I压裂充填防砂技术与应用现状

合集下载

高压充填防砂工艺现状及应用效果分析

高压充填防砂工艺现状及应用效果分析

高压充填防砂工艺现状及应用效果分析摘要:孤东油田是胶结疏松的砂岩油藏,自20世纪80年代投入开发以来,防止油层出砂已是维持油田正常开采的一项重要技术措施。

随着油田的开发,防砂工艺技术也得到了不断的发展。

本文主要通过对采油23队的主导防砂工艺—高压充填绕丝管防砂应用情况进行分析,提出下步整改方向,进一步提高防砂工艺开发水平。

关键词:高充绕丝堵塞携砂比渗透性1 孤东油田防砂工艺实施现状孤东油田储层为河流相沉积,埋藏浅,泥质含量高,胶结疏松,易出砂,属典型的疏松砂岩油藏。

孤东油井防砂工艺发展分3个阶段:第一阶段(1986-1989年)以滤砂管、绕丝管循环充填和地下合成防砂为主,以干灰砂防砂为辅。

第二阶段(1990-2000年)以滤砂管、涂防和干灰砂防砂为主,绕丝管循环充填为辅。

第三阶段(2001至今)以绕丝管高压充填为主,循环充填为辅。

随着区块的多年开发,油层及井况条件日趋复杂化,油井防砂主要面临3个问题:①防砂困难,长期停产井增多,影响整体开发效果。

②出泥粉砂严重的油井增多,传统防砂工艺适用性变差,防砂成功率低、有效期短。

③防砂成本压力越来越大。

针对防砂工艺现状及存在的问题,自2000年以来,推广应用了高压充填防砂工艺,取得明显效果。

2 高压充填工艺技术原理高压充填防砂工艺吸收了地层压裂防砂和绕丝管充填防砂工艺原理,利用人工充填至油层中的充填砂体与充填在绕丝管外环空的充填砂体的人工砂体骨架,较好地解决了“防砂与防堵塞不能统一”的问题,有效提高了防砂效果,油井供液能力大大增强。

2.1防砂机理(1)通过绕丝管挡住人工充填砂,利用充填砂对地层砂的桥塞作用,把地层砂挡在充填砂周围,形成较好的二级挡砂屏障,达到防止油层出砂的目的。

(2)根据油层出砂的门限速度理论,油层出砂程度与流体的流速成正比。

高压充填砂在井筒一定半径的油层内形成致密的高渗透带,地层砂被挡在充填砂体以外。

在油井产液量一定的情况下,半径与流速有以下关系:式中:为以井轴为圆心的半径为R处流体流速;Q为油井产量;H为油层射开厚度;R为与井筒同心某处圆半径。

压裂防砂技术中存在的问题与对策

压裂防砂技术中存在的问题与对策

压裂防砂技术中存在的问题与对策摘要:受我国油田开采现状和油藏现阶段特性决定,压裂技术已成为我国油田增加油藏新缝,提高油藏渗透能力的主要办法。

压裂对油田近净地带的污染、赌塞有良好的缓解作用,但压裂作业也具有一定的弊端。

其中最为普遍的问题是油井压后出砂的问题。

压裂防砂技术应运而生。

本文着重分析了我国现有压裂防砂技术中存在的问题,并分析问题出现的原因提出改进策略。

为我国油田压裂防砂研究提供借鉴关键字:压裂工程;防砂作业;问题与对策分析随着压裂工程作业的不断普及,压裂后油井出砂问题日益凸显,对我国油田的工艺技术带了许多问题与麻烦,油井在压裂后吐砂现象,带来的直接弊端是加速对应设备的腐蚀,缩短了设备的使用寿命加大了开采成本,降低企业效益。

