高中数学 第一章 集合与函数概念 补集课件 新人教A版必修1
高中数学第一章集合与函数概念1.1.1.2集合的表示课件新人教A版必修1

[解析] 当k=0时,原方程变为-8x+16=0,解得x=2, 此时集合A={2};
当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根, 需要Δ=64-64k=0,即k=1.
此时方程的解为x1=x2=4, 所以集合A={4},满足题意. 综上所述,实数k的值为0或1,即实数k构成的集合为 {0,1}.
第三十三页,共43页。
3.{(x,y)|x+y=6,x,y∈N}用列举法表示为_________. 答案:{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
4.已知集合A=x∈N6-8 x∈N
,试用列举法表示集合A.
解:由题意可知6-x是8的正约数,
当6-x=1时,x=5;当6-x=2时,x=4;当6-x=4时,x
第十六页,共43页。
解:(1)满足条件的数有3,5,7, 所以所求集合为{3,5,7}. (2)∵a≠0,b≠0, ∴a与b可能同号也可能异号,故 ①当a>0,b>0时,|aa|+|bb|=2; ②当a<0,b<0时,|aa|+|bb|=-2; ③当a>0,b<0或a<0,b>0时,|aa|+|bb|=0. 故所有值组成的集合为{-2,0,2}.
[巧归纳] 描述法表示集合的步骤 (1)确定集合中元素的特征. (2)给出其满足的性质. (3)根据描述法的形式,写出其满足的集合.
第二十三页,共43页。
[练习2]用适当的方法表示下列集合: (1)已知集合P={x|x=2n,0≤n≤2且n∈N}; (2)抛物线y=x2-2x与x轴的公共点的集合; (3)直线y=x上去掉原点的点的集合.
中所有元素之积为________.
(2)已知集合A={x|kx2-8x+16
高中数学第一章集合与函数概念1.3.2奇偶性第一课时函数奇偶性的定义与判定课件新人教A版必修1

目标导航
课标要求
1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图象的特征. 3.掌握判断函数奇偶性的方法.
通过本节内容的学习,使学生学会利用图象理解和研究 素养达成
函数性质,提高学生直观想象、逻辑推理的能力.
新知探求 课堂探究
新知探求·素养养成
x 1
规 得x范2=解1答,即:(x2=)由±1.1x2
x2 1
0, 0
因此函数的定义域为{-1,1},关于原点对称. ……………………4分
又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数. …6分
(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞), …………………7分 不关于原点对称,所以f(x)既不是奇函数也不是偶函数. ………9分
所以 f(x)为奇函数. ………………………………………………12 分
变式探究:本例中函数 f(x)= 1 x2 + x2 1 可化简为 f(x)=0,则该函数既是奇 函数又是偶函数,若将函数变形为 f(x)= x 1 + 1 x ,则函数的奇偶性如何?
解:由于
x 1 1 x
0, 0,
则
x=1,故
【情境导学】 导入 函数①f(x)=x2-1,②f(x)=- 1 ,③f(x)=2x的图象分别如图所示.
x
想一想 1:(1)导入中三个函数的定义域分别是什么?它们有什么共同特点?
(R;(-∞,0)∪(0,+∞);R.关于原点对称) (2)对于导入中的三个函数计算f(-x),视察对定义域内每个x,f(-x)与f(x) 有怎样的关系? (①f(-x)=x2-1,f(-x)=f(x).
