七年级数学易错题总结(含答案)

合集下载

七年级上下册数学易错题精选

七年级上下册数学易错题精选

有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.整式的加减例1 下列说法正确的是()A. 的指数是0B. 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D。

7年级数学易错题

7年级数学易错题

7年级数学易错题一、有理数运算类。

1. 计算:(-2)^3 - (-3)^2 ÷ (-1)^2023。

- 解析:- 先计算乘方运算。

(-2)^3=-8,(-3)^2 = 9,(-1)^2023=-1。

- 然后进行除法运算,9÷(-1)= - 9。

- 最后进行减法运算,-8-(-9)=-8 + 9 = 1。

2. 计算:(1)/(2)-<=ft(1)/(3)right+<=ft(-(1)/(4))。

- 解析:- 先计算绝对值,<=ft(1)/(3)right=(1)/(3)。

- 然后进行通分计算,(1)/(2)-(1)/(3)-(1)/(4)=(6 - 4 - 3)/(12)=-(1)/(12)。

二、整式加减类。

3. 化简:3a + 2b - 5a - b。

- 解析:- 合并同类项,将含有相同字母的项合并。

- 对于a的项,3a-5a=-2a;对于b的项,2b - b = b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1。

- 解析:- 先去括号,2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。

- 再合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 - 5y^2)=-x^2 - y^2。

- 当x = - 2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程类。

5. 解方程:3x+5 = 2x - 1。

- 解析:- 移项,将含有x的项移到等号一边,常数项移到等号另一边。

- 得到3x - 2x=-1 - 5。

- 合并同类项得x=-6。

6. 解方程:(x + 1)/(2)-(2x - 1)/(3)=1。

- 解析:- 先去分母,方程两边同时乘以6,得到3(x + 1)-2(2x - 1)=6。

人教版七年级数学易错题(含解析)

人教版七年级数学易错题(含解析)

七年级数学易错题1、a -一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定, a -可能是正数,0,负数 分析:若a 是正数,则a -就是负数, 若a =0则a -=0若a 是负数,则a -就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数. 错解: 点C 与点A 之间的距离为2, ∴点C 表示的数为5.点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解: 点C 与点A 之间的距离为2,∴点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度. ①点C 在点A 的左侧2个单位长度,则点C 表示的数为5. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-9.3、.计算:200520011171311391951511⨯+⨯+⨯+⨯+⨯错解:原式=2005120011171131131919151511--+-+-+- =200511-=20052004 剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 方法直接去求解.而忽视本题54511=-, 4549151=-结果中分子是4而不是1.故这样做是错的.正解:原式=41⎪⎭⎫ ⎝⎛--+-+-+-⨯2005120011171131131919151511=41)200511(-⨯ =2005501.4、计算: 17391326-⨯.【错解】原式17391313261750721515.2=-⨯+⨯=-+=-【错解剖析】本题错误原因是把173926-看成173926-与的和,而它应是39-与1726-的和. 【正确解答】原式171713913135075152622=-⨯-⨯=--=-. 5、计算:(1)[]24)3(2611--⨯--; 【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136. 错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136. 【错解剖析】错解一中是将41-计算成1得到136,错解二中是去括号符号出错得到136-.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2--÷⨯-.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2⨯-.【正确答案】原式=1-9×14×14=1-916 =716. 6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 8、已知方程24)3(2-=+--m x m m 是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程. 【错解】m =±3.【剖析】忘记m -3≠0这个条件.【正解】(1)由⎩⎨⎧≠-=-0312m m 得m =-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 【错解】 7x -)1(32)1(2121-=--x x x .)1(4)1(3342-=---x x x x . 4433342-=+--x x x x . 32x =-7.x =327- .【剖析】 去中括号时)1(21--x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2x x x ⎡⎤--=-⎢⎥⎣⎦.第一次去括号,得 42x -44)1(233-=-+x x x .第二次去分母,得 84x -6x +3x -3=8x -8. 移项,合并同类项,得 73x =-5.把系数化为1,得 x =735-. 10. 解方程1-x =5.【错解】由1-x =5得到x -1=5.∴x =6.【剖析】去绝对值符号必须考虑正负性x -1=5或x -1=-5. 【正解】由1-x =5得到x -1=5或x -1=-5. ∴x =6或x =-4.11、某水果批发市场香蕉的价格如下表:强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264, 解得:x =32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264,解得:x =32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP=21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式. 错解一:(1)14°41′25″×5=70°205′125″=72°6′25″; (2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″; (2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″; (2)26.29°=26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?A BC PQ APQCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。

七年级数学试卷错题集

七年级数学试卷错题集

一、选择题1. 错题:3 + 2 × 4 = 20正确答案:3 + 2 × 4 = 11错误原因:未正确运用乘法优先级原则。

2. 错题:8 ÷ 2 + 2 = 7正确答案:8 ÷ 2 + 2 = 6错误原因:未正确运用除法和加法的顺序。

3. 错题:5 × (3 + 2) = 25正确答案:5 × (3 + 2) = 25错误原因:题目本身正确,但误以为题目有误。

4. 错题:0.5 × 0.5 = 0.25正确答案:0.5 × 0.5 = 0.25错误原因:题目本身正确,但误以为题目有误。

5. 错题:(-2) × (-3) = 6正确答案:(-2) × (-3) = 6错误原因:题目本身正确,但误以为题目有误。

二、填空题1. 错题:一个数的3倍加上4等于24,这个数是()正确答案:8错误原因:未正确运用代数方法解方程。

2. 错题:如果a = 5,那么a - 2 =()正确答案:3错误原因:未正确进行变量替换。

3. 错题:一个长方形的长是6厘米,宽是3厘米,它的面积是()正确答案:18平方厘米错误原因:未正确运用长方形面积公式。

4. 错题:一个数的平方根是5,那么这个数是()正确答案:±5错误原因:未考虑平方根的正负。

5. 错题:一个数的倒数是2,那么这个数是()正确答案:1/2错误原因:未正确理解倒数的概念。

三、解答题1. 错题:解方程:2x - 5 = 11正确答案:x = 8错误原因:未正确运用等式性质解方程。

2. 错题:计算:(-3) × 4 + 2 × (-5)正确答案:-14错误原因:未正确运用有理数混合运算规则。

3. 错题:求长方体的体积,长是8厘米,宽是4厘米,高是6厘米。

正确答案:192立方厘米错误原因:未正确运用长方体体积公式。

4. 错题:计算三角形面积,底是10厘米,高是6厘米。

初一年级数学易错题带答案

初一年级数学易错题带答案

初一年级数学易错题带答案1.已知数轴上的A 点到原点的距离为2;那么数轴上到A 点距离是3的点表示的数为 2.一个数的立方等于它本身;这个数是 。

3.用代数式表示:每间上衣a 元;涨价10%后再降价10%以后的售价 ( 变低;变高;不变 ) 4.一艘轮船从A 港到B 港的速度为a,从B 港到A 港的速度为b,则此轮船全程的平均速度为 。