严重时甚至会直接导致设别损坏。

同时如果压裂井是处于开采中后期阶段的油井,吐砂现象会更为严重。

对压裂防砂工艺的研究和完善对未来科学有效的防砂有重要意义。

一、压裂防砂技术常见问题1.技术设备问题在压裂防砂工程的全过程中,技术设备是影响压裂防砂结果的重要因素之一,压裂纺纱工程采用的技术以及设备的先进程度、匹配程度以及是否存在故障与问题对压力防砂工程结果和质量有着直接影响。

一旦在施工中因技术和设备的相关原因产生了测量或施工的误差,会直接导致资源、人员的浪费也增加了为压裂防砂工程带来的风险和隐患。

2.技术施工问题压裂防砂工程质量与工程实际施工队伍的操作技术也有着较大联系,施工队伍的操作能力,对技术计划和施工计划的执行能力以及管理者的监管力度都对工程完成质量有较大影响。

诸如井眼清洁工作不到位、轨迹控制不到位等等操作问题对会让压裂防砂的施工效果大打折扣。

严重则会给开采工作带来较大影响。

3.轨迹控制问题轨迹控制是压裂防砂工程施工部门核心内容,轨迹控制工作的完成质量和精度对工程施工结果质量的影响不言而喻。

优秀的轨迹控制施工操作可以不仅可以提升压裂防砂工程施工质量也对工程的施工的安全性和稳定性提供了保障。

压裂充填防砂技术在雁木西油田的研究与应用

压裂充填防砂技术在雁木西油田的研究与应用

中外企业家2011年第10期(下)总第383期科技之窗·Technology Windows雁木西油田为层状砂岩油藏,储层岩性以细砂岩为主,胶结疏松;应用临界生产压差等方法预测出砂临界生产压差为3.2MPa ,临界产量为5.6m3/d ,而根据2008年12月份油藏测试资料统计,实际生产压差为7.8MPa ,产量为26.2m3/d ,所以油田出砂是必然的,且随着含水上升和高渗透层注入水的突破,出砂进一步加剧。

现有防砂技术(丢手防砂管、悬挂防砂管、防砂泵、尾追涂覆砂压裂防砂、高压充填防砂)已不能满足油藏提液采油需要,且出砂已严重影响到油田的正常生产(造成套变井17口,报废井5口,套损率30.3%;2008年年维护作业工作量达1.4井次/井,综合开井时率低于83%,部分井成为长停井)。

因次,提出了“压裂充填防砂”的技术思路,即综合利用压裂的高导流能力及防砂管的高挡砂强度,既解决高压充填防砂造成的近井地带伤害及无法控制远井地带出砂又解决尾追涂覆砂压裂防砂返吐的问题,并提高储层剖面动用程度,提高采收率。

1全程加砂压裂技术针对雁木西油田水敏性强(胶结物能全部被水溶解),提出了全程加砂压裂技术,即在裂缝刚开始形成、压力基本稳定后即开始加砂(前置液用量一般为1~1.5个井筒容积),该技术实施目的:一是减少外来流体对地层的伤害;二是更易实现端部脱砂形成宽短导流裂缝;三是能实现多裂缝[1],提高剖面动用程度。

2材料优选2.1支撑剂优选根据前期压降测试分析闭合压力为16.37MPa ,结合闭合压力与支撑剂导流能力和雁木西油田地层砂筛析结果(见表1)以及防砂用支撑剂选择基本方法(Sauicer 防砂粒径选择方法),优选20/40目石英砂为防砂支撑剂。

2.2液体优选根据地层物性特点,结合岩心伤害评价分析(见表2),同时满足端部脱砂要求,优选出防砂用液体为低粘度清洁压裂液(40~60mPa ·s )或低聚物压裂液基液(40~60mPa ·s )。

