能,如图4所示㊂由图4可知,Nextel 610氧化铝纤维在1200ħ之前强度较高,强度保留率在95%以上;1300ħ时强度下降明显,强度保留率降低至64%;1400ħ时的强度保留率仅为30.2%㊂这主要是因为Nextel 610氧化铝纤维是单相纤维,在较高的温度下晶粒快速长大,导致强度迅速下降㊂第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4095㊀图3㊀不同温度热处理后Nextel 610氧化铝纤维晶粒尺寸和拉伸强度关系[35]Fig.3㊀Relationship between grain size and tensile strength of Nextel 610Al 2O 3fiber heat-treated at different temperatures[35]图4㊀Nextel 系列氧化铝纤维的高温力学性能[38]Fig.4㊀High temperature mechanical properties of Nextel series Al 2O 3fiber [38]㊀Nextel 610氧化铝纤维的抗蠕变性能较差,在不同环境热处理后其蠕变性能有明显差异㊂Armain 等[39]研究了1100ħ时Nextel 610氧化铝纤维分别在空气和水汽气氛下的蠕变行为,发现当蠕变应力为100MPa 时,Nextel 610氧化铝纤维在两种气氛下的寿命都超过100h,水汽气氛下的蠕变应变为空气气氛下的5倍㊂而当蠕变应力为200~500MPa 时,水汽气氛下的蠕变应变略低于空气气氛下的蠕变应变,Nextel 610氧化铝纤维在不同气氛下的蠕变曲线如图5所示㊂水汽显著增加了Nextel 610纤维的蠕变速率,当蠕变应力为100~500MPa 时,纤维在水汽气氛下的蠕变速率较空气气氛下的蠕变速率高近一个数量级㊂图5㊀1100ħ下Nextel 610氧化铝纤维在不同气氛中的蠕变曲线[39]Fig.5㊀Creep curves of Nextel 610Al 2O 3fiber in different atmosphere at 1100ħ[39]1.2㊀Nextel 720氧化铝纤维Nextel 720氧化铝纤维主要含α-Al 2O 3和SiO 2,其中SiO 2的含量约为15%[35]㊂在纤维烧成过程中SiO 2与α-Al 2O 3反应生成莫来石,莫来石可在α-Al 2O 3晶界处聚集,形成莫来石包围α-Al 2O 3的结构,有效抑制了α-Al 2O 3晶粒的生长,明显提高了纤维的抗蠕变性能㊂Nextel 720氧化铝纤维的性能如表2所示㊂表2㊀Nextel 720氧化铝纤维的基础性能Table 2㊀General properties of Nextel 720A 2O 3fiberTrademark Component Diameter /μm Density /(g㊃cm -3)Tensile strength /GPa Tensile modulus /GPa Fracture strain /%Nextel 72085.0%α-Al 2O 315.0%SiO 210~12 3.40 2.102600.81与Nextel 610氧化铝纤维类似,高温热处理可使Nextel 720氧化铝纤维的晶粒长大,尤其在高于1600ħ的温度下,Nextel 720氧化铝纤维晶粒长大明显㊂Schmücker 等[36]在1500~1700ħ对Nextel 7204096㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图6㊀Nextel 720氧化铝纤维在1500~1700ħ热处理时晶粒尺寸与保温时间的关系[36]Fig.6㊀Relationship between grain size and dwell time of Nextel 720Al 2O 3fiber heat-treated at 1500~1700ħ[36]氧化铝纤维进行热处理,晶粒尺寸随时间的变化如图6所示㊂由图6可以看出,1600ħ以下的氧化铝纤维晶粒长大不明显,1600ħ以上氧化铝纤维晶粒显著长大㊂根据式(1)计算得到1600ħ以下莫来石晶粒的生长指数n ʈ12,1600ħ以上莫来石晶粒的生长指数n