Waste_Incineration_China_Chinese中国的垃圾焚烧

合集下载

中国如何处理垃圾英语作文

中国如何处理垃圾英语作文

中国如何处理垃圾英语作文In China, the issue of waste management has become increasingly important due to the country's rapid urbanization and industrialization. The Chinese government has implemented a series of measures to address the problem of waste management, including recycling, waste reduction, and the construction of new waste treatment facilities.Firstly, China has been actively promoting the conceptof waste sorting and recycling. In many cities, waste separation is mandatory, and citizens are required to sort their household waste into different categories such as recyclables, kitchen waste, hazardous waste, and other waste. The government has also established recycling centers to collect and process recyclable materials, such as paper, plastic, glass, and metal. These efforts have significantly reduced the amount of waste sent to landfills and have promoted a more sustainable approach to waste management.Secondly, China has been investing in the constructionof waste-to-energy plants and other advanced waste treatment facilities. These facilities are designed toconvert waste into energy through incineration or other methods, reducing the volume of waste and minimizing its environmental impact. Additionally, the government has been promoting the use of advanced technologies for waste treatment, such as anaerobic digestion, composting, and landfill gas recovery, to minimize the environmental impact of waste disposal.Furthermore, China has been working to reduce the production of single-use plastics and other non-biodegradable products. The government has implemented bans on the production and use of certain types of single-use plastics, such as plastic bags and straws, and has encouraged the use of biodegradable alternatives. These efforts have helped to reduce the amount of plastic waste in the environment and promote a more sustainable approach to consumption and production.Overall, China has been taking a proactive approach to waste management, implementing policies and initiatives to promote waste reduction, recycling, and sustainable waste treatment. While there are still challenges to overcome, such as increasing public awareness and participation inwaste sorting and recycling, the Chinese government's efforts have shown significant progress in addressing the issue of waste management in the country.中国如何处理垃圾在中国,垃圾处理已成为一个日益重要的问题,这是因为中国迅速的城市化和工业化。

生活垃圾焚烧处理工程技术要求规范

生活垃圾焚烧处理工程技术要求规范

生活垃圾焚烧处理工程技术规范CJJ90-20021 总则1.0.1 为贯彻《中华人民共和国固体废物污染环境防治法》和国家有关生活垃圾处理法规,实现生活垃圾处理的资源化、减量化、无害化目标,规范生活垃圾焚烧处理工程规划、设计、施工及验收和运行管理,制定本规范。

1.0.2 本规范适用于以焚烧方法处理生活垃圾的新建工程。

本规范不适用于有毒、有害废物和危险废物的焚烧处理工程。

1.0.3 生活垃圾焚烧工程规模的确定和技术路线的选择,应根据城市社会经济发展、城市总体规划、环境卫生专业规划和垃圾收集与处置以及焚烧技术的适用性等合理确定。

1.0.4 生活垃圾焚烧工程建设,应采用成熟可靠的技术和设备,做到焚烧技术先进、运行可靠、维修方便、经济合理、管理科学、保护环境、安全卫生。

垃圾焚烧热能应充分加以利用。

1.0.5 采用焚烧技术处理生活垃圾(以下简称“垃圾”)的工程建设,除应遵守本规范外,尚应符合国家现行的有关强制性标准的规定。

2 术语2.0.1 生活垃圾municipal solid waste(MSW)人们在日常生活中或为日常生活提供服务的活动中产生的固体废物,以及法律、行政法规规定视为城市生活垃圾的固体废物。

生活垃圾主要包括居民生活垃圾、集市贸易与商业垃圾、公共场所垃圾、街道清扫垃圾及企事业单位垃圾等。

2.0.2 垃圾焚烧锅炉 waste incineration boiler垃圾焚烧炉和利用垃圾焚烧释放的热能进行有效换热,并产生蒸汽或热水的热力设备的统称。

2.0.3 低位热值 low heat value (LHV)单位质量垃圾完全燃烧时,当燃烧产物回复到反应前垃圾所处温度、压力状态,并扣除其中水分汽化吸热量后,放出的热量。

2.0.4 焚烧速率rate of burning单位炉排面积、单位时间的垃圾焚烧量。

又称炉排机械负荷。

2.0.5 炉排热负荷heat intensity per grate area单位炉排面积、单位时间内焚烧垃圾的发热量。

中国垃圾分类的英语听力

中国垃圾分类的英语听力

听力材料:L: Hello, everyone. Today we're going to talk about China's waste sorting system. It's a very important topic because it affects everyone's daily life. So, make sure you listen carefully.Waste sorting in China has become more and more important in recent years. The government has implemented strict regulations to encourage people to sort their waste. There are four categories of waste: wet waste, dry waste, recyclable waste, and有害垃圾.Wet waste includes food scraps and other organic matter. This waste is usually put in a separate container for composting or disposal.Dry waste includes non-organic matter such as paper, plastic, glass, and metal. This waste is usually recyclable, so it should be separated and placed in the recycling bin.Recyclable waste includes items that can be reused or recycled, such as plastic bottles, paper, and metal cans. This waste should also be separated and placed in the recycling bin.有害垃圾includes waste that is harmful to the environment or human health, such as batteries, fluorescent tubes, and electronic equipment. This waste should be carefully disposed of in accordance with the regulations to avoid harming the environment.It's important to remember that proper waste sorting is everyone's responsibility. We should all do our part to protect the environment by sorting our waste correctly and disposing of it properly. Thank you for listening.Q: What are the four categories of waste in China's waste sorting system?A: The four categories of waste in China's waste sorting system are wet waste, dry waste, recyclable waste, and有害垃圾.。