国外防砂完井技术现状及发展趋势

国外防砂完井技术现状及发展趋势
物或混合物来调节 。泥饼溶解后 , 导管便能直接与未受污染 的产层构成了一个连续 的通道 。
3 复合 防砂
复合 防砂就是将两 种 以上 的防砂方 法结 合起 来进行 联
合防砂。
3 . 1 定 向射孔 和选 择 性射 孔 以及 压 裂 充填 复合 防 砂 技术
选择性定向射孔避开应 力集 中 区, 进行 压裂 充填完 井 ,
害影 响较小 , 同样其也可能会 引起筛 管磨蚀 。要进行多层裸 眼压裂 充填是十分困难的 , 井 眼稳 定性问题较 严重 。 可以通 过 在 裸 眼 段 下 人 膨 胀 完 井 衬 管 解 决 这个 矛 盾 。膨胀完井衬 管可稳 定井 眼 , 并 且与 裂缝 的连通 面积 较套 管压裂充填增加 了 3— 5倍 。其 可与多种分层 封隔器结
流人动态 。它可实现 清 除泥饼 , 固井 , “ 射孔 ” , 下生产 尾管
以及防砂一次 作业 。其采 用 了一 种 可伸 缩 的导 管 , 通过水
力、 机械 或水 力机械组合 膨胀 , 密封 井壁 。可 伸缩机械装 置 可穿透井壁进入泥 饼。每个 导管 中都 预先充 填了 防砂 介质
( 不锈钢珠) , 并烧结 加固。根据实 际情况 , 通过岩 心分析 和 筛析 , 选择合适 防砂 介 质尺 寸。在 导管 中预先充 填 有聚合
眼中流体 的流 通速 度 减小 到 临界值 以下 来 防止砂 粒运 移。
主要考虑 的是在增加流通 面积时 , 怎样平衡射孔密度与孔 眼 直径 。地层稳定性 主要是 由孔 眼直径 和砂粒 尺寸决定 。这
优化裂缝 导流能力和 裂缝半 长 , 须 注意 的是 : ( 1 ) 裂缝 长度
应该 由防砂来决定 , 而非增产 ; ( 2 ) 在 计算 裂缝 宽度时 , 弱胶 结地层 的非线性流 的特 征是不容 忽视的 。

浅析油井压裂防砂工艺技术原理及应用

浅析油井压裂防砂工艺技术原理及应用

油井开采工艺离不开信息化、智能化、机械化技术的应用。

受机械使用寿命、生产时间的影响,可能会加剧套管破损现象,进而为防砂工艺技术提供了更多的难度。

由此可见,需解决油井开采技术中气井出砂、细粉砂井的问题,有利于避免油井出砂而造成的负面影响。

另外,需采用该工艺改善油井的渗透率,这对于提高油井工艺开采效率是有利的。

一、压裂防砂工艺技术原理1.工艺技术概况。

压裂防砂工艺技术是使用树脂涂层涂抹石英砂,使材料表面有一层保护膜,有利于提高油井的导流功能。

工艺进行中,需及时注入高性能的树脂砂,确保井口裂缝处或亏空段有支撑剂作用,能改善该部位的核心功能。

当支撑剂注入需要管控的裂缝部位时,需提高中央部位的温度参数,致使树脂层发生作用。

通过让保护层实现软化,引导其发生固化聚合反应,确保砂砾可以和保护层更紧实的粘合在一起,有利于防治井口出砂的现象,也能实践油层的改造作用。

通过该方式的优化,能提高油田井口的使用年限,且效果比之前更好。

2.压裂防砂工艺应用原理。

该工艺的出砂原理是基于拉伸、剪切、粘结的过程,实现压裂防砂的目标,也能防治孔隙坍塌的情况。

首先,剪切破坏会导致地层岩石的输送效率,需利用拖曳作用引导岩石颗粒落至指定区域,使指定区域能够在压裂防砂的作用中实现造缝控制,确保流入该区域的液体由单一的方向变成双线性。