ʈ3,均在典型的陶瓷晶粒生长指数区间内[37]㊂因此当热处理温度低于1600ħ时,Nextel 720氧化铝纤维中的晶粒长大主要为α-Al 2O 3晶粒的生长,莫来石晶粒几乎不长大,并且由于莫来石的存在,α-Al 2O 3晶粒的生长受到抑制㊂当热处理温度高于1600ħ时,Nextel 720氧化铝纤维中晶粒长大主要来源于莫来石晶粒的生长㊂高温热处理会对Nextel 720氧化铝纤维的拉伸强度产生显著影响㊂郑周等[31]通过对Nextel 720氧化铝纤维热处理后发现,当热处理温度为1300ħ时,莫来石相由伪四方结构逐渐转变为斜方结构,氧化铝晶体从莫来石晶体中析出㊂观察纤维热处理后的表面形貌发现,1100ħ热处理后纤维表面由颗粒状α-Al 2O 3晶体和条状的莫来石晶体混杂形成,1300ħ热处理后的纤维表面颗粒状α-Al 2O 3晶体显著长大为块状晶体,与条状莫来石晶体镶嵌分布,不同温度热处理后的纤维表面形貌如图7所示㊂对不同温度热处理后的纤维拉伸强度进行测试后发现,随着热处理温度的升高,纤维的拉伸强度逐渐下降㊂1100ħ热处理后纤维室温拉伸强度下降明显,强度保留率为64.48%;1300ħ热处理后的纤维拉伸强度保留率降为54.10%㊂图7㊀不同温度热处理的Nextel 720氧化铝纤维表面形貌[31]Fig.7㊀Surface morphologies of Nextel 720Al 2O 3fiber heat-treated at different temperatures [31]Nextel 720氧化铝纤维的高温力学性能也随测试温度的升高而显著降低㊂美国3M 公司[38]报道了Nextel 720氧化铝纤维的高温力学性能,如图4所示㊂由图4可知,当测试温度低于1200ħ时,Nextel 720氧化铝纤维高温拉伸性能低于Nextel 610氧化铝纤维,这是因为在1200ħ前,Nextel 610氧化铝纤维晶粒长大不明显,纤维拉伸强度保留率较高;当测试温度高于1200ħ时,Nextel 610氧化铝纤维晶粒明显长大,拉伸强度明显下降,而Nextel 720氧化铝纤维晶粒长大不明显,导致Nextel 720氧化铝纤维在1200ħ以上高㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4097温拉伸性能高于Nextel610氧化铝纤维㊂Nextel720氧化铝纤维的抗老化性能优于Nextel610氧化铝纤维㊂根据3M公司的报道[38],Nextel720氧化铝纤维在不同温度下暴露1000h后的拉伸强度和晶粒尺寸关系如图8所示㊂相较于Nextel610氧化铝纤维,Nextel720氧化铝纤维长时间高温暴露后的强度保留率较高,晶粒尺寸增长较缓慢㊂这得益于莫来石相减少了α-Al2O3的晶界滑移,且有助于 钉扎 晶粒,使Nextel720氧化铝纤维的抗热老化性能增强㊂图8㊀不同温度暴露1000h后Nextel720氧化铝纤维拉伸强度和晶粒尺寸[38]Fig.8㊀Tensile strength and grain size of Nextel720fiber exposured1000h at different temperatures[38] Nextel720氧化铝纤维的抗蠕变性能较好,但不同高温环境对Nextel720氧化铝纤维的蠕变性能的影响显著不同㊂Armain等[40]研究了Nextel720氧化铝纤维在空气和水汽气氛下不同温度时的蠕变行为,发现当蠕变应力为400MPa㊁热处理温度为1100ħ时,Nextel720氧化铝纤维在水汽气氛下的蠕变应变约为空气气氛下蠕变应变的2倍㊂当蠕变应力为200MPa㊁热处理温度为1200ħ时,水汽气氛下的蠕变应变为空气气氛下蠕变应变的4~7倍㊂Nextel720氧化铝纤维在不同气氛下的蠕变曲线如图9所示㊂水汽的存在显著增㊀㊀㊀图9㊀不同温度下Nextel720氧化铝纤维在不同气氛中的蠕变曲线[40]Fig.9㊀Creep curves of Nextel720Al2O3fiber in different atmosphere at different temperature[40]4098㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷加了Nextel 