5. 青山镇水泥厂以每年产量增长10%的速度发展;如果第一年的产量为a,则第三年的产量为 。

6.已知a b =43,x y =12,则代数式374by ax ay by +-的值为7.若|x|= -x,且x=1x;则x=8.若||x|-1|+|y+2|=0,则xy= 。

9.已知a+b+c=0,abc ≠0,则x=||a a +||b b +||c c +||abc abc ,根据a,b,c 不同取值;x 的值为 。

10.如果a+b<0,且b>0,那么a,b,-a,-b 的大小关系为 。

11.已知m 、x 、y 满足:(1)0)5(2=+-m x ; (2)12+-y ab与34ab 是同类项.求代数式:)93()632(2222y xy x m y xy x +--+-的值 .12.化简-{-[-(+2.4)]}= ;-{+[-(-2.4)]}= 13.如果|a-3|-3+a=0,则a 的取值范围是 14.已知-2<x<3,化简|x+2|-|x -3|=15.一个数的相反数的绝对值与这个数的绝对值的相反数的关系式 。

在有理数;绝对值最小的数是 ;在负整数中;绝对值最小的数是 16. 由四舍五入得到的近似数17.0,其真值不可能是( ) A 17.02 B 16.99 C 17.0499 D16.4917.一家商店将某种服装按成本价提高40%后标价;又以8折(即按标准的80%)优惠卖出;结果每作服装仍可获利15元;则这种服装每件的成本是18.已知4个矿泉水空瓶可以换矿泉水一瓶;现有16个矿泉水空瓶;若不交钱;最多可以喝 矿泉水19.观察下面的每列数;按某种规律在横线上填上适当的数;并说明你的理由。

七年级下册数学错题笔记

七年级下册数学错题笔记

七年级下册数学错题笔记一、有理数1.错题:计算-3 - (-5)。

-错误答案:-8。

-正确答案:2。

-错误原因:去括号时没有变号。

-总结:减去一个负数等于加上这个数的相反数。

2.错题:比较大小-2/3 和-3/4。

-错误答案:-2/3 > -3/4。

-正确答案:-2/3 < -3/4。

-错误原因:对于两个负数比较大小,绝对值大的反而小理解不深刻。

-总结:比较两个负数大小,先求绝对值,绝对值大的反而小。

二、整式的运算1.错题:(2a + 3b)(2a - 3b)。

-错误答案:4a² + 9b²。

-正确答案:4a² - 9b²。

-错误原因:对平方差公式掌握不熟练。

-总结:(a + b)(a - b)=a² - b²。

2.错题:化简3x²y - (2xy² - x²y)。

-错误答案:3x²y - 2xy² - x²y = 2x²y - 2xy²。

-正确答案:3x²y - 2xy² + x²y = 4x²y - 2xy²。

-错误原因:去括号时符号出错。

-总结:去括号时,括号前是负号,括号内各项要变号。

三、一元一次方程1.错题:解方程3x - 5 = 2x + 7。

-错误答案:x = 2。

-正确答案:x = 12。

-错误原因:移项时符号出错。

-总结:移项要变号。

2.错题:一个数的3 倍比这个数大6,求这个数。

-错误答案:设这个数为x,3x = x + 6,解得x = 3。

-正确答案:设这个数为x,3x - x = 6,解得x = 3。

-错误原因:对“一个数的3 倍比这个数大6”这句话的理解有误。

-总结:认真分析题目中的数量关系,准确列出方程。

四、几何图形初步1.错题:已知∠AOB = 60°,OC 平分∠AOB,则∠AOC 的度数是多少?-错误答案:30°。

七年级数轴易错题型总结(含答案)

七年级数轴易错题型总结(含答案)