其次,单一方向流向大多为径向流状,而此时石油会渗透至井底处,会导致井口、井底部分的压力不断提升,以此形成一个陡峭的压力带,当石油越靠近井壁时,压力也会随之提升。

导致这一情况的原因是由于压力的分布,使压力区域底部的和底边边缘的压差始终在一定范围内,也能控制压差在集中区域地带。

当低端压力不稳定时,可能会引发砂块性能不稳定,导致流体会呈现双线性流状态。

此时需使用这一情况改变压力梯度,控制其压力梯度会随着应力而发货所能改变,使油泄流至地层底部,增大了地底的阻力。

若产生较大部分的裂缝时,会提升井底原油的渗流面积,引发锈蚀情况,降低了流体对地层颗粒的冲击速度。

压裂封口防砂技术调研报告

压裂封口防砂技术调研报告

压裂封口防砂技术调研压裂气井在返排过程中和生产过程中,有两种情况可能导致出砂:裂缝还未完全闭合或裂缝中只部分填充了支撑剂,还留有部分流动的余地。

如果有部分支撑剂未能被裂缝壁夹住, 还自由地悬浮着。

液体的回流可能将这些支撑剂带回井筒。

如果液体还维持有足够的黏度,裂缝还未闭合时就开始返排,就可能出砂。

从压裂角度出砂分析:(1)煤层的杨氏模量较常规砂岩小,易形成较宽的水力裂缝,而煤层的闭合压力一般较低,这些特性造成煤层压后支撑剂回流严重(2)关井时间过短,未破胶的高粘度液体,易携支撑剂返排。

为了加速返排,通常采用液氮拌注增能压裂、泡沫压裂液作业,提高压后返排速度,但此类方法增加了流体动能,使得支撑剂容易返吐,一定程度上限制了返排速度的进一步提高。

同时破坏了压裂施工原有的人工裂缝的铺砂剖面。

针对上述问题对大粒径、纤维、覆膜砂尾追技术进行了调研。

1. 大粒径尾追压裂技术1.1 定义在一次压裂施工中按一定次序添加多种尺度的支撑剂, 分别利用不同尺度支撑剂的各自特性, 在裂缝端部或空间狭窄的区域添加小粒径支撑剂, 在缝口或造缝质量良好的区域添加大粒径支撑剂, 保障施工成功、防止支撑剂返吐、提高裂缝质量, 使裂缝导流能力达到最佳。

1.2 作用原理(借鉴压裂防砂原理)流体对颗粒的冲刷与携带能力主要取决于其流速,流速越大,对地层的冲刷作用越厉害,出砂就越严重。

大粒径支撑剂的支撑孔隙要高于小粒径支撑剂的支撑孔隙,使井筒附近流体流速降低,从而降低了对小颗粒的冲刷和携带作用,大大减轻出砂程度。

1.3 支撑剂分类1.4 施工难点由于一般采用低黏压裂液,沉砂剖面上的动态平衡高度较小,上边的流速快。

因此,常规尾追大粒径支撑剂的方法很难在近井筒处实现(见下图)。

此时应该采用变排量方法,降低沉砂高度,增大砂堤上的过流端呵高度,才能使后续加入的大粒径支撑剂按预期那样堆积在征井筒处。

2. 尾追纤维压裂防砂技术2.1 纤维压裂工艺定义将拌有纤维的携砂液注入裂缝后,通过纤维缠绕来包裹支撑剂颗粒,压裂施工结束而裂缝闭合时,裂缝中的支撑剂因承受侧限压力,颗粒间以接触的形式相互作用而达到力学平衡,从而达到防砂的工艺。