720纤维的蠕变速率,当蠕变应力为100~300MPa㊁热处理温度为1200ħ时,水汽气氛下的蠕变速率比空气气氛下的蠕变速率高近一个数量级㊂综上所述,Nextel 610氧化铝纤维成分单一,主要为α-Al 2O 3相,其室温和高温拉伸强度较高,但纤维的单相组成导致其力学性能受温度影响较明显,纤维的高温稳定性和抗蠕变性能差㊂为提高纤维的稳定性和抗蠕变性能,3M 公司在Nextel 610氧化铝纤维的基础上开发了Nextel 720氧化铝纤维㊂Nextel 720氧化铝纤维中主要含有α-Al 2O 3和莫来石两相,相较于Nextel 610氧化铝纤维,Nextel 720氧化铝纤维的室温和高温力学性能较差㊂但由于莫来石相的存在,Nextel 720氧化铝纤维在高温下的晶粒长大速率较小,稳定性和抗蠕变性能较好㊂Nextel 610氧化铝纤维和Nextel 720氧化铝纤维的优缺点如表3所示㊂表3㊀Nextel 610氧化铝纤维和Nextel 720氧化铝纤维的优缺点Table 3㊀Advantages and disadvantages of Nextel 610and Nextel 720Al 2O 3fibersAl 2O 3fiberAdvantage Disadvantage Nextel 610Single phase fiber;high tensile strength Mechanical properties are significantly affected by temperature Nextel 720Good stability;mechanical properties are not significantly affected by temperatureTwo phase fiber;low tensile strength 2㊀界面相在连续纤维增强陶瓷基复合材料中,界面是连接纤维与基体的桥梁,主要承担着传递载荷㊁偏转裂纹㊁消除热应力和阻挡元素扩散的作用,对复合材料的性能有重要影响[41-43]㊂界面相要与纤维和基体间有良好的物理和化学相容性,同时界面相与纤维和基体间的结合强度要适中,这是因为一方面界面相能防止界面结合强度过大导致复合材料发生脆性断裂,降低力学性能[44];另一方面界面相能防止界面结合强度过小导致载荷不能通过界面传递给纤维,减弱纤维的增强作用[45]㊂目前,Al 2O 3/Al 2O 3复合材料中常用的界面相主要为热解碳(PyC)[46-48]㊁氮化硼(BN)[49]和独居石(LaPO 4)[50-51]㊂2.1㊀热解碳(PyC )界面相PyC 具有特殊的层状结构,层与层之间通过范德瓦尔斯力结合,被广泛应用于复合材料界面相材料㊂PyC 与氧化物纤维相容性好,且能有效阻挡纤维和基体间的元素扩散㊂Wang 等[48]采用化学气相沉积(chemical vapor deposition,CVD)工艺于1300ħ在氧化铝纤维表面制备了厚度约为70nm 的PyC 涂层,涂层的微观形貌如图10所示㊂由图可知,PyC 涂层与纤维结合性良好,纤维表面产生了由缺陷和晶粒长大引起的凹凸表面㊂纤维和基体两个组分被约60nm 厚的均匀PyC 涂层分离,没有发生任何界面扩散和反应㊂PyC 涂层具有明显的层状结构,非常有利于裂纹偏转[52],提高复合材料的力学性能㊂PyC 涂层厚度会对纤维的力学性能产生较明显的影响㊂Wang 等[46]采用CVD 法在氧化铝纤维表面制备了不同厚度的PyC 涂层,纤维的截面形貌如图11所示,此外还研究了涂层厚度和结合强度对纤维力学性能的影响㊂结果表明,当涂层厚度较小(0.15μm)时,涂层能够愈合纤维表面缺陷[53],从而提高纤维的拉伸强度㊂随着涂层厚度的增加,纤维的拉伸强度逐渐降低㊂产生这一现象的原因是:1)涂层的柔软性对纤维拉伸强度的影响大于表面缺陷的愈合效果;2)涂层厚度增加需要更长的CVD 时间,长时间高温环境易使纤维强度下降;3)纤维和PyC 涂层的热膨胀系数不同(纤维为5.3ˑ10-6ħ-1,PyC 涂层为2.5ˑ10-6ħ-1),当涂层较厚时,纤维和涂层间出现间隙,界面结合强度较弱㊂受到外力时,裂纹不能偏转,导致应力集中于纤维表面,易使纤维发生断裂㊂PyC 涂层会对复合材料的力学性能产生明显影响㊂Geng 等[47]在氧化铝纤维编织件上制备了PyC 