七年级数轴易错题型总结(含答案)一、选择题(本大题共3小题,共9.0分)1.数轴上A,B,C三点所表示的数分别是a,b,c,且满足|c−b|−|a−b|=|a−c|,则A,B,C三点的位置可能是()A. B.C. D.【答案】C【解析】【分析】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.由A、B、C在数轴上的位置判断出a、b、c的大小关系,根据绝对值的性质去绝对值符号,判断左右两边是否相等即可.【解答】解:A.当a<c<b时,|c−b|−|a−b|=b−c+a−b=a−c,|a−c|=c−a,此选项错误;B.当a<b<c时,|c−b|−|a−b|=c−b+a−b=c+a−2b,|a−c|=c−a,此选项错误;C.当c<a<b时,|c−b|−|a−b|=b−c+a−b=a−c,|a−c|=a−c,故此选项正确;D.当c<b<a时,|c−b|−|a−b|=b−c−a+b=−c−a+2b,|a−c|=a−c,此选项错误.故选C.2.一个三角形在数轴上的位置如图所示,三边AB=BC=AC,点A、C对应的数分别为0和−1,若此三角形绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2011次后,点B所对应的数是A. 2010B. 2011C. 2012D. 2013【解析】【分析】此题考查了数轴,数字及图形规律问题,结合图形正确理解题意找出规律是关键,结合数轴发现根据翻折的次数,对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第二次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这一规律:因为2011=670×3+1=2010+1,所以翻转2011次后,点B 所对应的数2011.【解答】解:因为2011=670×3+1=2010+1,所以翻转2011次后,点B所对应的数是2011,故选B.3.数轴上A,B,C三点所表示的数分别是a,b,c,且满足|c−b|=|a−b|+|a−c|,则A,B,C三点的位置可能是()A. B.C. D.【答案】A【解析】略二、填空题(本大题共4小题,共12.0分)4.数a,b在数轴上的位置如图所示,化简:|2a−b|−|b−a|+|b|=_______.【答案】a−b【解析】【分析】此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.解:∵−2<b<−1<0<a<1,∴2a−b>0,b−a<0,b<0,∴|2a−b|−|b−a|+|b|=2a−b+b−a−b=a−b.故答案为:a−b.5.如图,数轴上A、B两点之间的距离AB=24,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为______.【答案】21或−3【解析】解:设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,当点N到AB中点时,点N此时对应的数为:m+9+12=m+21,则点M对应的数为:m+21−m=21;当点N与点M重合时,同理可得,点M对应的数为−3,故答案为:21或−3.解:设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,即可求解;当点N与点M重合时,同理可得,点M对应的数为−3,即可求解.此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.6.数a,b在数轴上的位置如图所示,化简:|2a−b|−|b−a|+|b|=______.【答案】a−b【解析】解:∵−2<b<−1<0<a<1,∴2a−b>0,b−a<0,b<0,∴|2a−b|−|b−a|+|b|=2a−b+b−a−b=a−b.故答案为:a−b.先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.7.有理数a、b、c在数轴上的位置如图,则|a+c|+|c−b|−|a+b|=.【答案】0【解析】略三、解答题(本大题共7小题,共56.0分)8.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和1的两点之间的距离是________;表示−3和4两点之间的距离是_______;所以,一般地数轴上表示数m和数n的两点之间的距离是________.(2)若数轴上一点表示为数a,化简|a+4|+|a−2|.(3)已知数轴上点B,C所表示的数分别是−4,5.在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位长度/秒,点P,Q分别从点B,C 同时出发相向而行,在数轴上运动,则经过多少时间后P,Q两点相距4个单位长度?【答案】解:(1)2;7;|m−n|;(2)当a<−4时,原式=−a−4+2−a=−2a−2;当−4⩽a<2时,原式=4+a+2−a=6;当a⩾2时,原式=a+4+a−2=2a+2;(3)设经过t秒后P,Q两点相距4个单位长度,则P:−4+t,Q:5−2t,|PQ|=|−4+t−5+2t|=|3t−9|=4,解得:t=133或t=53.【解析】【分析】本题考查了数轴,绝对值,一元一次方程的应用,两点间的距离.(1)根据数轴的概念,即可求得答案;(2)分不同情况,结合两点之间的距离,即可求得答案;(3)设经过t秒后P,Q两点相距4个单位长度,则P:−4+t,Q:5−2t,利用两点之间的距离可得方程,解方程即可求得答案.【解答】解:(1)数轴上表示3和1的两点之间的距离是2;表示−3和4两点之间的距离是7;所以,一般地数轴上表示数m和数n的两点之间的距离是|m−n|.故答案为2;7;|m−n|;9.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含t的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗⋅如果不变,请求出这个长度;如果会变化,请用含t的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度⋅【答案】解:(1)−20,10−5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP−NP=12AP−12BP=12(AP−BP)=12AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t−4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【解析】【分析】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.(1)根据已知可得B点表示的数为10−30;点P表示的数为10−5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于4列出方程求解即可;【解答】解:(1)∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10−30=−20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10−5t;故答案为:−20,10−5t;(2)见答案;(3)见答案.10.