油井作业压裂酸化及防砂堵水技术探析

油井作业压裂酸化及防砂堵水技术探析

油井作业压裂酸化及防砂堵水技术探析随着石油勘探和开采的不断深入,油井作业压裂酸化及防砂堵水技术成为了提高油田产能和延长油井寿命的重要手段。

本文将对油井作业压裂酸化及防砂堵水技术进行深入探析,探讨其原理、方法以及应用效果。

一、油井作业压裂酸化技术1.1 压裂技术原理压裂技术是通过在油井井筒中注入高压液体,使岩石裂缝扩展,并在裂缝中压入固体颗粒,从而增加岩石渗透性,提高产能。

压裂液一般由水、沙、化学添加剂组成,通过高压泵将压裂液注入井下,形成岩石裂缝。

酸化技术是通过在油井中注入酸液,溶解岩石中的碳酸盐、硫化物和铁化合物,从而扩大孔隙和裂缝,提高油井产能。

酸化液一般由盐酸、硫酸等酸性物质组成,通过高压泵将酸化液注入井下,对井筒进行酸化处理。

1.3 应用效果压裂酸化技术在油井作业中应用广泛,可以明显改善井下渗流条件,提高油井产能。

压裂酸化技术也存在一定的风险,操作不当可能导致井下井身损坏、堵塞等问题,因此需要进行严格的操作和监测。

二、防砂堵水技术2.1 防砂原理油井开发过程中,常常会遇到油层中含有砂粒的情况,这些砂粒会随着油水一起被抽上来,给油井和管道系统带来损坏。

需要采取防止砂粒进入油井的措施,一般采用筛管、注浆、注树等技术。

油井产量过大或者油田地质条件较差时,容易出现堵水现象,即井口涌入大量水分。

堵水的方法一般有注水、起动水泵、深度水抽取等。

防砂堵水技术可以有效保护油井和管道系统,延长井下设备寿命,提高采油效率。

由于油田地质条件的多样性,防砂堵水技术需要结合具体情况进行应用,因此需要有经验丰富的工程师进行设计和施工。

三、压裂酸化及防砂堵水技术的发展趋势3.1 技术集成未来,压裂酸化及防砂堵水技术将朝着集成方向发展,即将压裂、酸化、防砂堵水等多种技术集成在一起,形成一套综合的油井作业技术。