高中数学第一章集合与函数概念1.1.3.2补集及综合应用学案(含解析)新人教A版必修1

第2课时补集及综合应用知识点补集1.全集如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.全集并不是一个含有任何元素的集合,仅包含所研究问题涉及的所有元素.2.补集∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)全集一定包含任何元素.( )(2)同一个集合在不同的全集中补集不同.( )(3)不同的集合在同一个全集中的补集也不同.( )答案:(1)×(2)√(3)√2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=( )A.{x|0≤x<1} B.{x|0<x≤1}C .{x |x <0}D .{x |x >1}解析:画出数轴,如图所示. ∁U B ={x |x ≤1},则A ∩(∁U B )={x |0<x ≤1}. 答案:B3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2解析:由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.答案:D4.设全集U =R ,M ={x |x <-2,或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}解析:阴影部分所表示集合是N ∩(∁U M ), 又∵∁U M ={x |-2≤x ≤2}, ∴N ∩(∁U M )={x |1<x ≤2}. 答案:C类型一补集的运算例1 (1)已知U=R,集合A={x|x<-2或x>2},则∁U A=( )A.{x|-2<x<2} B.{x|x<-2或x>2}C.{x|-2≤x≤2} D.{x|x≤-2或x≥2}(2)已知全集U,M,N是U的非空子集,且∁U M⊇N,则必有( )A.M⊆∁U N B.M∁U NC.∁U M=∁U N D.M⊆N(3)已知全集为U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},求集合B.【解析】(1)观察数轴可知,∁U A={x|-2≤x≤2}.(2)依据题意画出Venn图,观察可知,M⊆∁U N.(3)因为A={1,3,5,7},∁U A={2,4,6},所以U={1,2,3,4,5,6,7}.又∁U B={1,4,6},所以B={2,3,5,7}.【答案】(1)C (2)A (3)见解析(1)画出数轴表示集合A,根据补集的定义写出∁U A.(2)画出Venn图,逐个选项分析判断.(3)先结合条件,由补集的性质求出全集U,再由补集的定义求出集合B,也可借助Venn 图求解.方法归纳求补集的原则和方法(1)一个基本原则.求给定集合A的补集,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.(2)两种求解方法:①若所给的集合是有关不等式的集合,则常借助于数轴,把已知集合及全集分别表示在数轴上,然后再根据补集的定义求解,注意端点值的取舍.②若所给的集合是用列举法表示,则用Venn 图求解.,跟踪训练1 (1)设全集U =R ,集合A ={x |2<x ≤5},则∁U A =________;(2)已知U ={x |-5≤x <-2或2<x ≤5,x ∈Z },A ={x |x 2-2x -15=0},B ={-3,3,4},则∁U A =________,∁U B =________.解析:(1)用数轴表示集合A 为图中阴影部分,故∁U A ={x |x ≤2或x >5}.(2)在集合U 中,因为x ∈Z ,则x 的值为-5,-4,-3,3,4,5,所以U ={-5,-4,-3,3,4,5}.又因为A ={x |x 2-2x -15=0}={-3,5},B ={-3,3,4},所以∁U A ={-5,-4,3,4},∁U B ={-5,-4,5}.答案:(1){x |x ≤2或x >5} (2){-5,-4,3,4} {-5,-4,5} (1)借助数轴求补集更直观.(2)先表示出全集U 、集合A ,再求补集. 类型二 集合交、并、补的综合运算例2 (1)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6),集合B ={1,3,4,6,7),则集合A ∩(∁U B )=( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤0,或x ≥52,求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).,【解析】 (1)因为U ={1,2,3,4,5,6,7,8},B ={1,3,4,6,7},所以∁U B ={2,5,8}.又A ={2,3,5,6},所以A ∩(∁U B )={2,5}.(2)将集合A ,B ,P 分别表示在数轴上,如图所示.因为A ={x |-4≤x <2},B ={x |-1<x ≤3},所以A ∩B ={x |-1<x <2},∁U B ={x |x ≤-1,或x >3}.