涂层,随后通过溶胶-凝胶法制备了莫来石/Al 2O 3复合材料,有无PyC 涂层的莫来石/Al 2O 3复合材料的断口形貌如图12所示㊂无PyC 涂层的复合材料断口平整,没有纤维拔出现象㊂这说明复合材料在断裂过程中,由于裂纹尖端应力集中导致裂纹直接穿过氧化铝纤维,纤维的增韧机制没有得到发挥㊂有PyC 涂层的复合材料的断口纤维大量拔出,纤维拔出机制吸收了大部分能量,并且在断裂过程中产生沿纤维轴向扩展的裂纹,有效阻止了复合材料发生脆性断裂㊂㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4099图10㊀PyC涂层纤维的微观结构[48]Fig.10㊀Microstructure of PyC coated fiber[48]图11㊀不同厚度PyC涂层纤维的截面形貌[46]Fig.11㊀Cross-section morphologies of PyC coated fibers with different thickness[46]2.2㊀氮化硼(BN)界面相BN具有与PyC类似的层状结构,在复合材料中引入该结构界面相后,当复合材料受到外力时,裂纹可沿界面层间扩展,起到保护纤维和提高复合材料力学性能的作用㊂相较于PyC涂层,BN的抗氧化性能较好,但在高于850ħ的氧化环境下,BN可与O2发生反应生成具有挥发性的B2O3,从而导致界面相消失㊂4100㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图12㊀莫来石/Al2O3复合材料的微观结构[47]Fig.12㊀Microstructure of mullite/Al2O3composites[47]高温热处理会对BN涂层的结晶度产生显著影响㊂Sun等[49]通过CVD工艺在氧化铝纤维表面制备了BN涂层,BN涂层的微观结构如图13所示㊂图13(a)为700ħ下沉积的BN涂层,由图可知涂层与纤维结合良好,BN呈非晶结构㊂图13(b)和13(c)为700ħ下沉积后经1300ħ热处理后的BN涂层,由图可知热处理后的BN涂层结晶度显著提高,具有明显的层状结构,为六方相氮化硼(h-BN)㊂对比图13(a)~(c)可知,高温热处理可以提高BN涂层的结晶度,使其由非晶相BN涂层转变为六方相BN涂层㊂图13㊀BN涂层纤维的微观结构[49]Fig.13㊀Microstructure of BN coated fibers[49]BN涂层的沉积温度会对涂层厚度和涂层纤维的力学性能产生明显影响㊂Sun等[49]以单源氨硼烷为前驱体,采用低温CVD工艺(700~900ħ)在氧化铝纤维表面制备了BN涂层,BN涂层纤维截面的微观形貌如图14所示㊂由图可知,在不同温度下沉积的BN涂层与纤维结合良好,且随着沉积温度的升高,BN涂层的厚度逐渐增加㊂对涂层纤维进行拉伸强度测试后发现,随着沉积温度的升高,涂层纤维的拉伸强度逐渐下降㊂700ħ下沉积涂层后的氧化铝纤维强度保持率为94.9%,900ħ下沉积涂层后的氧化铝纤维强度保持率迅速下降到54.8%㊂纤维拉伸强度下降的原因为:1)涂层沉积过程中的高温使纤维晶粒长大,导致纤维力学性能下降;2)BN涂层和氧化铝纤维的热膨胀系数不同,涂层和纤维在不同的沉积温度下有不同的收缩速率,从而产生残余热应力㊂残余热应力随着沉积温度的升高而升高,从而导致涂层纤维的力学性能随着沉㊀第11期孙敬伟等:氧化铝纤维增强氧化铝基复合材料研究进展4101积温度的升高而下降㊂图14㊀不同温度沉积BN涂层后的纤维截面形貌[49]Fig.14㊀Cross-section morphologies of fibers after deposition of BN coating at different