中国垃圾焚烧行业邻避冲突原因与治理策略探析

中国垃圾焚烧行业邻避冲突原因与治理策略探析
垃圾焚烧行业邻避冲突的根源是利益调节失
29
封面故事
COVER STORY
衡,此外,科普、传播、沟通、监管与危机应对等环节的 瑕疵或欠缺,又加剧了对立情绪,激化了矛盾的爆发。
(一)负外部性致利益失衡,受项目影响的公众 未得到合理补偿
负外部性,也称外部成本或外部不经济,是指个 人或企业的行为影响了其他人或企业,使之支付了额 外的成本费用,但后者又无法获得相应补偿的现象。 不可否认,垃圾焚烧发电项目作为民生基础设施所发 挥的重要作用,但在为社会提供服务的同时,其建设 和运营一定时间和空间内,产生了社区形象受损、房 产贬值和心理压抑等负面影响,更何况因运营不善、 监管不严而偷排超排的违法企业主,还对周边社区民 众健康和环境安全造成了影响,此类负面效应都要由 周边居民来承担。负外部性一方面激发了项目周边公 众防御风险的本能反应,也造成了利益天平的失稳失 衡,这是邻避冲突产生的心理基础和根本原因。环境 领域邻避冲突的实质是环境保护、民生需求和社会治 理矛盾交织的结果,垃圾焚烧项目频遭抵制就是此类 矛盾的典型缩影。
中国垃圾焚烧行业邻避冲突原因
与治理策略探析
Analysis on the Causes of NIMBY Conflicts in China's Waste Incineration Industry and Related Governance Strategies
■文 / 田烁
中国正处于社会发展转型期,经济发展和城市化 进程加快,对公共设施建设需求量逐年递增,加之转型 期社会矛盾和问题交织叠加,国家治理体系和治理能 力有待加强等诸多困难与挑战,导致社会冲突易发、频 发,环境领域邻避冲突时有发生。环境领域邻避冲突实 质是环境保护、民生需求和社会治理矛盾交织的结果, 垃圾焚烧项目频遭抵制就是此类矛盾的典型缩影。

生活垃圾焚烧处理工程技术规范CJJ新版新版

生活垃圾焚烧处理工程技术规范CJJ新版新版

中华人民共和国行业标准生活垃圾焚烧处理工程技术规范TechnicalcodeforProjectsofMunicipalWasteIncinerationCJJ90—2009批准部门:中华人民共和国建设部前言根据建设部建标[2007]号文的要求,规范编制组在广泛调查研究,认真总结实践经验,参考有关国际标准和国内外先进标准,并在广泛征求意见的基础上,对《生活垃圾焚烧处理工程技术规范》CJJ90-2002进行了修订。

本次修订主要在下列方面对上一版(CJJ90-2002,J184-2002)进行了较大修订:1对术语进行了充实和完善;2本着节约用地的原则,提出了对厂区道路设计和绿地率要求;3在垃圾焚烧系统章节中,修改了一些不确切条款,增加了一些适应节能减排新形势要求的条款;4对烟气净化系统工艺增加了干法和湿法的内容;5根据修订的《生活垃圾填埋场污染控制标准》,对飞灰的处理增加了可进入生活垃圾卫生填埋场处理的条件;6为适应新技术的发展和新形势的要求,对电气和仪表控制章节进行了一些修改;7为了节约用水,对给排水和消防章节进行了调整和部分修改;8与修改条文相适应,对相应的条文说明进行了修改和补充。

本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。

本规范主编单位:城市建设研究院(地址:北京市朝阳区惠新里3号;邮政编码:100029)、五洲工程设计研究院(地址:北京市西便门内大街85号;邮政编码:100053)。

本规范参加单位:上海日技环境技术咨询有限公司、深圳市环卫综合处理厂、上海市环境工程设计科学研究院。

本规范主要起草人:徐文龙孙振安郭祥信陈海英白良成梁立军杨宏毅云松陈恩富朱先年滕清张益王敬民龙吉生金福青吕德彬陈峰蒋旭东卜亚明闫磊张小慧龚柏勋蔡辉张国辉翟力新李万修徐海云孙彦曹学义岳优敏姜宗顺程义军骞瑞欢康振同安淼目录1总则2术语3垃圾产生量与特性分析垃圾处理量垃圾特性分析4垃圾焚烧厂总体设计垃圾焚烧厂规模厂址选择全厂总图设计总平面布置厂区道路绿化5垃圾接受、储存与输送一般规定垃圾接收垃圾储存与输送6焚烧系统一般规定垃圾焚烧炉余热锅炉燃烧空气系统与装置辅助燃烧系统炉渣输送处理装置7烟气净化系统一般规定酸性污染物的去除除尘二恶英类和重金属的去除氮氧化物的去除排烟系统设计飞灰收集、输送与处理系统8垃圾热能利用系统一般规定利用垃圾热能发电及热电联产利用垃圾热能供热9电气系统一般规定电气主接线厂用电系统二次接线及电测量仪表装置照明系统电缆选择与敷设通信10仪表与自动化控制一般规定自动化水平分散控制系统检测与报警保护和开关量控制模拟量控制电源与气源控制室电缆、管路和就地设备布置11给水排水给水循环冷却水系统排水及废水处理12消防一般规定消防水炮建筑防火13采暖通风与空调一般规定采暖通风空调14建筑与结构建筑结构15其他辅助设施化验维修及库房电气设备与自动化试验室16环境保护与劳动卫生一般规定环境保护职业卫生与劳动安全17工程施工及验收一般规定工程施工及验收竣工验收1总则1.0.1为贯彻、落实科学发展观、《中华人民共和国固体废物污染环境防治法》和国家有关生活垃圾(以下简称“垃圾”)处理法规,实现生活垃圾处理的无害化、减量化、资源化目标,规范生活垃圾焚烧处理工程规划、设计、施工、验收和运行管理,制定本《生活垃圾焚烧处理工程技术规范》。