3.2 自动化控制随着自动化技术的发展,未来的油井作业将更加注重自动化控制,实现对油井作业过程的实时监测和控制,提高作业的精准性和安全性。

压裂防砂技术进展及存在问题

压裂防砂技术进展及存在问题
l。
几何计算方法。模拟方法的共同点是采用幂律流体 在孔隙介质中的流动模型来描述压裂液向地层中的 滤失,采用二维裂缝延伸模型模拟端部脱砂前裂缝 几何尺寸和缝中压力的变化,采用物质平衡原理模 拟裂缝膨胀与充填阶段的裂缝几何尺寸变化。在裂 缝膨胀阶段,裂缝体积的变化等于注入体积减去滤 失体积。在稳定充填阶段,注人体积等于滤失体积。 在裂缝闭合阶段,裂缝体积的变化量等于滤失量。 不同之处在于裂缝延伸阶段的裂缝模型。 20世纪90年代,中外关于压裂充填的研究和 应用进入了快速发展的阶段。现场上主要在压裂防 砂完井等领域取得了较好的实验效果,而且经典的 压裂理论中的裂缝扩展模型己经从二维扩展到了三 维模型。Yew等一j采用全三维裂缝模型研究了不同 滤失模型对裂缝传播的影响。尽管可以应用复杂的 全三维模型进行裂缝扩展研究,但至今仍难以对其 精确描述。近来研究都强调这种扩展在足够硬岩层 中的随机特性。对于软地层裂缝扩展物理过程没有 尝试着进行描述,但预计包括能量流散的增加和更 严重的端部效应。另外,由于低模数的存在,预测静 压力趋势的缺陷会导致实际预测处理方法的巨大差 异。最终,经典模型可能不能反映裂缝扩展过程的 重要特征。郭建春等‘。0一¨在总结分析压裂充填工 艺技术的增产机理、选井选层原则和技术要求的基 础上,提出了室内模拟评价压裂充填工艺的三维裂 缝延伸模型。邓金根等‘孔针对疏松砂岩压裂裂缝 启裂及延伸规律进行了数值模拟计算,并重点对地 应力、储层强度、射孑L方式对裂缝扩展延伸的影响规 律进行了分析计算;并认为用螺旋射孔方式完井在 疏松砂岩储层中难以获得大而平整的裂缝,防砂效 果不理想,定向射孑L可得到较为理想的人工裂缝。
万 方数据
・106・
油气地质与采收率
2008年7月
Yong
Fan等。卜8‘提出了压裂充填时不同阶段的裂缝
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过古地磁相对于地理北极方向确定岩心坐标系,通过差应变法 确定主地应力相对岩心坐标系方向,两者结合就可确定主地应 力相对地理北极方向;除此以外,还可确定主地应力的比值。 (5) 数值模拟法
该方法主要利用弹性力学有限元模型,依据应力测量资料, 反演远场应力边界条件,进而计算出弹性应力场。它可以计算 出地应力的大小与方向。
一、压裂知识简介
压裂液:
压裂液是一个总称,根据其在压裂过程中的任务不同可分为 前置液、携砂液和顶替液。
1)前置液:作用是破裂地层并造成一定几何尺寸的裂缝以 备后面的携砂液进入,它还起到一定的降温作用。
2)携砂液:作用是将支撑剂带入裂缝中并将砂子放到预定 位置上去。在压裂液的总量中,这部分占的比重较大。有造缝 及冷却地层的作用。
的滤失。 主要受三种因素的控制 ①压裂液的粘度 ②地层岩石及流体的压缩性 ③压裂液的造壁性。
一、压裂知识简介
支撑剂:
支撑剂在垂直裂缝中的运移沉降规律
(一)全悬浮型支撑剂分布 压裂液粘度足以把支撑剂完全悬浮起来,在整个施工过程中
很少或没有支撑剂沉降,压裂液所到之处,皆有支撑剂,离井 轴越远,该处的支撑剂浓度越高,而井底附近则接近加砂浓度。 (二)沉降式支撑剂分布的矩形理论
为使地层破裂,必须使井底 压力高于井壁上的总应力及 岩石的抗张强度。
一、压裂知识简介
(1)形成垂直裂缝
条件:如果地层的破裂属于纯张力破坏,那么随井内注入压
力Piwf的不断增加,当Piwf达到或超过井壁附近地层的最小周向应
力及岩石水平方向的抗张强度σth时,在垂直于水平周向应力的
污染地
方向上产生垂直裂缝。
1)形成梯形砂堆 初期砂堆-携砂液进入裂缝后,滤失,砂浓度逐渐上升,当 浮力小于重力时,砂子逐渐下沉。在裂缝最下部运动的砂子, 首先沉积在裂缝底面上,形成砂堆。上部的砂子沉积下来,使 砂堆迅速加高,此时砂堆长度几乎不变。这个砂堆称为初期砂 堆,如下图所示。
一、压裂知识简介
支撑剂:
由于砂堆不断增高,使携砂液流动的通道逐渐变小,流速加 快,沉积在砂堆面上的砂子又被卷起来继续向前运动。当砂子 沉积和被卷起来的速度达到平衡时,砂堆就不再升高了,达到 平衡状态。
目录
汇报提纲
一 压裂知识简介 二 压裂充填防砂介绍 三 压裂充填防砂发展历程 三 压裂充填防砂在海油的应用
一、压裂知识简介
压裂知识简介
第一节 造缝机理 在压裂中,了解裂缝的形成条件,裂缝形态及方向对有效地
发挥压裂在增产,增注中的作用是极为重要的。但由于地下条 件的复杂性,虽然进行了大量的研究,但仍未得到较好的解决。
一、压裂知识简介
地应力方向的测定:
目前国内研究地应力方向的主要方法如下: (1) 地层倾角测井法
用该方法来测量井筒的变形,从井筒椭圆度的长轴与短轴 方向来确定主地应力的方向,长轴方向为最小主地应力的方向。 (2) 地面电位监测法
该方法是在压裂作业时通过压裂井周围地面电位的变化, 判断裂缝延伸的方向,从而确定最小主地应力方向。 (3) 微地震波法