temperatures[49]上述PyC㊁BN两种界面相均起到阻挡元素扩散㊁传递载荷和偏转裂纹等作用,是复合材料中较为常用的界面相,但抗氧化性能较差,在Al2O3/Al2O3复合材料中的应用受到一定限制㊂为解决这一问题,研究人员把目光投向了具有较强抗氧化性的多孔稀土-磷酸盐类材料上,其中应用最广泛的为独居石(LaPO4)界面相㊂2.3㊀独居石(LaPO4)界面相LaPO4的熔点高㊁硬度低,与氧化物纤维和基体相容性好,同时与氧化物纤维和基体结合强度适中,已被用于氧化物/氧化物复合材料中的界面相材料[54]㊂在受到外力时,LaPO4可以通过滑移㊁解离和孪晶等机制有效偏转裂纹,提升复合材料的力学性能㊂LaPO4在高温下会在表面形成一层连续致密的反应层,保护纤维不被高温侵蚀,提高复合材料的稳定性㊂Zhang等[50]以La2O3和磷酸为原料,通过化学共沉淀法和闪烧法制备了LaPO4涂层,该涂层导热系数较低,在1000ħ时的导热系数为1.41W/(m㊃K);稳定性较好,在1400ħ保温100h涂层不受破坏;耐蚀性能好,在700~900ħ的V2O5熔盐中腐蚀4h的腐蚀产物主要为La(P,V)O4,涂层的微观结构变化不大,在1000ħ的V2O5熔盐中腐蚀4h会生成少量的LaVO4,但腐蚀产物仍主要为La(P,V)O4㊂LaPO4涂层的微观结构会对涂层纤维的力学性能产生明显影响㊂Xu等[51]将硝酸镧与植酸混合得到LaPO4前驱体溶液(编号PA f),将硝酸镧与磷酸和柠檬酸混合制备了另一种LaPO4前驱体溶液(编号CA f),采用非匀相沉淀法在35和90ħ下将LaPO4前驱体沉积在氧化铝纤维表面,经600ħ高温处理后得到厚度为500~800nm的LaPO4涂层,涂层纤维的微观形貌如图15所示㊂研究了不同前驱体和沉积温度对纤维强度的影响,分析了涂层纤维的强度退化机理㊂结果表明,在35ħ下沉积的前驱体可以在纤维表面转化为致密的LaPO4涂层,该致密涂层阻止了高温下生成的有害气体排出,导致纤维强度下降[55-56];而采用植酸前驱体可在90ħ获得颗粒细小且堆叠松散的LaPO4涂层,该结构的孔洞分布均匀,有利于有害气体的逸出,使涂层纤维具有最高的拉伸强度㊂通过单纤维拔出测试(示意图如图16所示)发现,90ħ下由柠檬酸前驱体和植酸前驱体在纤维表面制备LaPO4涂层后,纤维与基体间的界面结合强度分别下降了32.5%和46.7%,纤维与基体实现弱界面结合,有助于提高复合材料的力学性能㊂图15㊀LaPO 4涂层纤维的截面形貌[51]Fig.15㊀Cross-section morphologies of LaPO 4coated fibers[51]图16㊀单纤维拔出测试示意图[51]Fig.16㊀Schematic diagram of single fiber pull-out test [51]LaPO 4涂层的厚度会对涂层编织件的稳定性有显著影响㊂Tao 等[54]以LaNO 3和P 2O 5为原料制备了LaPO 4前驱体溶液,采用反复浸渍烧结法在氧化物纤维编织件中制备了厚度为80~300nm 的LaPO 4涂层,涂层的微观形貌如图17所示㊂研究了LaPO 4涂层㊁SiC-SiO 2涂层和LaPO 4-SiC-SiO 2涂层对氧化物纤维编织件柔韧性的影响,其典型力-挠度曲线和氧化物纤维编织件测试前后的照片如图18所示㊂研究发现,具有LaPO 4涂层的氧化物纤维编织件刚度有所增加,但增加的程度很小㊂这说明LaPO 4涂层对氧化物纤维编织件的柔韧性没有明显影响,且对氧化物纤维编织件的高温脆性有一定的缓解作用㊂LaPO 4涂层对高温处理后复合材料的力学性能有明显影响㊂Keller 等[57]制备了Nextel 610/LaPO 4/Al 2O 3复合材料,探究了LaPO 4涂层对高温处理后的复合材料力学性能的影响㊂研究发现,不含LaPO 4涂层的复合材料在1200ħ热处理5h 后拉伸强度下降约70%,复合材料断口几乎没有纤维拔出现象;而含LaPO 4涂层的复合材料经热处理后的拉伸强度下降约36.7%,复合材料断口处有明显的纤维拔出现象(见图19),同时发现纤维拔出现象主要出现在涂层㊁纤维/涂层和涂层/基体界面,这说明LaPO 4涂层与纤维和基体结合力较弱㊂综上所述,PyC 涂层和BN 涂层均具有层状结构,是复合材料中常用的界面相㊂当复合材料受到外力时,PyC 涂层和BN 涂层可通过滑移㊁解离等机制有效偏转裂纹,提高复合材料的力学性能[44,52]㊂但涂层制备工艺复杂且抗氧化性能较差,PyC 涂层在空气中的温度高于400ħ即可被氧化,BN 涂层在空气中的温度高于850ħ即被氧化,限制了涂层在Al 2O 3/Al 2O 3复合材料中的应用㊂LaPO 4涂层与氧化物纤维和基体相容性好,制备工艺简单㊁抗氧化性能较好,被广泛用在Al 2O 3/Al 2O 3复合材料中㊂不同涂层的优缺点如表4所示㊂。