垃圾焚烧飞灰的稳定化处置与资源化利用研究进展

垃圾焚烧飞灰的稳定化处置与资源化利用研究进展
石灰固化是指以石灰 、粉煤灰 、水泥窑灰以及 熔矿炉炉渣等具有波索来反应 ( Pozzolanic Reac2 tion)的物质为固化基材而进行的危险废物固化 / 稳定化操作 。在适当的催化环境下进行波索来反 应 ,将废物中的重金属成分吸附于所产生的胶体结 晶中 。石灰固化处理所能提供的结构强度不如水 泥固化 ,因此很少单独使用 。此外 ,还有沥青固化 、 塑性材料固化技术 、自胶结固化技术 、大型包胶技 术等 ,但由于技术和经济原因 ,很少应用于生活垃 圾焚烧飞灰的处理 [ 5 ] 。 1. 2 化学药剂稳定化
3 基金项目 :国家科技部中小型企业创新基金 ,基金代号为 : 03C26213100902;上海市重点科研攻关项目 , 032312043 - 2
收稿日期 : 2006 06 17 作者简介 :宋 玉 (1979—) ,男 ,江西奉新人 ,同济大学环境系在 读博士 ,研究方向主要是垃圾焚烧飞灰的稳定化、资源化处理等。
目前 ,国内对垃圾焚烧产生的废物处理和资源 化研究主要集中于焚烧炉渣上 ,对于飞灰处理利用 的研究报道不多 。作者主要参考国外对飞灰处理 的资料 ,探讨了飞灰的固化 /稳定化处置以及资源 化利用技术的研究发展方向 。
1 生活垃圾焚烧飞灰的稳定化处置 1. 1 水泥 、石灰固化
水泥是一种最常用的危险废物稳定剂 。该技 术是将飞灰和水泥混凝土混合形成固态 ,经水化反 应后形成坚硬的水泥固化体 ,从而达到降低飞灰中
去除重金属的效果 [ 6 ] 。 采用硫化钠 、硫代硫酸钠和硫脉等对生活垃圾
焚烧厂的飞灰进行处理时 ,主要是利用它们与重金 属生成硫化物沉淀 ,从而稳定飞灰中的重金属 。如 常州市采用硫化钠和硫脉对生活垃圾焚烧厂飞灰 进行稳定化处理 ,并在处理时发现 ,在达到相同的 稳定效果时 ,硫化钠的最佳用量为硫脉的两倍 [ 1 ] 。