又P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤0,或x ≥52,所以(∁U B )∪P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤0,或x ≥52. 又∁U P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <52,所以(A ∩B )∩(∁U P )={x |-1<x <2}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <52={x |0<x <2}. 【答案】 (1)A (2)见解析(1)先求∁U B ,再求A∩∁U B.(2)根据集合的交集、补集、并集运算,画数轴,即可求解.方法归纳求集合交、并、补运算的方法跟踪训练2 已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3<x ≤3},求∁U A ,A ∩B ,∁U (A ∩B ),(∁U A )∩B .解析:把全集U 和集合A ,B 在数轴上表示如下:由图可知,∁U A ={x |x ≤-2或3≤x ≤4},A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4}, (∁U A )∩B ={x |-3<x ≤-2或x =3}.借助数轴求出∁U A ,∁U B 再运算.类型三 补集思想的应用例3 已知集合A ={x |x 2-4x +2m +6=0},B ={x |x <0},若A ∩B ≠∅,求实数m 的取值范围.【解析】 先求A ∩B =∅时m 的取值范围. (1)当A =∅时,①方程x 2-4x +2m +6=0无实根,所以Δ=(-4)2-4(2m +6)<0,解得m >-1. (2)当A ≠∅,A ∩B =∅时,方程x 2-4x +2m +6=0的根为非负实根.② 设方程x 2-4x +2m +6=0的两根为x 1,x 2,则⎩⎪⎨⎪⎧Δ=-2-m +,x 1+x 2=4≥0,x 1x 2=2m +6≥0,③即⎩⎪⎨⎪⎧m ≤-1,m ≥-3,解得-3≤m ≤-1,综上,当A ∩B =∅时,m 的取值范围是{m |m ≥-3}.又因为U =R ,④ 所以当A ∩B ≠∅时,m 的取值范围是∁R {m |m ≥-3}={m |m <-3}.所以,A ∩B ≠∅时,m 的取值范围是{m |m <-3}.①A∩B=∅,对于集合A 而言,分A =∅与A≠∅两种情况. A =∅表示方程无实根. ②B={x|x<0},而A∩B=∅,故,即已知方程的根为非负实根.③Δ≥0保证了A≠∅,即原方程有实根;x 1+x 2≥0与x 1x 2≥0保证了原方程两根非负. 如果两根都大于1,则等价形式为⎩⎪⎨⎪⎧1-+2-,1-2->0,而不是⎩⎪⎨⎪⎧x 1+x 2>2,x 1x 2>1.④由于A∩B≠∅,故方程x 2-4x +2m +6=0一定有解,故我们还可以设全集U ={m|Δ≥0}={m|m≤-1}.此时,{m|-3≤m≤-1}关于U 的补集也是{m|m<-3},结果相同.方法归纳(1)运用补集思想求参数范围的方法:①否定已知条件,考虑反面问题;②求解反面问题对应的参数范围;③将反面问题对应参数的范围取补集.(2)补集思想适用的情况:从正面考虑,情况较多,问题较复杂的时候,往往考虑运用补集思想.跟踪训练3 设全集U={3,6,m2-m-1},A={|3-2m|,6},∁U A={5},求实数m.解析:因为∁U A={5},所以5∈U但5∉A,所以m2-m-1=5,解得m=3或m=-2.当m=3时,|3-2m|=3≠5,此时U={3,5,6},A={3,6},满足∁U A={5};当m=-2时,|3-2m|=7≠5,此时U={3,5,6},A={6,7},不符合题意舍去.综上,可知m=3.,根据补集的定义,得到关于m的方程m2-m-1=5,解得m的值后还需检验.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A等于( )A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:由题意知∁U A={2,4,7},选C.答案:C2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)等于( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.故选D.答案:D3.如图所示,U是全集,A,B是U的子集,则阴影部分所表示的集合是( )A.A∩B B.A∪BC.B∩(∁U A) D.A∩(∁U B)解析:由Venn图可知阴影部分为B∩(∁U A).答案:C4.设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论中正确的是( )A.3∉A,3∉B B.3∉A,3∈BC.3∈A,3∉B D.3∈A,3∈B解析:由Venn图可知,3∈A,3∉B,故选C.答案:C5.设集合M={x|-1≤x<2},N={x|x-k≤0},若(∁R M)⊇(∁R N),则k的取值范围是( )A.k≤2 B.k≥-1C.k>-1 D.k≥2解析:由(∁R M)⊇(∁R N)可知M⊆N,则k的取值范围为k≥2.答案:D二、填空题(每小题5分,共15分)6.