如图,点A,B都在数轴上,点O为原点,设点A、B表示的数分别是a、b,且a与b满足|a+8|+(b−2)2=0.动点P从点A出发,沿数轴向左以每秒2个单位长度的速度运动,动点Q从点B出发,沿数轴向左以每秒3个单位长度的速度运动,已知点P与点Q同时出发,且P、Q两点重合后同时停止运动,设点P的运动时间为t秒.(1)直接写出a、b的值和线段AB的长,a=____,b=____,AB=____;(2)当PQ的长为5时,求t的值;(3)若点M为PQ的中点,点N为BQ的中点,是否存在t值,使MN=3BO,若存在,请求出t的值;若不存在,请说明理由.【答案】解:(1)−8;2;10;(2)依题意有(2−3t)−(−8−2t)=5,解得:t=5.故t的值是5;(3)∵AP=2t,BQ=3t,P表示的数为−8−2t,Q表示的数为2−3t,∴PQ=2−3t−(−8−2t)=10−t,∵点M为PQ的中点,∴MQ=12PQ=5−12t,BQ=2−(2−3t)=3t,∵点N为BQ的中点,∴NQ=12BQ=32t,∴MN=MQ+NQ=5−12t+32t=5+t,∵MN=3BO,∴5+t=3×2,解得:t=1.故存在t值,使MN=3BO,t的值为1.【解析】【分析】本题主要考查的是数轴,绝对值的非负性,偶次方的非负性,一元一次方程的应用的有关知识.(1)直接利用非负数的性质得出a,b的值,进而得出答案;(2)直接利用两点之间的距离为5,进而得出等式求出答案;(3)根据中点的定义和MN=3BO,进而得出等式求出答案.【解答】解:(1)∵在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a;B点在原点的右侧,所表示的数是b,a、b满足|a+8|+(b−2)2=0,∴a+8=0,b−2=0,解得:a=−8,b=2,则a=−8,b=2,AB=2−(−8)=10;故答案为−8;2;10;(2)见答案;(3)见答案.11.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“申花式”.例如,式子3x+4与4x+3互为“申花式”.(1)判断式子−5x+2与−2x+5______(填“是”或“不是”)互为“申花式”;(2)已知式子ax+b的“申花式”是3x−4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是______;②数轴上有一点P到A、B两点的距离的和PA+PB=11,求点P在数轴上所对应的数.【答案】解:(1)∵−5x+2与−2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“申花式”,故答案为:不是;(2)①∵式子ax+b的“申花式”是3x−4,∴a=−4,b=3,∵|x+a|+|x+b|=7,∴|x−4|+|x+3|=7,当x<−3时,4−x−x−3=7,解得x=−3(舍去);当−3≤x≤4时,4−x+x+3=7,解得,x为−3≤x≤4中任意一个数;当x>4时,x−4+x+3=7,解得x=4(舍去).综上,−3≤x≤4.故答案为:−3≤x≤4.②∵PA+PB=11,∴当P点在A作左边时,有PA+PA+AB=11,即2PA+7=11,则PA=2,于是P为−4−2=−6;当P点在A、B之间时,有PA+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是−6或5【解析】(1)根据定义的特征:任意一个式子的一次项系数都是另一个式子的常数项,(2)①把a、b的值代入|x+a|+|x+b|=7,解绝对值方程便可;②分三种情况:当P点在A作左边时,当P点在A、B之间时,当P点在B点右边时,由线段和差关系求得PA或PB的值,进而得P点表示的数;本题主要考查了新定义,数轴,两点间的距离,一元一次方程的应用,关键是正确理解新定义,把新的知识转化为常规知识进行解答.12.如图,在数轴上点A表示的数是−3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是________;点C表示的数是________;(2)若点P从点A出发,沿数轴以毎秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒,当P运动到C点时,点Q与点B的距离是多少?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB.在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【答案】解:(1)15;3;s,(2)当P运动到C点时,t=3−(−3)]÷4=32×2=3;则,点Q与点B的距离是:32(3)假设存在,AC=6当点P在点C左侧时,PC=6−4t,QB=2t,∵PC+QB=4,∴6−4t+2t=4,解得t=1.此时点P表示的数是−3+4=1;当点P在点C右侧时,PC=4t−6,QB=2t,∵PC+QB=4,∴4t−6+2t=4,解得t=5.3此时点P表示的数是−3+4×53=113.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或113.【解析】略13.点A,O,B是数轴上从左至右的三个点,其中O与原点重合,点A表示的数为−4,且AO+AB=11.(1)求出点B所表示的数,并在数轴上把点B表示出来.(2)点C是数轴上的一个点,且CA:CB=1:2,求点C表示的数.【答案】解:(1)∵O与原点重合,点A表示的数为−4,∴AO=4,∵AO+AB=11,∴AB=7,∵点A,O,B是数轴上从左至右的三个点,∴点B所表示的数是−4+7=3,如图所示:(2)①点C在点A的左边,7×12−1=7,点C表示的数是−4−7=−11;②点C在点A和点B的中间,7×11+2=73,点C表示的数是−4+73=−53.故点C表示的数是−11或−53.【解析】(1)先求出AB的长度,再根据两点间的距离公式即可在数轴上把点B表示出来.(2)分两种情况:①点C在点A的左边;②点C在点A和点B的中间;进行讨论即可求解.本题考查了分类思想的应用以及数轴,熟练掌握两点间的距离公式是解题的关键.14.已知式子M=(a+10)x3+80x2−2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=,b=;(2)现在有一只甲壳虫P从A点出发,以3个单位/秒的速度向右运动,同时另一只甲壳虫Q恰好从B点出发,以2个单位/秒的速度向左运动,设爬行时间为t秒,①当t为何值时,两只甲壳虫在数轴上的C点相遇,并写出此时C点对应的数;②当t为何值时,两只甲壳虫在数轴上相距35个单位长度,并写出此时P点对应的数.【答案】解:(1)−10,80 ;(2)∵A、B分别为数轴上的两点,A点对应的数为−10,B点对应的数为80,∴AB=80+10=90,设t秒后P、Q相遇,∴3t+2t=90,解得t=18;∴此时点P走过的路程:3×18=54,∴此时C点表示的数为−10+54=44,答:C点对应的数是44;(3)相遇前:(90−35)÷(2+3)=11(秒),相遇后:(35+90)÷(2+3)=25(秒),则经过11秒或25秒,2只甲壳虫在数轴上相距35个单位长度,P点11秒对应的数为23,25秒对应的数为65.【解析】略。