Waste_Incineration_China 垃圾焚烧

Waste Incineration in ChinaBalz Solenthaler, Rainer BungeSummary China currently operates 19 municipal waste incinerators (MWI) with a total daily capacity of approximately 7,000 tons (December 2002 status)1. This is about 2% of all the municipal solid waste being produced in China. Most of these systems are grate technology. Because of the low calorific value of the waste (approx. 5 MJ/kg), incineration on a fluidized bed and the addition of hard coal is also wide-spread. The flue gas cleaning is done using dry or semi dry systems. This is part of the findings of a Swiss student of the Hochschule Rapperswil (HSR) who studied the status of waste incineration in China. During his 3 month term in Beijing, he had the opportunity to talk with local authorities and the operators of municipal waste incinerators. He also had the opportunity of visiting several incineration plants and to draw samples from the residues for further analysis. This work revealed that the heavy metal levels in the residue from the municipal waste incinerators are clearly much lower than those in Switzerland. One exception is mercury; its relatively high levels in the slag leaves room for interpretation and speculation. Because of the data that was collected, we cannot exclude the possibility that some Chinese municipal waste incinerators might even emit mercury into the environment. Appreciation This working visit to China was initiated by umtec (Institute for Applied Environmental Technology) at the Hochschule Rapperswil (HSR). The work on site was carried under the auspices of the "Center for Environmentally Sound Technology Transfer" (CESTT), a Chinese Non Profit Organization. Umtec would like to thank its Chinese partners as well as the local of authorities the and the waste Figure 1: Visit to MWI in Harbinowners/operatorsmunicipalincinerators for their participation and especially for1Status July 2003: Two further plants in Shanghai (capacity: 1000 t/d) and Wenzhou (capacity: 600 t/d) have been put into operation in the meantime.Waste Incineration in Chinapage 1their very open information policy. A special thanks must also go to seco, the Swiss Ministry of Economy, who assumed the financing of the project. Drastic increase in municipal waste Waste represents a huge problem today in China, as it is frequently used inappropriately as landfill, causing a serious burden on the ground and the groundwater. Regulated waste management is mainly limited to the urban regions to date. In the rural areas, no authority is generally responsible for solid waste, as it is normally dumped on agricultural land [1]. Therefore, the official statistics relate predominantly to urban household waste. The amount of municipal waste has risen dramatically in China since the end of the 70s. It has grown by just under 10% annually between 1979 and 1995. In major cities like Beijing, Shanghai or Shenyang (Liaoning Province), the annual growth rate even reached 20 % [1]. Overall, the volume of municipal waste in China equaled approx. 140 million tons in 2000 [2]. This is double the amount for the year 1990 and represents an increase by a factor of six over 1979. Increases in the waste volumes are also expected for the coming years. Also, the standard of living in China will presumably continue to improve, causing the per capita volume of waste to increase accordingly. Moreover, the Chinese economy has grown by about 8% in recent years. A similar level of growth is also expected for the next years. Experience has shown that the volume of municipal waste correlates with the economic development, which also indicates a further growth in the level of waste [3]. Lastly, urbanization is being expected for China. Today about 35% of the population lives in the cities. By the year 2020, this proportion is expected to have Figure 2: Waste bunker in risen to 50%. As the waste problem has only really been Beijing studied in the past in the cities, a further increase in the (recorded) volume of municipal solid waste must be expected as urbanization progresses further. Low calorific value in the studied municipal waste The composition of the waste in China is extremely in-homogenous. In some of the large cities, the composition of the waste corresponds roughly to that in Western Europe. In most areas, however, the dominant components of the waste are kitchen waste and coal ash. The high ratio Waste Incineration in China page 2of kitchen waste is partly attributed to the eating culture. As a result, kitchen waste will also continue in the future to represent a higher ratio of the waste in China than in Europe. The coal ash originates in the household furnaces. The proportion of ash has clearly dropped in some cities, as an increasing amount of gas is being consumed instead of coal in furnaces and in kitchens [4]. This trend will presumably carry on as the use of gas as a substitute for coal continues to be promoted in the cities as a result of the problems with air pollution.14 12 10 MJ/kg 8 6 4 2 0 6.1 3.9 6.5 5.2 4.2 4.2 5.0 12.4average of the examined MWIFigure 3: Calorific value of garbage in the examined plants and in Switzerland (the sampled systems are identified as A to F for reasons of confidentiality) Calorific value is one of the most important parameters for operating a municipal waste incinerator. The average calorific value of municipal solid waste in the studied Chinese plants equals 5 MJ/kg, the Swiss average on the other hand equals 12.5 MJ/kg (Figure 3). The reason for the low calorific value is the high proportion of ’green waste’ (calorific value of approx. 2 MJ/kg) and inert substances. With grate furnaces, a minimum calorific value of 6 to 6.5 MJ/kg is necessary for incineration without support firing. Normally, Chinese municipal waste incinerators cannot be operated without support firing. Incinerating municipal waste plays an inferior role today Currently, the majority of all city waste is dumped as landfill, most of it in inappropriate dumps, which causes a severe burden on the environment. The few secured landfill sites are overloaded long before the end of the planned running time for the site, partly due to the use of Waste Incineration in China page 3SwitzerlandMWI CMWI DMWI AMWI BMWI EMWI Funsuitable refuse compactors and because of the unexpectedly rapid increase in the volumes of waste. An increasing shortage in space in urban areas, pollution of agricultural lands, a high danger of explosions caused by landfill gases from the solid waste and rising transportation costs are the side effects of the unregulated dumping of waste. The incineration of municipal waste plays a minor role in China today, as the authorities still focus mainly on incinerating hazardous waste, e.g. waste from industry or hospitals. In future, however, China will not be able to further dump raw municipal waste. Some municipal authorities already have great difficulties in finding landfill sites for waste a sensible distance away from the city. Thus, an increasing number of cities have constructed or are planning to construct incineration plants, in spite of the high costs involved. There were 19 municipal waste incinerators in operation in China in December 2002 with a total daily capacity of approx. 7000 tons (Figure 4). These plants are used to incinerate 1.8% of all the municipal solid waste.Figure 4: Municipal waste incinerators in ChinaWaste Incineration in Chinapage 4Fluidized bed combustion to incinerate municipal waste In comparison with Switzerland, China uses fluidized bed combustion in addition to grate furnace technology for incinerating municipal waste. This accounts for about one third of the existing systems. As far as the grate technology is concerned, most systems have an average (~500 t/d) or high capacity (~1,000 t/d) in addition to a few furnaces with a very small capacity (<100 t/d). Most fluidized bed furnaces on the other hand appear to have a capacity ranging between 100 and 500 t/d. It appears as though large cities such as Shanghai (see Figure 5) are mainly constructing grate firing systems. Smaller and medium sized cities on the other hand appear to prefer fluidized bed combustion. The use of fluidized bed combustion for the incineration of municipal solid waste is Figure 5: MWI in Shanghai surprising as, in general, the cost of operating fluidized bed combustion is generally higher than for conventional grate firing. But because of the low calorific value of municipal solid waste in China, the costs of the generally unavoidable support firing must also be taken into consideration. These costs are much lower for fluidized bed combustion. This is due to the fact that coal can be used instead of oil, since fluctuations in the calorific value can be leveled out because of the high thermal capacity of the sandy bed. Since the costs of coal are clearly lower than those for oil, support firing in fluidized bed combustion is therefore less expensive than with grate firing. This reduced cost for support firing results in the fact that fluidized bed technology can still be competitive in China, even for municipal solid waste. Almost all the flue gas cleaning processes employed in China are dry or semi dry followed by the subsequent separation of the fly ash using textile filters. In Switzerland, in contrast, electric filters are used almost exclusively followed by flue gas scrubber. Thus, Chinese fly ash typically contains an excess in lime. Normally, activated carbon is blown in in addition to lime to remove the dioxins and mercury. To the best of our knowledge, Chinese municipal waste incinerators are not equipped with denitrogenization installations.Waste Incineration in Chinapage 5No metal recycling from MWI residues In general, slag from waste incinerators is not reused. Plans are underway however to use it in the future as a building material. With the exception of Hang Zhou, none of the studied plants used processes to reclaim metal from the residues from MWI. In some systems, the workers are authorized to manually sort out metal pieces from the waste or the slag and even to sell them themselves. According to the SEPA (State Environmental Protection Agency), fly ash is supposed to be compacted with cement and then taken to suitable landfills. Because of the high costs of cement, there are reasons for doubt that this actually occurs. Less metal and heavy metal, but more mercury in Chinese residue We visited five municipal waste incinerators and took samples of their residues within the framework of this project. We also obtained samples of the residues from two other incineration plants. The systems from which samples were taken are marked and circled in Figure 4. Examining the residues from the municipal waste incinerators (MWI) allowed us to arrive at conclusions about the metal contents of the raw waste incinerated at the municipal waste incinerators. The slag was initially checked for its content of metal scrap. The slag was pulverized for this purpose and metal pieces larger than 2 mm were separated out. The average metal content of the Chinese slag obtained in this way was clearly lower than that of Swiss slag, 3.3% over 12.6% in Switzerland. The difference is even larger if only the non-ferrous metals are taken into consideration. In that case, the proportion in the Chinese slag only equaled 0.24% compared with 3% in Switzerland [5]. Reclaiming the non-ferrous metal scrap from the slag does not appear to be economically attractive as a result. XRF (x-ray fluorescence) was used subsequently to obtain the disperse heavy metal content of the pulverized slag and the fly ash. This showed that the concentrations of copper, zinc, lead and cadmium in Chinese MWI slag are clearly lower than the Swiss values. Mercury is the only substance that occurs in significantly higher concentrations in slag in comparison to the Swiss values (Figure 6). Chinese fly ash also reveals much lower levels of heavy metals (copper, zinc, mercury and lead were studied) than Swiss fly ash (Figure 7).Waste Incineration in Chinapage 6slag10'000ChinaHeavy metal levels [mg/kg] 1'000Switzerland *100101Cu * Source: [6]ZnHgPbFigure 6: Contaminants in slagfly ash100'000Heavy metal levels [mg/kg]10'000China Switzerland *1'00010010 Cu* Source: [6]ZnHgPbFigure 7: Contaminants in fly ashWaste Incineration in Chinapage 7High mercury level in slag from Chinese municipal waste incinerators It becomes apparent that the slag from Chinese municipal waste incinerators contains higher levels of mercury than the slag from Swiss municipal waste incinerators. This may indicate a high level of mercury in the untreated waste; there is a possibility that not only municipal solid waste is incinerated in Chinese MWI, but that some hazardous waste also finds its way there. If this is the case, then the low mercury levels in the fly ash are surprising as the overwhelming part of the mercury contained in the municipal solid waste normally reports into the flue gas during incineration, and only a small amount is analyzed in the slag. This unusual relationship between the mercury levels in the slag and the fly ash could be indicative of lower combustion temperatures. However, the good burnout of the slag indicates the contrary. One alternative explanation is that although there is a relatively high level of mercury in the untreated waste, and this waste is actually incinerated under “normal“ incineration temperatures, inadequate quantities are recovered during the flue gas cleaning, thereby accumulating in the fly ash to a lesser extent. The mercury problem leaves some questions unanswered. It is certainly necessary to clarify whether the systems are actually operated properly to remove the mercury from the flue gas, especially whether activated carbon is actually blown in the off gas stream. One must also bear in mind that the sometimes customary recirculation of loaded activated carbon will lead to the successful destruction of the dioxins but it will also result in the build up of mercury in the system which will eventually leak into the environment.Waste Incineration in Chinapage 8Heavy metals and the GDP We also explored the question of whether a prognosis can be made about the future development of the heavy metal contents in Chinese municipal solid waste. Copper was used as the model parameter for the national economy’s development level, as the copper level in municipal solid waste depicts the degree of "electronification" and is therefore indicative of the technical development level of the region. The copper levels in the untreated waste extrapolated from the residues from the municipal waste incinerator were compared with the GDP per capita for the corresponding regional location of the municipal waste incinerator.600 Switzerland copper in the waste [mg/kg] 500 400 300 China 200 100 0 1'000 10'000 Gross domestic product per capita [US$] 100'000Figure 8: Copper in the waste in various regions of China and in Switzerland This revealed that there is a highly significant relationship between the copper content in municipal solid waste and the status of the economic development for the region (Figure 8). Accordingly, one may assume with some confidence that the heavy metal content in Chinese municipal solid waste will rise as the economic development proceeds; one more reason why the development of waste incineration in China must be pushed ahead quickly.Waste Incineration in Chinapage 9Bibliography [1] [2] [3] [4] [5] [6] Xiaoyan Li: Investitionsmöglichkeiten Deutscher Abfallentsorgungsunternehmen in China, Diplomarbeit Wirtschaftswissenschaft Universität Bremen, 2000 Shi Han, Dietmar R., Methling St. : Doing Business in the Chinese Environmental Market, Center for Environmental Sound Technology Transfer, Beijing, 2002 BUWAL: Umwelt Schweiz 2002 – Politik und Perspektiven Zhao Youcai: Municipal Solid Waste Management, Springer, 2003, S.34ff Rainer Bunge: Metalle aus der KVA herausholen, in Umwelt Focus 1/2003 ETH Zürich: Ökoinventare von Entsorgungsprozessen, 1996Dipl.-Ing. Balz Solenthaler Prof. Dr. Rainer Bunge Institut für angewandte Umwelttechnik (www.umtec.ch) Hochschule für Technik Oberseestrasse 10 CH-8640 RapperswilWaste Incineration in Chinapage 10。