设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁U A)∪(∁U B)=________.解析:依题意得知,∁U A={c,d},∁U B={a},(∁U A)∪(∁U B)={a,c,d}.答案:{a,c,d}7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析:∵U={0,1,2,3},∁U A={1,2}.∴A={x∈U|x2+mx=0}={0,3}.∴0,3是方程x2+mx=0的两根,∴0+3=-m,即m=-3.答案:-38.已知U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则ab=________. 解析:因为A∪(∁U A)=R,所以a=3,b=4,所以ab=12.答案:12三、解答题(每小题10分,共20分)9.已知全集U=R,集合A={x|-1<x<2},B={x|0<x≤3}.求:(1)A∩B;(2)∁U(A∪B);(3)A∩(∁U B).解析:(1)因为A={x|-1<x<2},B={x|0<x≤3},所以A∩B={x|-1<x<2}∩{x|0<x≤3}={x|0<x<2}.(2)A∪B={x|-1<x<2}∪{x|0<x≤3}={x|-1<x≤3},∁U(A∪B)={x|x≤-1或x>3}.(3)A∩(∁U B)={x|-1<x<2}∩{x|x>3或x≤0}={x|-1<x≤0}.10.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.(1)求(∁R A)∩B;(2)若A⊆C,求a的取值范围.解析:(1)因为A={x|3≤x<7},所以∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|2<x<3或7≤x<10}.(2)因为C={x|x<a},且A⊆C,如图所示,所以a≥7,所以a的取值范围是{a|a≥7}.[能力提升](20分钟,40分)11.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁UB )等于( )A .{3}B .{4}C .{3,4}D .∅解析:由A ∪B ={1,2,3},B ={1,2},U ={1,2,3,4}知A ∩(∁U B )={3}.答案:A12.设全集U ={1,2,x 2-2},A ={1,x },则∁U A =________.解析:若x =2,则x 2-2=2,U ={1,2,2},与集合中元素的互异性矛盾,故x ≠2,从而x =x 2-2,解得x =-1或x =2(舍去).故U ={1,2,-1},A ={1,-1},则∁U A ={2}. 答案:{2}13.已知A ={x |0<2x +a ≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2. (1)当a =1时,求(∁R B )∪A ; (2)若A ⊆B ,求实数a 的取值范围.解析:(1)当a =1时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x ≤1, 又B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2, ∴∁R B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-12或x ≥2, ∴(∁R B )∪A ={}x | x ≤1或x ≥2.(2)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-a 2<x ≤3-a2, 若A ⊆B ,当A =∅时,-a 2≥3-a2,∴0≥3不成立, ∴A ≠∅,∴⎩⎪⎨⎪⎧ -a 2≥-12,3-a 2<2,∴-1<a ≤1,所以a 的取值范围是{a |-1<a ≤1}.14.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若A ∪B =A ,求实数a 的取值范围.解析:(1)因为M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2},所以∁I M ={x |x ∈R 且x ≠-3},所以(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},因为A ∪B =A ,所以B ⊆A ,所以B =∅或B ={2},当B =∅时,a -1>5-a ,得a >3;当B ={2}时,⎩⎪⎨⎪⎧ a -1=2,5-a =2,解得a =3,综上所述,所求a 的取值范围为{a |a ≥3}.。
高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算 第2课时 全集、补集及综合应用课件 新

B.{x|x≤1}
C.{x|0≤x≤1}
D.{x|0<x<1}
(2)设集合 U={1,2,3,4,5},A={2,4},B={3,4,
5},C={3,4},则(A∪B)∩(∁UC)=_{_2_,__5_}__.
解析:(1)因为 A={x|x≤0},B={x|x≥1},所以 A∪B={x|x≤0 或 x≥1},在数轴上表示如图.