《2024年度异种金属铝、铜和钨的真空扩散焊研究》范文

《2024年度异种金属铝、铜和钨的真空扩散焊研究》范文

《异种金属铝、铜和钨的真空扩散焊研究》篇一一、引言随着现代工业的快速发展,异种金属之间的连接技术越来越受到重视。

其中,真空扩散焊作为一种可靠的焊接方法,被广泛应用于异种金属的连接。

本文着重研究了铝、铜和钨三种异种金属的真空扩散焊接过程及其特性,为实际应用提供理论依据。

二、实验材料与方法1. 实验材料本实验采用纯度较高的铝、铜和钨作为研究对象。

其中,铝具有良好的塑性和延展性;铜具有良好的导电性和导热性;钨具有高熔点和优良的抗腐蚀性能。

这三种金属在许多领域都有广泛的应用。

2. 实验方法本实验采用真空扩散焊方法,将铝、铜和钨进行焊接。

首先,将待焊金属表面进行清洗,以去除油污和杂质;然后,将清洗后的金属放置在真空扩散焊机中,进行真空处理,以排除空气中的氧气和水分;最后,进行焊接。

三、实验过程与结果分析1. 焊接过程在真空环境下,加热铝、铜和钨至一定温度,使金属原子发生扩散,从而实现焊接。

在此过程中,需要控制加热速度、保温时间和冷却速度等参数,以保证焊接质量。

2. 结果分析通过观察焊接接头的微观结构,发现铝、铜和钨在真空扩散焊过程中形成了良好的冶金结合。

接头处金属原子相互扩散,形成了连续的晶界,实现了良好的冶金结合。

同时,通过对焊接接头的力学性能进行测试,发现其强度和硬度均达到了较高水平。

四、讨论1. 真空扩散焊的优点真空扩散焊具有许多优点,如焊接接头质量高、焊接过程无污染、可实现异种金属的可靠连接等。

在铝、铜和钨的焊接过程中,真空扩散焊方法能够实现这三种异种金属的冶金结合,具有良好的应用前景。

2. 焊接参数的影响焊接过程中的加热速度、保温时间和冷却速度等参数对焊接接头的质量具有重要影响。

在铝、铜和钨的真空扩散焊过程中,需要合理控制这些参数,以获得高质量的焊接接头。

此外,还需要考虑金属的物理和化学性质对焊接过程的影响。

五、结论本文研究了铝、铜和钨三种异种金属的真空扩散焊接过程及其特性。

通过实验发现,真空扩散焊方法能够实现这三种金属的冶金结合,获得高质量的焊接接头。

Al_2O_3弥散强化铜基复合材料的研究现状与进展_国秀花


较高的 N O 较低 N Al D O D Al 一定温度下的时间
一定的 N O、温 度 和氧分压下的 N O、D O 、D Al 最高内氧化速度
温度、氧分压和铝含 量、微观结构
原材料规格
由文献[ 18, 19] 可知, 温度 T 和 CuO、Cu2O、 A l2O 3 形成或分解的临界氧分压 P O ( Pa) 之间的
使弥散强化铜综合 性能有了大幅 度提高。1973 铜加工厂技术研究中心、沈阳有色金属加工厂等
第 21 卷第 4 期
国秀花等 : Al2 O3 弥散强化铜基复合材料的研究现状与进展
43
高校和科研单位在进行这种材料的研究, 但大部 分仍处于试验阶段。
内氧化法制备 Al2O3 弥散强化铜基复合材料 的常用生产工艺如图 3 所示:
学性质极为稳定, 使 Al2O3 弥散强化铜基复合材 A l2O 3 弥散强化铜基复合材料的条件见表 1。
料具有很好的热力学稳定性。内氧化法是目前规
选择 Cu-Al 合金进行内氧化, 很好地满足了
模化生产 Al2O3 弥散强化铜基复合材料的最佳方 法[ 12, 14~ 16] 。
上述条件, 为 A l2O3 弥散强化铜基复合材料的制 备提供了最基本的前提条件。
复合电沉积是近 20 年来发展起来的制备金属 基复合材料的新方法。它是将镀液中的 A l2O3 颗 粒与基体金属 Cu 共沉积到阴极表面形成复合镀 层, 工艺路线如图 1 所示。该法不需要高温高压等 条件, 制备工艺简单、成本低、成分可控性好。但颗
收稿日期: 2006- 01- 17 基金项目: 河南省重点科技攻关项目( 0523021500) ; 洛阳市重点 科技攻关 项目; 河 南科技大 学重大预 研科学 研究基金 资