观三峰垃圾焚烧发电厂有,有感作文

观三峰垃圾焚烧发电厂有,有感作文英文回答:The Sanshanfeng Waste Incineration Power Plant, located in Shenzhen, China, is a state-of-the-art facility that harnesses the latest clean energy technologies to transform waste into renewable power. Designed with sustainability and environmental protection at its forefront, the power plant not only reduces the city's reliance on fossil fuels but also helps divert waste from landfills, mitigatingtheir negative impact on the environment.One of the most significant aspects of the Sanshanfeng plant is its utilization of advanced incineration technology. Through a meticulously controlled combustion process, the plant efficiently converts waste into high-temperature gases. These gases are then channeled through a series of turbines, generating electricity that is supplied to the city's grid. The incineration process not only eliminates the waste but also recovers its energy content,making it a sustainable and environmentally sound solution.Moreover, the Sanshanfeng Waste Incineration Power Plant employs rigorous emissions control systems to minimize its environmental impact. Advanced flue gas treatment technologies effectively remove pollutants such as particulate matter, sulfur oxides, and nitrogen oxides before releasing the gases into the atmosphere. By adhering to stringent environmental regulations, the plant ensures that its operations do not pose a threat to the surrounding communities or the wider ecosystem.In addition to its technological advancements, the Sanshanfeng Waste Incineration Power Plant also places a strong emphasis on community involvement and outreach. The plant regularly conducts educational tours and workshops to raise awareness about waste management, recycling, and the benefits of clean energy technologies. By engaging with local residents and stakeholders, the plant fosters a sense of ownership and responsibility towards environmental protection.Overall, the Sanshanfeng Waste Incineration Power Plant stands as a testament to Shenzhen's commitment to sustainable development and environmental stewardship. Through its innovative technologies, stringent emissions control systems, and community engagement initiatives, the plant plays a vital role in reducing the city's carbon footprint, diverting waste from landfills, and promoting clean energy solutions. It serves as an exemplar for other cities and regions seeking to embrace a greener and more sustainable future.中文回答:观三峰垃圾焚烧发电厂,坐落于深圳,是一座应用最新清洁能源技术,将废弃物转化为可再生能源的现代化工厂。