(1)数集问题的全集一定是 R.(× )
(2)集合∁BC 与∁AC 相等.( × )
(3)A∩∁UA=∅.( √ )
2.若合集 M={1,2,3,4,5},N={2,4},则∁MN=( B )
A.∅
B.{1,3,5}
C.{2,4}
D.{1,2,3,4,5}
3.已知全集 U=R,集合 P={x|-1≤x≤1},那么∁UP=( D ) A.{x|x<-1} B.{x|x>1} C.{x|-1<x<1} D.{x|x<-1 或 x>1} 解析:因为 P={x|-1≤x≤1},U=R,所以∁UP=∁RP={x|x <-1 或 x>1}.
2.补集 对于一个集合 A,由全集 U 中不属于集合 A
文字 的__所__有__元__素____组成的集合称为集合 A 相对
语言 于全集 U 的补集,记作___∁_U_A__
符号 语言
∁UA=___{_x_|x_∈__U__,__且__x_∉_A_}__
图形 语言
1.判断(正确的打“√”,错误的打“×”)
(2)已知全集 U={x|x≤4},集合 A={x|-2<x<3},B={x|-
3≤x≤2},求 A∩B,(∁UA)∪B,A∩(∁UB).
[解] (1)因为∁UA={2,4,6,7,9},∁UB={0,1,3,7, 9},所以(∁UA)∩(∁UB)={7,9}.
人教版A版高中数学必修一配套全册完整课件

3.设集合 A={x|x≤ 13},a= 11,那么( D )
A.a A
B.a∉A
C.{a}∈A
D.{a} A
1 23 45
答案
1 23 45
4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},
那么(∁IM)∩(∁IN)等于( A ) A.∅
B.{d}
C.{b,e}
反思与感悟
解析答案
跟踪训练4 学校举办了排球赛,某班45名同学中有12名同学参赛,后 来又举办了田径赛,这个班有20名同学参赛,已知两项都参赛的有6名 同学,两项比赛中,这个班共有多少名同学没有参加过比赛? 解 设A={x|x为参加排球赛的同学},B={x|x为参加田径赛的同学}, 则A∩B={x|x为参加两项比赛的同学}.画出Venn图(如图),
第一章 集合与函数概念
习题课
集合
学习目标
1.系统和深化对集合基础知识的理解与掌握; 2.重点掌握好集合间的关系与集合的基本运算.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
1.集合元素的三个特性:_确__定__性___,_互__异__性___,__无__序__性__. 2.元素与集合有且只有两种关系:__∈______,__∉______. 3. 已 经 学 过 的 集 合 表 示 方 法 有 _列__举__法___ , _描__述__法___ , _V_e_n_n_图___ , _常__用__数__集__字__母__代__号___.
返回
第一章 集合与函数概念
章末复习课
学习目标
1.构建知识网络,理解其内在联系; 2.盘点重要技能,提炼操作要点; 3.体会数学思想,培养严谨灵活的思维能力.
高一数学 人教A版必修1 1-1 集合 课件

x≠3,
(2)①根据集合中元素的互异性,可知x≠x2-2x, 即 x2-2x≠3,
x≠0 且 x≠3 且 x≠-1. ②因为 x2-2x=(x-1)2-1≥-1,且-2∈A,所以 x=
-2.当 x=-2 时,x2-2x=8,此时三个元素为 3,-2,8, 满足集合的三个特性.
探究3 集合中元素的特性与集合相等 例 3 已知集合 A 有三个元素:a-3,2a-1,a2+1,集 合 B 也有三个元素 0,1,x. (1)若-3∈A,求 a 的值; (2)若 x2∈B,求实数 x 的值; (3)是否存在实数 a,x,使 A=B.
(2)∵6-6 x∈N,x∈N,∴6x≥-6 0x≥,0, 即6x≥-0x>,0, ∴0≤x<6,∴x=0,1,2,3,4,5. 当 x 分别为 0,3,4,5 时,6-6 x相应的值分别为 1,2,3,6, 也是自然数,故填 0,3,4,5.