七年级数学易错题集及答案解析

七年级数学易错题集及答案解析

七年级知识点检测一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()元D.元9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为_________万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米=_________米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有_________条,可以将此多边形分成_________个三角形.12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是_________14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于_________.15.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE:EC= _________.三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为_________.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a_________b,②﹣a_________﹣b,③|a|_________|b|,④|a|_________a,⑤|b|_________b.18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.20.已知关于x,y的方程组的解为满足x+y=4,求a的值.21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.25.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.26.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物_________件,依题意,得.28.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?29.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是_________元;参加乙旅行社的费用是_________元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?参考答案与试题解析一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()4.(鄂尔多斯)为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价元D.元是底边时,腰长为7.如图,∠BAD=90°,∠ADC=30°,∠BCD=142°,则∠B=()2二.填空题(共7小题)9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为 5.85×104万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米= 2.014×10﹣6米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有9条,可以将此多边12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为5.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是10:5114.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于2.PC=215.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=,AE:EC=1:3.AF=AB==AF=,=三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为﹣2.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a<b,②﹣a>﹣b,③|a|>|b|,④|a|>a,⑤|b|=b.,)∵﹣,﹣=18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.,把代入方程,的解为20.已知关于x,y的方程组的解为满足x+y=4,求a的值.,21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.=,cm25.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?26.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.,小时后两车之间的距离为27.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?28.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物x+1件,依题意,得.29.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?.30.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是1200+600x元;参加乙旅行社的费用是720(x+1)元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学易错题总结(含答案)一、选择题(本大题共9小题,共27.0分)1.观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2…已知按一定规律排列的一组数:250、251、252.…、298、299.若250=a,用含a的式子表示这组数的和是().A. a2−aB. a2−2a−2C. a2−2aD. a2+a【答案】A【解析】【分析】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+⋯+2n=2n+1−2.由等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2,得出规律:2+22+23+⋯+2n=2n+1−2,那么250+251+252+⋯+299=(2+22+23+⋯+ 299)−(2+22+23+⋯+249),将规律代入计算即可.【解答】解:∵2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…∴2+22+23+⋯+2n=2n+1−2,∴250+251+252+⋯+299,=(2+22+23+⋯+299)−(2+22+23+⋯+249)=(2100−2)−(250−2)=2100−250,∵250=a,∴2100=(250)2=a2,∴原式=a2−a,故选A.2.三条直线两两相交于同一点时,对顶角有m对;交于不同的三点时,对顶角有n对,则m与n的关系是()A. m<nB. m=nC. m>nD. m+n=10【答案】B【解析】【分析】本题考查对顶角,掌握对顶角相关概念是解答本题的关键.直线相交形成的对顶角的对数,只与有多少对直线相交有关,三条直线两两相交,每对相交的直线就会形成2对对顶角,这三条直线每两条都相交,相交直线的对数,与是否交于同一点无关,因而m=n.【解答】解:因为三条直线两两相交形成的对顶角的个数与是否交于同一点无关,所以m=n,故选B.3.两条直线相交形成的两个角为∠α和∠β,且∠α=(x+10)∘,∠β=(2x−25)∘,则∠α的度数为()A. 45°B. 75°C. 45°或75°D. 45°或55°【答案】C【解析】解:由题意可知∠α+∠β=180°或∠α=∠β,∵∠α=(x+10)°,∠β=(2x−25)°,∴x+10+2x−25=180或x+10=2x−25,解得:x=65或x=35,∴∠α=75°或45°,故选C.根据两直线相交得到对顶角与邻补角,从而得出两角相等或互补,得出方程,求出即可.本题考查了对顶角与邻补角,x−a=3x−14,若a为正整数时,方程的解也为正整数,则4.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14,又a也为正整数,则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则5.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【试题解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则6.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】Bx=a−14,【解析】解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A. 1个B. 2C. 3个D. 4个【答案】C【解析】解:①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中点到线段的两个端点的距离相等,说法正确.故选C.根据直线的性质判断①;根据线段的性质判断②;根据垂线的性质判断③;根据线段的中点的定义判断④.本题考查了直线的性质,线段的性质,垂线的性质,线段的中点的定义,是基础知识,需牢固掌握.8.下列角度换算错误的是()A. 10.6°=10°36″B. 900″=0.25°C. 1.5°=90′D. 54°16′12″=54.27°【答案】A【解析】【分析】本题考查了度、分、秒之间的换算关系:1°=60′,1′=60″,难度较小.根据度、分、秒之间的换算关系求解.【解答】解:A.10.6°=10°36′,错误;B.900″=0.25°,正确;C.1.5°=90′,正确;D.54°16′12″=54.27°,正确;故选:A.9.若M和N都是3次多项式,则M+N为()A. 3次多项式B. 6次多项式C. 次数不超过3的整式D. 次数不低于3的整式【答案】C【解析】【分析】本题主要考查整式加减.多项式的次数即为多项式中次数最高项的次数.由M和N都是3次多项式,得到M+N的次数为3或2或1或0,即M+N的次数不一定为3次,不可能超过3次,即可得到正确的选项.【解答】解:∵M和N都是3次多项式,∴M+N为次数不超过3的整式.故选C.二、填空题(本大题共8小题,共24.0分)10.有三个互不相等的有理数,既可表示为−1,a+b,a的形式,又可表示为0,−ba,b的形式,则b2021a2020的值为.【答案】−1【解析】略11.德国数学家莱布尼兹证明了π=4×(1−13+15−17+19−111+113−115+⋯),由此可知:13−15+17−19+111−113+115−⋯=________.【答案】1−π4【解析】【分析】本题考查了有理数运算的运用.根据所给条件,观察题目所给条件,可将π=4×(1−13+1 5−17+19−111+113−115+⋯)整理变形,使之与所求的原式一致。