中国处理垃圾英语作文

中国处理垃圾英语作文China, as one of the largest and most populous countriesin the world, faces significant challenges related to waste management. Rapid urbanization and economic growth have ledto a dramatic increase in waste production, making effective waste management a crucial issue for sustainable development. In recent years, the government and various organizationshave implemented strategies to address this pressing concern, aiming to promote environmental sustainability and improve public health.One of the key initiatives in waste management is the implementation of waste sorting programs. In many cities, residents are now required to separate their waste into different categories such as recyclables, biodegradable waste, harmful waste, and general waste. This policy not only helps reduce the volume of waste sent to landfills but alsoencourages recycling and the proper disposal of hazardous materials. Educational campaigns have been launched to inform citizens about the importance of waste sorting, highlighting the impact of individual actions on the environment.Another significant aspect of waste management in China is the promotion of recycling. The Chinese government has established a robust recycling system to recover valuable materials from waste. Various recycling stations and collection points have been set up across urban areas, making it convenient for citizens to recycle items such as paper, glass, and plastic. Additionally, the government has partnered with private companies to develop innovative recycling technologies that can enhance the efficiency of the process. This initiative not only conserves natural resources but also reduces pollution and greenhouse gas emissions.Moreover, China has invested heavily in waste-to-energy technologies, which involve converting waste into usableenergy. Incineration plants, equipped with modern technology, are being constructed to handle the growing waste streamwhile generating electricity. This not only alleviates the pressure on landfills but also provides a renewable source of energy that can be harnessed to meet the country’s energy demands. However, it is crucial to ensure that these plants operate under strict environmental regulations to minimizeair pollution and protect public health.Despite these efforts, challenges remain. Inadequatewaste collection infrastructure in rural areas, lack ofpublic awareness, and the high volume of waste generated continue to pose significant hurdles. To address these issues, the government must continue to invest in infrastructure, promote public awareness campaigns, and involve communitiesin waste management strategies.In conclusion, waste management in China is amultifaceted challenge that requires coordinated efforts fromthe government, the private sector, and the public. By implementing effective waste sorting, encouraging recycling, and investing in waste-to-energy technologies, China is making strides toward a more sustainable future. However, sustained commitment and innovation will be essential to overcome existing challenges and ensure a cleaner, healthier environment for future generations.。

生活垃圾焚烧处理工程技术规范

中华人民共和国行业标准生活垃圾焚烧处理工程技术规范Technical code for Projects of Municipal Waste IncinerationCJJ90—2009批准部门:中华人民共和国建设部前言根据建设部建标[2007] 号文的要求,规范编制组在广泛调查研究,认真总结实践经验,参考有关国际标准和国内外先进标准,并在广泛征求意见的基础上,对《生活垃圾焚烧处理工程技术规范》CJJ90-2002进行了修订。

本次修订主要在下列方面对上一版(CJJ90-2002, J184-2002)进行了较大修订:1 对术语进行了充实和完善;2 本着节约用地的原则,提出了对厂区道路设计和绿地率要求;3 在垃圾焚烧系统章节中,修改了一些不确切条款,增加了一些适应节能减排新形势要求的条款;4 对烟气净化系统工艺增加了干法和湿法的内容;5根据修订的《生活垃圾填埋场污染控制标准》,对飞灰的处理增加了可进入生活垃圾卫生填埋场处理的条件;6 为适应新技术的发展和新形势的要求,对电气和仪表控制章节进行了一些修改;7 为了节约用水,对给排水和消防章节进行了调整和部分修改;8 与修改条文相适应,对相应的条文说明进行了修改和补充。

本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。

本规范主编单位:城市建设研究院(地址:北京市朝阳区惠新里3号;邮政编码:100029)、五洲工程设计研究院(地址:北京市西便门内大街85号;邮政编码:100053)。

本规范参加单位:上海日技环境技术咨询有限公司、深圳市环卫综合处理厂、上海市环境工程设计科学研究院。

本规范主要起草人:徐文龙孙振安郭祥信陈海英白良成梁立军杨宏毅云松陈恩富朱先年滕清张益王敬民龙吉生金福青吕德彬陈峰蒋旭东卜亚明闫磊张小慧龚柏勋蔡辉张国辉翟力新李万修徐海云孙彦曹学义岳优敏姜宗顺程义军骞瑞欢康振同安淼目录1 总则2 术语3 垃圾产生量与特性分析垃圾处理量垃圾特性分析4 垃圾焚烧厂总体设计垃圾焚烧厂规模厂址选择全厂总图设计总平面布置厂区道路绿化5 垃圾接受、储存与输送一般规定垃圾接收垃圾储存与输送6 焚烧系统一般规定垃圾焚烧炉余热锅炉燃烧空气系统与装置辅助燃烧系统炉渣输送处理装置7 烟气净化系统一般规定酸性污染物的去除除尘二恶英类和重金属的去除氮氧化物的去除排烟系统设计飞灰收集、输送与处理系统8 垃圾热能利用系统一般规定利用垃圾热能发电及热电联产利用垃圾热能供热9 电气系统一般规定电气主接线厂用电系统二次接线及电测量仪表装置照明系统电缆选择与敷设通信10 仪表与自动化控制一般规定自动化水平分散控制系统检测与报警保护和开关量控制模拟量控制电源与气源控制室电缆、管路和就地设备布置11 给水排水给水循环冷却水系统排水及废水处理12 消防一般规定消防水炮建筑防火13 采暖通风与空调一般规定采暖通风空调14 建筑与结构建筑结构15 其他辅助设施化验维修及库房电气设备与自动化试验室16 环境保护与劳动卫生一般规定环境保护职业卫生与劳动安全17 工程施工及验收一般规定工程施工及验收竣工验收1 总则1.0.12 术语2.0.1 垃圾焚烧炉(焚烧炉)waste incinerator利用高温氧化方法处理垃圾的设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国的垃圾焚烧作者: 作者:Balz Solenthaler、Rainer Bunge 、内容提要 中国目前运行的城市垃圾焚烧厂(MWI)有19座,总的日处理能力大约是7,000吨(2002年12月 统计情况)1. 这只占中国目前产生的所有城市生活垃圾的大约2%。