粉末冶金法制备铝基复合材料的研究

粉末冶金法制备铝基复合材料的研究一、本文概述本文旨在探讨粉末冶金法制备铝基复合材料的工艺过程、性能特点及其应用前景。

铝基复合材料作为一种新型的高性能材料,以其轻质、高强、耐磨、抗腐蚀等特性在航空航天、汽车制造、电子信息等领域具有广泛的应用价值。

粉末冶金法作为一种制备铝基复合材料的常用方法,具有工艺简单、成本低廉、材料利用率高等优点,因此受到了广泛的关注和研究。

本文首先介绍了铝基复合材料的基本概念和分类,概述了粉末冶金法制备铝基复合材料的原理和方法。

接着,详细分析了粉末冶金法制备过程中影响铝基复合材料性能的关键因素,包括粉末的选择、复合剂的添加、成型工艺、烧结工艺等。

在此基础上,本文进一步探讨了粉末冶金法制备铝基复合材料的性能特点,如力学性能、热学性能、电磁性能等,并分析了其在实际应用中的潜力和挑战。

本文总结了粉末冶金法制备铝基复合材料的研究现状和发展趋势,提出了未来研究的重点和方向。

通过本文的研究,旨在为铝基复合材料的制备和应用提供理论支持和实践指导,推动铝基复合材料在更多领域的应用和发展。

二、铝基复合材料的理论基础铝基复合材料作为一种先进的轻质高强材料,其理论基础主要建立在金属学、材料科学、复合材料力学以及粉末冶金学等多个学科的基础上。

铝基复合材料以其低密度、高比强度、良好的导热和导电性、出色的抗腐蚀性以及优异的可加工性而广受关注。

铝基复合材料的性能提升主要得益于增强相的选择与加入。

增强相可以是颗粒状、纤维状或晶须状,其种类和性能直接影响复合材料的力学、热学、电磁等性能。

常见的增强相包括SiC、Al₂O₃、TiC等陶瓷颗粒,以及碳纤维、玻璃纤维等。

这些增强相在铝基体中通过阻碍位错运动、提高基体强度等方式,显著提升了复合材料的综合性能。

铝基复合材料的制备工艺对其性能有着至关重要的影响。

粉末冶金法作为一种重要的制备工艺,通过控制粉末的粒度、形貌、分布以及烧结过程中的温度、压力等参数,可以实现对复合材料微观结构和性能的精确调控。

铝及铝合金焊接工艺研究

铝及铝合金焊接工艺研究摘要:有色金属(non-ferrousmetal),狹义的有色金属又或简称其为非铁金属,是对我国除铁、锰、铬以外的所有金属的统称。

广义的有色金属还包括有色合金。

有色合金是以一种有色金属为基体含量通常大于50%,在其中混合一种或者几种不同的金属元素形成的合成金属。

有色金属是国家实力、航空航天、国防工业和科技发展不可缺少的基本材料和重要战略物资。

没有有色金属,就不能实现农业现代化、工业现代化、国防现代化。

比如,飞机、雷达、火箭、核潜艇、航空母舰等尖端武器,以及先进技术,如原子能、电视、通信、雷达、电子计算机所需的构件或部件,大多由有色金属中以及轻金属和稀有金属构成;此外,没有镍、钴、钨、钼、钒、铌等有色金属,也不能生产合金钢。

有色金属在电力、航空航天等行业的使用量也是非常大的。

有色金属在工业发达国家也属于国家级别战略资源,国与国之间的竞争也非常激烈。

关键词:铝及铝合金;焊接工艺;策略1铝合金的分类硬铝:硬铝就是指以铜为主要合成元素的铝合金,硬铝具有良好的机械性能,强度比其他铝合金要大,而且硬铝的密度小,可以用于制作轻型结构材料。

为了增加铝合金的抗拉强度,需控制合金中铜的含量,铜含量不得超过4%。

锰含量也是影响铝合金硬度的主要成分,铝合金中加入适量锰,主要目的是降低铁与铝发生对抗性,而对铝合金性能产生的影响。

一般的硬铝中,严格控制Mn的含量小于1%。

在硬铝中可以加入少量的钛,合金晶粒得到一定细化。

铝合金合成元素中,镁、铜、硅等元素可快速形成且属于可溶性有机化合物,硬铝合金通过高温加热时,其性能更加优良。

铜铝在高温退火过程中的抗拉性能和强度一般在160Mpa~220Mpa之间,经高温淬火和加速时效后其抗拉强度可提高到312Mpa~460Mpa。

由于硬铝抗腐蚀性能不佳,为增强铝合金的抗腐蚀性,可在硬铝合金外层增加一层保护膜。

硬铝的缺点主要有:(1)硬铝的抗腐蚀性较差,所以一般要在硬铝焊件的表面镀上一层工业纯铝,来保护件不被腐蚀,这种材料被叫做包铝硬铝,当材料有包铝层时,它的强度会因纯铝的厚度降低强度。