即可解答.【解答】解:∵π=4×(1−13+15−17+19−111+113−115+⋯),∴π4=1−13+15−17+19−111+113−115+⋯,∴−π4=−1+13−15+17−19+111−113+115−⋯,∴13−15+17−19+111−113+115−⋯=1−π4.故答案为1−π4.12.在如图的数轴上,点B与点C到点A的距离相等,A、B两点对应的实数分别是1和−√3,则点C对应的实数是_________.【答案】2+√3【解析】【分析】本题考查了实数与数轴的知识,根据条件点B、C到点A的距离相等列出方程是关键.设出点C所表示的数为x,根据点B、C到点A的距离相等列出方程,即可求出x的值,解:设点C所表示的数为x,∵点B与点C到点A的距离相等,∴AC=AB,即x−1=1+√3,解得:x=2+√3.故答案为2+√3.13.设代数式A=2x+a2+1,代数式B=ax−22,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):当x=1时,B=________;若A=B,则x=________.【答案】1;4.【解析】【分析】本题考查代数式的值以及解一元一次方程,关键是求出a的值.先根据表格求出a的值,再将a的值代入求出B的值,将a的值分别代入A、B中得出含有x的方程,解含有x的一元一次方程即可.【解答】解:当x=1,A=4,∴2×1+a2+1=4,解得a=4,∴B=4×1−22=1,∵A=B,∴2x+42+1=4x−22,解得x=4,故答案是1;4.14.已知关于x的方程2x+3=x+k与x−3=5k,如果这两个方程的解的和为6,则k=.15.如图所示,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:4,则∠BOD=_________.【答案】150°【解析】【分析】本题主要考查了垂直的定义,周角的定义,熟记定义是解题的关键.由AO⊥BO,∠AOC:∠BOC=1:4,可求得∠AOC,再根据周角的定义求得结果.【解答】解:设∠AOC=x,∠BOC=4x,∴∠AOB=3x,∵AO⊥BO,∴3x=90°,∴x=30°,∴∠BOD=360°−90°−90°−30°=150°,故答案为:150°.16.计算:89°35′+20°43′=______.(结果用度表示)【答案】110.3°【解析】解:原式=109°78′=110°18′=110.3°,故答案为:110.3°.利用度加度,分加分,结果再用度表示即可.此题主要考查了度分秒的换算,关键是掌握计算方法,掌握1°=60′.17.计算:123°24′−60°36′=________.(结果用度表示)【答案】62.8°【解析】本题考查了度、分、秒之间的换算,能熟记1°=60′是解此题的关键.根据1°=60′先变形,再分别相减即可,然后换算成度即可.【解答】解:123°24′−60°36′=122°84′−60°36′=62°48′=62.8°,故答案为62.8°.三、计算题(本大题共2小题,共12.0分)18.解方程:(1)8−x=3x+2;(2)x5−3−2x2=x.【答案】解:(1)移项:得−x−3x=2−8合并同类项得:−4x=−6系数化1得:x=32.(2)去分母得:2x−5(3−2x)=10x化简得:2x=15系数化1得:x=152【解析】(1)注意移项要变号;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,系数化为1,从而得到方程的解.本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.19.计算(1)−1+3×2+|−5|(2)−12+6÷3×1 3(3)|1−√2|+√4−√273(4)78∘20′42′′(用度表示)【答案】解:(1)原式=−1+6+5=10;(2)原式=−1+2×13=−1+23=−13;(3)原式=√2−1+2−3=√2−2;(4)原式=78°+(2060)°+(4260)′=78°+(2060)°+(423600)°=78°+(12003600)°+(423600)°=78°+(12423600)°=78.345°. 【解析】略四、解答题(本大题共11小题,共88.0分)20. 某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:第一档:月用电量不超过200度的部分的电价为每度0.5元.第二档:月用电量超过200度但不超过400度部分的电价为每度0.6元. 第三档:月用电量超过400度的部分的电价为每度0.8元.(1)已知小明家去年5月份的用电量为215度,则小明家5月份应交电费____元. (2)若去年6月份小明家用电的平均电价为0.52元,求小明家去年6月份的用电量. (3)已知小明家去年7、8月份的用电量共700度(7月份的用电量少于8月份的用电量),两个月的总电价是384元,求小明家7、8月的用电量分别是多少? 【答案】解:(1)109;(2)(0.5+0.6)÷2=0.55>0.52,所以小明家用电超过200度但不超过400度. 设小明家去年6月份的用电量为a 度.根据题意得:0.5×200+0.6×(a −200)=0.52a , 解得:a =250,答:小明家去年6月份的用电量为250度;(3)设小明家去年7月份的用电量为x 度,则8月份的用电量为(700−x)度. 当x <200时,700−x >500,0.5x +0.5×200+0.6×200+0.8(700−x −400)=384, 解得:x =7603,此时700−x <500,故不符合题意;当200≤x ≤300时,500≥700−x ≥400,有0.5×200×2+0.6(x −200)+200×0.6+0.8(700−x −400)=384,解得:x=280,700−280=420,符合题意;当300<x<350时,有0.5×200×2+0.6×(x−200)+0.6(700−x−200)=384,方程无解,不符合题意;答:小明家去年7月份的用电量为280度,8月份的用电量为420度.【解析】【分析】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)充分运用分类讨论思想.(1)根据收费标准,根据第二档计算即可求出小明家5月份应交电费;(2)先判断小明家用电量处于第二档,根据第二档收费标准列方程求解;(3)设小明家去年7月份的用电量为x度,则8月份的用电量为(700−x)度,分x<200、200≤x≤300和300<x<350三种情况,列出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)0.5×200+0.6×(215−200)=109(元).故答案为:109.(2)见答案;(3)见答案.21.已知式子M=(a+10)x3+80x2−2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=,b=;(2)现在有一只甲壳虫P从A点出发,以3个单位/秒的速度向右运动,同时另一只甲壳虫Q恰好从B点出发,以2个单位/秒的速度向左运动,设爬行时间为t秒,①当t为何值时,两只甲壳虫在数轴上的C点相遇,并写出此时C点对应的数;②当t为何值时,两只甲壳虫在数轴上相距35个单位长度,并写出此时P点对应的数.【答案】解:(1)−10,80 ;(2)∵A、B分别为数轴上的两点,A点对应的数为−10,B点对应的数为80,∴AB=80+10=90,设t秒后P、Q相遇,∴3t+2t=90,解得t=18;∴此时点P走过的路程:3×18=54,∴此时C点表示的数为−10+54=44,答:C点对应的数是44;(3)相遇前:(90−35)÷(2+3)=11(秒),相遇后:(35+90)÷(2+3)=25(秒),则经过11秒或25秒,2只甲壳虫在数轴上相距35个单位长度,P点11秒对应的数为23,25秒对应的数为65.