这些处理系统大多数采用的是炉排技术。

由 于垃圾的热值较低(约5 MJ/kg),在流化床上焚烧,添加的焦炭也铺展得很开。

烟气清理可以采 用干式或半干式系统来进行。

这篇论文是瑞士Rapperswil大学(HSR)的一名学生的一部分研究成果,该学生专门研究了中国 的垃圾焚烧状况。

他在北京呆了三个月,其间,他有机会拜会了一些地方权力部门和城市垃圾焚 烧厂的运营主。

他还有机会参观了好几座焚烧厂,并从垃圾残留物中提取了一些样品,以供进一 步分析。

这一工作显示,中国的城市垃圾焚烧厂的残余物中的重金属成分要比瑞士的明显地低出 许多。

不过,汞是一个例外;汞在炉渣中相对较高的成分给人们留下了进一步阐述和思考的余地 。

鉴于所收集到的数据,我们不能排除这样的可能性,即中国的一些城市垃圾焚烧厂有可能把汞 直接排放到环境中。

鸣谢 这次前往中国的工作考察是由瑞士Rapperswil大学 (HSR)应用环境技术学院(umtec)发起的。

现 场考察工作是在中国的一家非盈利性机构—— “环境无害化技术转让中心”(CESTT)的赞助下 得以进行的。

应用环境技术学院感谢中国的同行们 以及地方权力部门和一些城市垃圾焚烧厂的厂长/运 营主,感谢他们的参与,尤其是他们的非常开放的 信息政策。

另外,也要特别感谢瑞士经济事务部, 是该机构为本项目提供了资金。

图1:参观哈尔滨城市垃圾焚烧厂2003年7月最新统计情况:另外两座焚烧厂已经同时投入运营,一座在上海(处理能力:1000吨/日) 另一座在温州(处理能力:600吨/日)。

1中国的垃圾焚烧1城市垃圾的大幅度增长 垃圾在今天的中国是一个非常严峻的问题,因为垃圾被大量地、不恰当地用于填埋,这给土地和 地下水造成了严重的负担。

目前,比较规范的垃圾管理主要局限于城市地区。

在农村地区,一般 情况下没有哪个部门对生活垃圾负责,因为通常的方式都是倾倒在农用土地上[1]。

所以,官方的 统计数字主要反映的是城市家庭垃圾。

自20世纪70年代末期以来,中国的城市垃圾的数量出现了大幅度的上升。

1979年至1995年间, 垃圾每年以接近10%的速度递增。

在北京、上海或沈阳等大城市,年增长率甚至达到了20% [1]。

总的来看,中国的城市垃圾量在2000年达到了近1.4亿吨[2]。

这是1990年垃圾量的两倍,比 1979年增长了六倍。

在未来的几年里,预计垃圾量还会进一步增长。

另外,中国人的 生活水平将继续得以提高,因而使得人均垃圾产生量也会上升。

近几年里,中国的经济一直以大约8%的速度增长,预计在今后 几年里将保持同样的增长水平。

经验表明,城市垃圾量与经济发 展相关联,这也意味着垃圾的增长水平将进一步上升[3]。

最后还 有一点,中国目前正在出现城市化。

今天,大约35%的中国人生 活在城市里。

到2020年时,预计这一比例将上升到50%。

由于 过去只是对城市里的垃圾问题进行过真正的研究,预计随着城市 化的进程,城市生活垃圾(有记载的)数量将进一步增加。

图2:北京的垃圾仓研究范围里的城市垃圾的低热值 中国的垃圾构成成分非常的不统一。

在一些大城市,垃圾的构成成分与西欧国家的大致相同。

然 而,在大多数地方,垃圾的主要构成成分是厨馀垃圾和煤灰。

厨馀垃圾之所以有这么高的比例, 部分原因要归因于中国的饮食文化。

正是这一原因,中国的厨馀垃圾的比例在今后将继续比欧洲 的高。

煤灰主要源自于家庭火炉。

由于在家庭火炉和厨房里不断地增加了天然气的用量,用来代 替过去的煤炭,在一些城市里,煤灰的比例已出现明显的下降[4]。

这一趋势可能将继续下去,因 为空气污染等诸多问题,在城市里将继续推行用天然气来替代煤炭。

中国的垃圾焚烧214 12 10 MJ/kg 8 6 4 2 0 6.1 3.9 6.5 5.2 4.2 4.2 5.012.4average of the examined MWI图3:接受考察的中国垃圾焚烧厂和瑞士的垃圾热值比较图(为保密起见,图中进行过采样的系 统分别用A-F表明)热值是城市垃圾焚烧厂运作中最重要的参数之一。