水力裂缝
(2)形成水平裂缝
压后呈双线性流
条件:当注入压力达到或超过井壁附近地层的最小垂向应力
及岩石的垂向抗张强度时,在垂直于垂向应力的方向上产生水
平裂缝。
一、压裂知识简介
由于在套管中的射孔方位并非 总是沿着最大水平主应力方向, 因此裂缝在井筒周围的起裂可 能是扭曲的,这种情形在水平 井和斜井的压裂中将更明显, 裂缝将沿井筒轴向起裂,在延 伸过程中逐步扭曲到与最小主 应力垂直的方向上,然后沿该 方向延伸。下图示出了井筒附 近复杂的裂缝几何形状。
3)顶替液:作用是打完携砂液后,用于将井筒中全部携砂 液替入裂缝中。中间顶替液用来将携砂液送到预定位置,并有 预防砂卡的作用。
一、压裂知识简介
压裂液:
随着水力压裂技术的发展,压裂液由最初的原油和清水逐步
发展为目前经常使用的水基、油基、酸基压裂液及多相压裂液
(泡沫压裂液、乳化压裂液)等。
压裂液滤失是指在裂缝与储层的压差作用下压裂液向储层中
由于岩石的破裂相当于一个微地震源,进行压裂作业时, 在周围井安装检波器以获得岩石破裂信号来判断裂缝延伸方向, 从而确定最小主地应力方向。根据检波器的位置分为地面监测 与井下监测两种,目前国际公认井下监测精度较高。一、压源自知识简介地应力方向的测定:
(4) 实验室差应变法与古地磁法结合 该方法主要利用取得的岩心,加工制成不同的试验岩样,通
一、压裂知识简介
根据砂子在裂缝中的运移沉降规律,为了获得较好的压裂效 果,可使用不同粒径的混合支撑剂,并使大颗粒支撑剂沉积在 井筒附近。其注入程序为:
垂直缝:先注入大颗粒砂子,后注入小颗粒砂子,大颗粒 便可沉积在井筒附近。
水平缝:先注入小颗粒砂子,后注入大颗粒砂子,大颗粒 即可沉积在井筒附近。
二、压裂充填防砂介绍
压裂充填(Fracpac)概念:
这是一种比较复杂的作业,也可以说是压裂和砾石充填两 种技术结合。既要在地层压开并充填支撑裂缝,又要在井底进 行绕丝筛管砾充填,作业程序可以是一次完成也可以分两次完 成。主要用于井底染较严重、目地层非常松软、出砂严重的情 况。这种作业综合利用了裂缝的防砂作用,解堵导流增产作用 和绕丝筛管砾石充填防砂作用,比单纯的砾石充填防砂效果好, 而且还可以解堵增产。缺点是作业较复杂。
地层中造缝的影响因素: ①岩石力学性质及压裂液渗滤性质 ②井底附近的地应力及其分布 ③注入方式 1.地应力及其分布 一般情况下,地层中的岩石处于压应力状态。作用在地下 某单元体上的力有垂向主应力及水平主应力。
一、压裂知识简介
受地质构造影响发生很大的变化,各个方向的应力也彼此 不等。如果岩石单元体是各向同性材料,岩石破裂时的裂缝方 向总是垂直于最小主应力轴。
2)梯形砂堆延伸 砂子就在液流的携带作用下,
越过初期砂堆,沉积在流动的前 方,使砂堆以恒定的高度向前延 伸,直到加砂结束为止。
一、压裂知识简介
支撑剂在水平裂缝中的运移沉降规律 压裂液在水平裂缝中的运移,呈幅射状。远离井筒之后,流 动面积迅速增大,流速迅速下降。同时由于滤失,砂比增大, 砂子迅速沉降、堆积。 支撑剂在水平裂缝中的运移沉降规律是: 先注入的砂子沉积在远处,后注入的沉积在近处。 对水平裂缝,欲使形成较长的有效裂缝,就应改善压裂液的 携砂性能,并提高施工排量。
相关文档
最新文档