【解析】略22.在数轴上点A表示整数a,且√55<a<√65,点B表示a的相反数.(1)画数轴,并在数轴上标出点A与点B;(2)点P,Q在线段AB上,且点P在点Q的左侧,若P,Q两点沿数轴相向匀速运动,出发后经4秒两点相遇.已知在相遇时点Q比点P多行驶了3个单位,相遇后经1秒点Q到达点P的起始位置.问点P,Q运动的速度分别是每秒多少个单位;(3)在(2)的条件下,若点P从整数点出发,当运动时间为t秒时(t是整数),将数轴折叠,使A点与B点重合,经过折叠P点与Q点也恰好重合,求P点的起始位置表示的数.【答案】解:(1)数轴上点A表示整数a,且√55<a<√65,∵√55<√64<√65,∴a=√64=8,∵点B表示a的相反数,∴b=−8,如图1所示,(2)如图2所示,∵相遇时点Q比点P多行驶了3个单位,∴得关系式:S Q=S P+3,∵出发后经4秒两点相遇,相遇后经1秒点Q到达点P的起始位置,∴Q的速度是P的速度的4倍,∴设P的速度为x单位/秒,则Q的速度为4x单位/秒,∴S P=4x,S Q=4×4x=16x,将S P=4x,S Q=4×4x=16x,代入关系式S Q=S P+3,得,16x=4x+3解得x=14.则Q的速度为4×14=1单位/秒.答:点P,Q运动的速度分别是每秒14、1个单位.(3)由(2)可知:∵点P,Q运动的速度分别是每秒14、1个单位,∴PQ=(1+1)×4=5由题意,折叠A,B重合,所以折点为AB的中点,即8+(−8)2=0,又∵P,Q运动t秒后,折叠重合,且折点为原点,∴P,Q表示的数互为相反数,设P从y点出发,则Q从(y+5)出发,则P:y+14t,Q:y+5−t,∵P,Q互为相反数,∴y +14t +y +5−t =0解得y =3t−208,∵y ,t 均为整数,且t >0, ∴{t =4y =−1 或{t =12y =2.综上所述:P 从−1或2出发满足条件.【解析】(1)数轴上点A 表示整数a ,且√55<a <√65,即可求得a 的值;(2)相遇时点Q 比点P 多行驶了3个单位,可得S Q =S P +3,根据出发后经4秒两点相遇,相遇后经1秒点Q 到达点P 的起始位置,得Q 的速度是P 的速度的4倍,可以设P 的速度为x 单位/秒,则Q 的速度为4x 单位/秒,可得16x =4x +3进而求解; (3)由(2)可得:点P ,Q 运动的速度分别是每秒14、1个单位,由题意,折叠A ,B 重合,所以折点为AB 的中点,根据P ,Q 运动t 秒后,折叠重合,且折点为原点,P ,Q 表示的数互为相反数,设P 从y 点出发,则Q 从(y +5)出发,列方程即可求解. 本题考查了估算无理数的大小、实数的性质、实数与数轴、一元一次方程的应用,解决本题的关键是根据题意正确画图.23. 在数轴上点A 表示整数a ,且√55<a <√65,点B 表示a 的相反数(1)画数轴,并在数轴上标出点A 与点B ;(2)点P ,Q 在线段AB 上,且点P 在点Q 的左侧,若P ,Q 两点沿数轴相向匀速运动,出发后经4秒两点相遇.已知在相遇时点Q 比点P 多行驶了3个单位,相遇后经1秒点Q 到达点P 的起始位置.问点P 、Q 运动的速度分别是每秒多少个单位; (3)在(2)的条件下,若点P 从整数点出发,当运动时间为t 秒时(t 是整数),将数轴折叠,使A 点与B 点重合,经过折叠P 点与Q 点也恰好重合,求P 点的起始位置表示的数.【答案】解:(1)数轴上点A 表示整数a ,且√55<a <√65, ∵√55<√64<√65, ∴a =√64=8, ∵点B 表示a 的相反数, ∴b =−8,如图1所示,(2)如图2所示,∵相遇时点Q比点P多行驶了3个单位,∴得关系式:S Q=S P+3,∵出发后经4秒两点相遇,相遇后经1秒点Q到达点P的起始位置,∴Q的速度是P的速度的4倍,∴设P的速度为x单位/秒,则Q的速度为4x单位/秒,∴S P=4x,S Q=4×4x=16x,将S P=4x,S Q=4×4x=16x,代入关系式S Q=S P+3,得,16x=4x+3解得x=14.则Q的速度为4×14=1单位/秒.答:点P,Q运动的速度分别是每秒14、1个单位.(3)由(2)可知:∵点P,Q运动的速度分别是每秒14、1个单位,∴PQ=(1+1)×4=5由题意,折叠A,B重合,所以折点为AB的中点,即8+(−8)2=0,又∵P,Q运动t秒后,折叠重合,且折点为原点,∴P,Q表示的数互为相反数,设P从y点出发,则Q从(y+5)出发,则P:y+14t,Q:y+5−t,∵P,Q互为相反数,∴y +14t +y +5−t =0解得y =3t−208,∵y ,t 均为整数,且−8≤y <3,t >0, ∴{t =4y =−1 或{t =12y =2.综上所述:P 从−1或2出发满足条件.【解析】本题考查了估算无理数的大小、实数的性质、实数与数轴、一元一次方程的应用,解决本题的关键是根据题意正确画图.(1)数轴上点A 表示整数a ,且√55<a <√65,即可求得a 的值;(2)相遇时点Q 比点P 多行驶了3个单位,可得S Q =S P +3,根据出发后经4秒两点相遇,相遇后经1秒点Q 到达点P 的起始位置,得Q 的速度是P 的速度的4倍,可以设P 的速度为x 单位/秒,则Q 的速度为4x 单位/秒,可得16x =4x +3进而求解; (3)由(2)可得:点P ,Q 运动的速度分别是每秒14、1个单位,由题意,折叠A ,B 重合,所以折点为AB 的中点,根据P ,Q 运动t 秒后,折叠重合,且折点为原点,P ,Q 表示的数互为相反数,设P 从y 点出发,则Q 从(y +5)出发,列方程即可求解.24. 如图,直线EF 、CD 相交于点O ,OA ⊥OB ,OC 平分∠AOF .(1)若∠AOE =40°,求∠BOD 的度数; (2)若∠AOE =30°,请直接写出∠BOD 的度数;(3)观察(1)(2)的结果,猜想∠AOE 和∠BOD 的数量关系,并说明理由. 【答案】解:(1)∵∠AOE +∠AOF =180°,∠AOE =40°, ∴∠AOF =140°; 又∵OC 平分∠AOF , ∴∠FOC =12∠AOF =70°,∴∠EOD=∠FOC=70°;∵OA⊥OB,∴∠AOB=90°,∵∠BOE=∠AOB−∠AOE=50°,∴∠BOD=∠EOD−∠BOE=20°;(2)∵∠AOE+∠AOF=180°,∠AOE=30°,∴∠AOF=150°;又∵OC平分∠AOF,∴∠FOC=12∠AOF=75°,∴∠EOD=∠FOC=75°;∵∠BOE=∠AOB−∠AOE=60°,∴∠BOD=∠EOD−∠BOE=15°;(3)∠BOD=12∠AOE,理由如下:∵∠AOE+∠AOF=180°,∴∠AOF=180°−∠AOE;又∵OC平分∠AOF,∴∠FOC=12∠AOF=90°−12∠AOE,∴∠EOD=∠FOC=90°−12∠AOE;∵OA⊥OB,∴∠AOB=90°,∵∠BOE=∠AOB−∠AOE=90°−∠AOE,∴∠BOD=∠EOD−∠BOE=(90°−12∠AOE)−(90°−∠AOE)=12∠AOE;∴∠BOD=12∠AOE.【解析】本题考查了邻补角、对顶角、角平分线定义等知识点.(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(3)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案.25.(1)如图1所示,直线AB,CD相交于点O,OE⊥AB,OF⊥CD.①直接写出图中∠AOF的余角.②如果∠EOF=15∠AOD,求∠EOF的度数.(2)如图2所示,O为线段AB的中点,AC=23AB,BD=45AB,线段OC的长为1,求线段AB,CD的长.