在接受考察研究的中国垃圾焚烧厂,城市生活 垃圾的平均热值等于5 MJ/kg,而瑞士的平均热值等于12.5 MJ/kg(见图3)。

出现低热值的原因 是因为高比例的“绿色垃圾”(热值大约是2 MJ/kg)和惰性物质。

在炉排焚烧炉的条件下,如果 想要不通过辅助燃烧来进行焚烧,那就需要6-6.5MJ/kg的最低热值。

通常,中国的城市垃圾焚 烧厂不用辅助燃烧就无法运行。

焚烧城市垃圾在今天只是扮演一个次要角色 目前,中国所有城市的垃圾大多数都是填埋堆放,而且大多数都是以不恰当的方式在堆放,这给 环境带来了非常严重的负担。

仅有的几家安全填埋场早已不堪重负,超过了计划的运行时间却还 在继续运行,部分原因是采用了不合适的废弃物压实机,还因为未曾预料到的快速增加的垃圾量 。

不符合规范的垃圾填埋堆放的副作用有:城市里的空地越来越缺乏、农田受到污染、生活垃圾 中的填埋气体极有可能发生爆炸、运输成本越来越高。

今天,城市垃圾的焚烧在中国只是扮演一个次要的角色,因为政府部门主要仍然注重的是焚烧危 险废弃物,如工业垃圾或医院垃圾。

然而,在今后,中国将不能够再继续填埋堆放原生的城市垃 中国的垃圾焚烧 3SwitzerlandMWI CMWI DMWI AMWI BMWI EMWI F圾。

一些市政当局已经面临着很大的困难,在离城市比较合理的距离范围里找不到垃圾填埋的场 地了。

因此,越来越多的城市已经建造或正在计划建造焚烧厂,尽管需要投入的成本很高。

截止 到2002年12月,中国已经有19座城市垃圾焚烧厂投入了运营,总的日处理能力接近7000吨(见 图4)。

这些焚烧厂只是焚烧了所有城市生活垃圾中的1.8%。

图4:中国的城市生活垃圾焚烧厂处理能力状况图采用流化床燃烧方式来焚烧城市生活垃圾 与瑞士相比,中国除了采用炉排技术外,还采用流化床燃烧方式来焚烧城市垃圾。

这种处理方式 要占现有处理系统的大约三分之一。

就炉排技术而言,除了极少数焚烧炉的处理能力很低(<100 吨/日),大多数系统的平均处理能力都达到了~500吨/日,或者更高(~1,000吨/日)。

而大多数 流化床焚烧炉的处理能力似乎更低一些,介于100至500 吨/日之间。

中国的垃圾焚烧4基本情况好像是,上海等大城市主要建造的是炉排燃烧系统(见图5),而中小城市似乎更喜欢 流化床燃烧方式。

采用流化床燃烧方式来焚烧城市生活垃圾,这让人感到吃惊,因为一般情况下,流化床燃烧方式 的运营成本要比传统的炉排燃烧系统的成本更高。

但是,由于中国的城市生活垃圾的热值较低,通常 不可避免的辅助燃烧成本也必须考虑进去。

这些成 本对于流化床燃烧方式来说要低得多。

这是由于可 以用煤炭代替燃油这一事实所致,因为铺有沙子的 流化床的热能很高,可以避免热值的不稳定性。

由 于煤炭的成本明显地要低于燃油的成本,因此,流 化床燃烧方式中的辅助燃烧要比炉排燃烧更节省成 本一些。

由于辅助燃烧的成本降低了,流化床燃烧 技术在中国即便用来处理城市生活垃圾,也仍然是具有竞争力的。

图5:上海的城市垃圾焚烧厂在中国采用的几乎所有烟气清理方法都是干式或半干式方法,然后再用纺织物过滤器对飞灰进行 分离。

相比之下,在瑞士,几乎毫无例外地采用电子过滤器,然后再用烟气除尘器。

因此,中国的飞灰通常含有过量的生石灰。

一般情况下,除了生石灰外,还要把活性碳吹进去, 以清除掉二恶英和汞。

根据我们的了解,中国的城市垃圾焚烧厂都没有装备除氮装置。

城市垃圾焚烧炉废渣中没有金属回收 一般情况下,垃圾焚烧炉的废渣没有重新利用。

不过,目前正在制定规划,准备今后用作建筑材 料。

除了杭州外,我们调查过的焚烧厂没有一家采用任何办法来重新利用城市垃圾焚烧炉废渣中 的金属。

在一些焚烧厂,工人们可以从垃圾或废渣中手工分拣出金属碎片,甚至可以自行拿出去 销售。

根据国家环保总局的规定,飞灰应该先通过水泥压实,然后运往合适的填埋场。

由于水泥的成本 很高,我们有理由怀疑厂家是否真的在这么做。

中国的垃圾焚烧5中国的焚烧炉废渣中金属和重金属成分较少,但汞的含量较多 根据本项目的安排,我们参观了五家城市垃圾焚烧厂,并对他们的炉渣进行了抽样。

我们还从另 外两家焚烧厂获得了炉渣样品。

进行过采用的焚烧处理系统在图4中标示了出来。

通过对这些城市垃圾焚烧厂的炉渣的检验,我们得出了一些结论,可以基本反映出这些焚烧厂焚 烧的原生垃圾中的金属含量。

首先检验的是炉渣中金属碎片的含量。

为了达到这一目的,我们把炉渣研磨成细粉,并且把尺寸 大于2mm的金属碎片分拣出来。

通过这种方式获知,中国焚烧炉渣中的金属平均含量明显低于瑞 士炉渣的金属含量,中国的比例是3.3%,瑞士是12.6%。

如果只是考虑有色金属的话,那么两国 之间的差异甚至更大,在这种情况下,中国废渣中的有色金属比例只有0.24%,而相比之下,瑞 士的是3%[5]。

所以,从炉渣中回收有色金属碎片,似乎并不具有经济上的吸引力。

接下来,我们采用了X射线荧光来获取已研磨成粉的炉渣和飞灰中分散的重金属成分。

结果显示 ,中国的城市垃圾焚烧炉废渣中的铜、锌、铅和镉的浓度要明显低于瑞士的。

汞是中国的炉渣中 唯一的含量大大高于瑞士的一种物质成分(见图6)。

中国的飞灰也显示出比瑞士的飞灰要低得 多的重金属成分(根据已经考察过的铜、锌、汞和铅含量的情况)(见图7)。

slag10'000ChinaHeavy metal levels [mg/kg] 1'000Switzerland *100101Cu * Source: [6]ZnHgPb图6:炉渣中的各种有害金属成分中国的垃圾焚烧 6fly ash100'000Heavy metal levels [mg/kg]10'000China Switzerland *1'00010010 Cu* Source: [6]ZnHgPb图7:飞灰中的各种有害金属成分中国城市垃圾焚烧炉废渣中很高的汞含量 显而易见,中国的城市垃圾焚烧炉废渣比瑞士的城市垃圾焚烧炉废渣含有更高的汞含量。

这可能 反映出在未经处理的垃圾中也有很高的汞含量,可能的情况是,中国的城市垃圾焚烧炉不仅焚烧 城市生活垃圾,而且也焚烧一些危险废弃物。

如果情况真是这样的话,那么飞灰中的低汞含量就 让人感到惊奇了,因为城市生活垃圾中含有的绝大多数汞成分通常据报道在焚烧过程中进入了飞 灰之中,而炉渣中只有极少量的汞成分得到过分析。

相关文档
最新文档