6061铝合金材料焊接变形与控制技术

1C over Report封面报道6061铝合金材料焊接变形与控制技术孙文刚(吉林工业职业技术学院,吉林 吉林 132021)摘 要:为解决6061铝合金材料焊接过程中存在的变形严重,影响焊接质量问题,开展6061铝合金材料焊接变形与控制技术研究。

通过对6061铝合金材料焊接变形参数分析,并提出一种通过在焊接前利用超声波清洗焊件、调整装配与焊接顺序的控制技术。

将该技术应用到实际生产项目当中进一步验证,新的控制技术下焊接结构的变形量均在可允许范围内,实现对焊接变形的有效控制,确保焊接质量达到加工质量标准。

关键词:6061铝合金材料;焊接;变形;控制技术中图分类号:TG454 文献标识码:A 文章编号:11-5004(2021)12-0001-2收稿日期:2021-06作者简介:孙文刚,男,生于1978年,汉族,吉林人,专科,高级技师,研究方向:高效焊接方法及过程智能控制。

为了有效地解决能源短缺和环境污染的问题,在汽车制造生产领域当中,采用铝合金轻量化已经成为汽车行业未来发展的重要趋势。

在当前汽车行业发展的过程中,经济成本、铝合金材料的焊接形变量大等问题,都是严重制约铝合金材料汽车发展的主要影响因素。

6061铝合金材料可广泛应用于汽车的车体加工和制造,与传统钢材料相比,6061铝合金材料无论是热传导率、线性膨胀系数,还是焊接后容易出现软化的问题,都对其焊接技术提出了更高的要求[1]。

因此,当前该领域研究人员将对6061铝合金材料焊接工艺的优化联合创新作为重点研究问题。

6061铝合金材料是铝—镁—硅系列铝合金材料当中的一种,是一种能够进行热处理强化的铝合金材料,利用该材料当中的镁元素、硅元素等在固溶体当中能够获取到更高强度的弥散分布结构[2]。

通常情况下,将该材料应用到实际生产工艺当中时,由于会在材料当中添加少量的镍元素、钛元素等,以此提高材料的机械性能和细化晶粒,但在进行固溶处理后,焊接时又会产生材料的软化现象,影响材料本身的力学性能,最终导致产品的质量下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

亚微米级Al2O3p/6061Al铝基复合材料扩散焊接工艺研究
本文以亚微米级Al2O3p/6061Al铝基复合材料为对象,研究了直接扩散焊与采用
中间层扩散焊两种工艺焊接铝基复合材料的特点、机理,分析了中间层对接头强
度的影响规律。结果表明,在铝基复合材料液、固温度区间,存在“临界温度区
域”,在此温度区域进行直接扩散焊接时,通过液相基体金属的浸润,使得在扩
散接合面中增强相—增强相接触转化为增强相—基体—增强相的有机结合,获得
高质量焊接接头;进一步研究发现,在扩散接合面上采用合适的基体中间层同样
可以将增强相—增强相接触转化为增强相—基体—增强相的有机结合,同时增大
“临界温度区域”范围,接头性能更加稳定,接头变形量进一步减小(<2%)。

一序言
铝基复合材料作为一种新兴材料,由于其具有高比强度、高比模量、耐高温、抗
辐射、尺寸稳定性好等优异的综合性能而受到人们的广泛关注并将逐步取代部分
传统的金属材料而广泛应用于航空、航天、汽车制造业等领域,成为当今金属基
复合材料发展与研究的主流。然而铝基复合材料的焊接性差,很难形成高强度的
焊接接头,成为该种材料走向实用化的严重障碍。
本文以亚微米级Al2O3p/6061Al铝基复合材料为对象,通过系列试验研究了采用
直接扩散焊与基体铝合金作为中间层的扩散焊两种工艺焊接铝基复合材料的特
点、机理,分析了中间层对接头性能的影响,探索实现铝基复合材料优质连接的
有效工艺。

相关文档
最新文档