【答案】解:(1)①∵OE⊥AB,OF⊥CD,∴∠AOF+∠COA=90°,∠AOF+∠FOE=90°.∴∠COA与∠FOE是∠AOF的余角.∵由对顶角相等可知:∠AOC=∠BOD,∴∠BOD+∠AOF=90°.∴∠BOD与∠AOF互为余角.∴∠AOF的余角为∠AOC,∠FOE,∠BOD;②∵∠AOC=∠EOF,∠AOC+∠AOD=180°,∠EOF=15∠AOD,∴6∠AOC=180°.∴∠EOF=∠AOC=30°.(2)∵O为线段AB中点,∴AO=12AB,∵AC=23AB,∴OC=16AB,∵线段OC长为1,∴AB=6,∵AC=23AB,BD=45AB,∴CD=AC+BD−AB=715AB=715×6=145.【解析】(1)①由垂直的定义可知∠AOF+∠COA=90°,∠AOF+∠FOE=90°,从而可知∠COA与∠FOE是∠AOF的余角,由对顶角的性质从而的得到∠BOD是∠AOF的余角;②依据同角的余角相等可知∠AOC=∠EOF,∠EOF=15∠AOD,从而得到∠EOF=16平角.(2)先根据中点的定义和已知得到OC所占比,从而得到线段AB的长,从而得到线段CD的长.本题主要考查的是垂线、余角的定义、对顶角、平角的定义,掌握相关性质是解题的关键.26.已知,直线AB与直线CD相交于点O,OB平分∠DOF.(1)如图,若∠BOF=40°,求∠AOC的度数;(2)作射线OE,使得∠COE=60°,若∠BOF=x°(0<x<90),求∠AOE的度数.(用含x的代数式表示)【答案】解:(1)∵OB平分∠DOF,∴∠BOD=∠BOF=40°,∴∠AOC=40°;(2)∵OB平分∠DOF,∴∠BOD=∠BOF,∵∠BOF=x°,∴∠BOD=x°,∴∠AOC=∠BOD=x°,如图1,∵∠COE=60°,∴∠AOE=∠AOC+∠COE=(60+x)°(0<x<90);如图2,当0<x≤60时,∵∠COE=60°,∴∠AOE=∠COE−∠AOC=(60−x)°(0<x≤60),当60<x<90时,∵∠COE=60°,∴∠AOE=∠AOC−∠COE=(x−60)°(60<x<90).由图2可得:∠AOE=|x−60|°(0<x<90),综上所述:∠AOE的度数为(60+x)°或|60−x|°.【解析】(1)根据角平分线的定义可得∠BOD的度数,再根据对顶角相等可得答案;(2)此题分两种情况,首先画出图形,再计算角度.此题主要考查了对顶角和角平分线定义,关键是掌握对顶角相等.27.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是____.【答案】60°或120°【解析】【分析】此题主要考查了直角、平角的定义,注意分两种情况分析.此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:如图:①当OC、OD在AB的一旁时,∵OC⊥OD,∠COD=90°,∠AOC=30°,∴∠BOD=180°−∠COD−∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=180°−∠AOD=120°.故答案为60°或120°.28.如图,在数轴上点A表示的数是−3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是________;点C表示的数是________;(2)若点P从点A出发,沿数轴以毎秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒,当P运动到C点时,点Q与点B的距离是多少?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB.在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【答案】解:(1)15;3;s,(2)当P运动到C点时,t=3−(−3)]÷4=32×2=3;则,点Q与点B的距离是:32(3)假设存在,AC=6当点P在点C左侧时,PC=6−4t,QB=2t,∵PC+QB=4,∴6−4t+2t=4,解得t=1.此时点P表示的数是−3+4=1;当点P在点C右侧时,PC=4t−6,QB=2t,∵PC+QB=4,∴4t−6+2t=4,解得t=53.此时点P表示的数是−3+4×53=113.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或113.【解析】略29.若多项式m2+5m−3的常数项是a,次数是b,当m=1时,此多项式的值为c.(1)分别写出a,b,c表示的数,并计算(a+b)+(b+c)+(c+a)的值;(2)设a,b,c在数轴上对应的点分别是点A,点B,点C.若点P是线段AB上的一点,比较PA+PB5与PC的大小,说明理由.【答案】解:(1)∵多项式m2+5m−3的常数项是−3,次数是2,当m=1时,多项式m2+5m−3的值为:1+5−3=3,∴a=−3,b=2,c=3.∴(a+b)+(b+c)+(c+a)=a+b+b+c+c+a=2(a+b+c)=2(−3+2+3)=4;(2)∵点P是线段AB上的一点,∴PA+PB=5,∴PA+PB5=1.∵点P是线段AB上的一点,当点P与点B重合时,线段PC=3−2=1,当点P与点B不重合时,线段PC>1,∴PA+PB5≤PC.【解析】(1)根据多项式常数项、次数的规定确定a、b,把m代入多项式计算多项式的值确定c.然后计算含a、b、c的多项式的值;(2)根据线段的和差关系,计算PA+PB与PC,再比较PA+PB5与PC的大小.本题考查了多项式的相关定义、线段的长等知识点,确定线段的长度是解决本题(2)的关键,解决(2)确定PC的长注意分类讨论.30.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“申花式”.例如,式子3x+4与4x+3互为“申花式”.(1)判断式子−5x+2与−2x+5______(填“是”或“不是”)互为“申花式”;(2)已知式子ax+b的“申花式”是3x−4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是______;②数轴上有一点P到A、B两点的距离的和PA+PB=11,求点P在数轴上所对应的数.【答案】解:(1)∵−5x+2与−2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“申花式”,故答案为:不是;(2)①∵式子ax+b的“申花式”是3x−4,∴a=−4,b=3,∵|x+a|+|x+b|=7,∴|x−4|+|x+3|=7,当x<−3时,4−x−x−3=7,解得x=−3(舍去);当−3≤x≤4时,4−x+x+3=7,解得,x为−3≤x≤4中任意一个数;当x>4时,x−4+x+3=7,解得x=4(舍去).综上,−3≤x≤4.故答案为:−3≤x≤4.②∵PA+PB=11,∴当P点在A作左边时,有PA+PA+AB=11,即2PA+7=11,则PA=2,于是P为−4−2=−6;当P点在A、B之间时,有PA+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是−6或5【解析】(1)根据定义的特征:任意一个式子的一次项系数都是另一个式子的常数项,(2)①把a、b的值代入|x+a|+|x+b|=7,解绝对值方程便可;②分三种情况:当P点在A作左边时,当P点在A、B之间时,当P点在B点右边时,由线段和差关系求得PA或PB的值,进而得P点表示的数;本题主要考查了新定义,数轴,两点间的距离,一元一次方程的应用,关键是正确理解新定义,把新的知识转化为常规知识进行解答.。

相关文档
最新文档