拓展提升 1.常用数集之间的关系
集实R数有数 Q 理集整分数数集集Z自负然整数数集集N正 {0}整数集N*
无理数集
2.判断元素与集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判 断该元素在已知集合中是否出现即可,此时应先明确集合是 由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,只要判断 该元素是否满足集合中元素所具有的特征即可.此时应先明 确已知集合的元素具有什么特征,即该集合中元素要满足哪 些条件.
(3)显然 a2+1≠0.由集合元素的无序性,只可能 a-3 =0,或 2a-1=0.
若 a-3=0,则 a=3,A 中三个元素分别为 0,5,10. 若 2a-1=0,则 a=12,A 中三个元素分别为 0,-52, 54.所以 A≠B. 故不存在这样的实数 a,x.
高中数学人教版A版必修一课件:第一章 《集合与函数概念》 1.3.1 第2课时 函数的最大值、最小值
(1) 解析
作出函数 f(x) 的图象 ( 如图 ) .由图象可知,当 x =±1
时,f(x)取最大值为f(±1)=1.当x=0时,f(x)取最小值f(0)=0,
故f(x)的最大值为1,最小值为0. 答案 1 0
(2)解
任取 2≤x1<x2≤5,
x1 x2 则 f(x1)= ,f(x2)= , x1-1 x2-1 x1-x2 x2 x1 f(x2)-f(x1)= - = , x2-1 x1-1 x2-1x1-1 ∵2≤x1<x2≤5,∴x1-x2<0,x2-1>0,x1-1>0, ∴f(x2)-f(x1)<0,∴f(x2)<f(x1). x ∴f(x)= 在区间[2,5] 上是单调减函数. x-1 2 5 5 ∴f(x)max=f(2)= =2,f(x)min=f(5)= =4. 2-1 5-1
解
(1)设月产量为 x 台,则总成本为 20 000+100x,
1 2 - x +300x-20 0000≤x≤400, 从而 f(x)= 2 60 000-100xx>400. 1 (2)当 0≤x≤400 时,f(x)=-2(x-300)2+25 000; ∴当 x=300 时,f(x)max=25 000, 当 x>400 时,f(x)=60 000-100x 是减函数, f(x)<60 000-100×400<25 000. ∴当 x=300 时 ,f(x)max=25 000. 即每月生产 300 台仪器时利润最大,最大利润为 25 000 元.
规律方法
求解实际问题的四个步骤
(1)读题:分为读懂和深刻理解两个层次,把“问题情景” 译为数学语言,找出问题的主要关系(目标与条件的关系).
(2)建模:把问题中的关系转化成函数关系,建立函数解析
【名师课件】新教材高中数学第一章集合与常用逻辑用语1.3.2补集及综合应用课件新人教A版必修第一册
【解题策略】求补集的原则和方法 (1)一个基本原则. 求给定集合A的补集,从全集U中去掉属于集合A的元 素后,由所有剩下的元素组成的集合即为A的补集. (2)两种求解方法. ①若所给的集合是有关不等式的集合,则常借助于数轴,把已知集合及全集 分别表示在数轴上,然后再根据补集的定义求解,注意端点值的取舍. ②若所给的集合是用列举法表示,则用Venn图求解.
类型三 根据集合运算结果求参数的值或范围(逻辑推理、数学运算) 【典例】(2020·榆林高一检测)已知全集U=R,集合A={x|x≤1或x≥3},集合 B={x|k<x<2k+1},且(∁UA)∩B=⌀,求实数k的取值范围.
【解题策略】由集合运算结果求参数的方法 (1)利用Venn图分析. 当集合中元素个数有限时,可根据集合运算结果,利用Venn图直观展示各集 合之间的关系,进而列出方程(或不等式)求参数的值(或范围). (2)利用数轴分析. 当集合中元素个数无限时,可根据集合运算结果画数轴直观展示各集合之间 的关系,通过分析数轴上有关点的位置关系列方程(或不等式)求参数的值(或 范围).
所以∁UA={0,1,3}.
2.设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3},如图,则阴影部
分所表示的集合为
()
A.{x|-2≤x<1}
B.{x|-2≤x<3}
C.{x|x≤2或x>3}
D.{x|-2≤x≤2}
【解析】选A.由题意,知M∪N={x|x<-2或x≥1},所以阴影部分所表示的集
集合A={1,2,3},所以∁UA={0,4},又B={2,4}, 所以(∁UA)∪B={0,2,4}.
关键能力·合作学习
人教高中数学A版必修一PPT课件2024新版
空间中点、直线、平面的位置关系
点与直线的位置关系
点在直线上或点在直线外。
点与平面的位置关系
点在平面内、点在平面外或点在平面上(即点在平面的边界上)。
直线与平面的位置关系
直线在平面内、直线与平面相交或直线与平面平行。
直线、平面平行的判定及其性质
1 2
直线与平面平行的判定定理
集合的运算
深入讲解交集、并集、补 集等运算,配合具体例子 进行演示。
函数及其表示
函数的概念
阐述函数的定义、函数的 表示方法(解析法、列表 法、图象法)等。
函数的性质
探讨函数的单调性、奇偶 性、周期性等基本性质, 并通过具体函数进行验证 。
函数的应用
介绍函数在现实生活中的 应用,如分段函数、三角 函数等。
如果一条直线平行于平面内的一条直线,那么这 条直线就平行于这个平面。
平面与平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个 平面,那么这两个平面平行。
3
直线与平面平行的性质定理
如果一条直线和一个平面平行,那么过这条直线 的任一平面与此平面的交线与该直线平行。
直线、平面垂直的判定及其性质
函数模型的构建
理解根据实际问题构建函数模 型的方法和步骤,掌握通过数 据拟合确定函数表达式的方法 。
函数模型的研究
掌握通过研究函数的单调性、 奇偶性、周期性等性质,进一 步理解和应用函数模型的方法
。
04
CATALOGUE
空间几何体
空间几何体的结构
棱柱、棱锥、棱台的 结构特征
空间几何体的组合与 分解
对数函数
对数函数的定义与性质
01
引入对数函数的定义,探讨对数函数的性质,如单调性、定义
2021_2022学年高中数学第一章集合与函数概念1.1.1集合的含义与表达课件1新人教A版必修12
选B.
答案:B
1.下列各组对象能构成集合的是(
)
A.所有漂亮的工艺品
B.接近于0的所有实数
C.不超过20的所有非负数
的所有篮球明星
解析:由集合中元素的特性知A,B,D不能构成集合,故选C.
答案:C
2.若以方程x2-5x+6=0和x2-x-2=0的解为元素组成集合M,则M中元
为
.
错解:因为1∈A,所以a=1或a2=1,解得a=1或a=-1.故填1或-1.
错因分析:错解中没有注意到元素a与a2不相等,得到了错误答案1
或-1.事实上,当a=1时,不满足集合中元素的互异性.
正解:因为1∈A,所以a=1或a2=1.
当a=1时,a2=1,不满足集合中元素的互异性,舍去.
当a2=1,即a=±1时,a=1舍去.
1
是集合
2- 3
形式.所以
3,此时 m=2,n=1,满足集合 A 中数的构成
A 中的元素.
探究三集合中元素的特性及其应用
【例3】已知集合A含有三个元素a-2,2a2+5a,12,且-3∈A,求a的值.
分析:由-3∈A,分两种情况进行讨论,注意根据集合中元素的互异
性进行检验.
3
2
解:因为-3∈A,所以a-2=-3或2a +5a=-3,解得a=-1或a=- .
素的个数为(
)
解析:方程x2-5x+6=0的解为x=2或x=3,x2-x-2=0的解为x=2或x=-1,
所以集合M中含有3个元素.
答案:C
3.已知集合S中的三个元素a,b,c分别是△ABC的三条边长,则△ABC