图像信息隐藏算法的研究与实现翻译

合集下载

人工智能自然语言技术练习(习题卷9)

人工智能自然语言技术练习(习题卷9)

人工智能自然语言技术练习(习题卷9)第1部分:单项选择题,共45题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]如何理解NNLM这个模型,它是一个什么样的模型A)基于统计的语言模型B)基于神经网络的语言模型C)预训练模型D)编解码模型答案:C解析:2.[单选题]文本文件中存储的其实并不是我们在编辑器里看到的一个个的字符,而是字符的()。

A)内码B)外码C)反码D)补码答案:A解析:3.[单选题]数据可视化data visualization,导入_哪个包?A)A: sklearn.linear_modelB)B: sklearn.model_selectionC)C: matplotlib.pylabD)D: sklearn.metrics答案:D解析:4.[单选题]dropout作为常用的函数,它能起到什么作用A)没有激活函数功能B)一种正则化方式C)一种图像特征处理算法D)一种语音处理算法答案:B解析:5.[单选题]以下四个描述中,哪个选项正确的描述了XGBoost的基本核心思想A)训练出来一个一次函数图像去描述数据B)训练出来一个二次函数图像去描述数据C)不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残差。

D)不确定答案:C解析:C)LSTM 神经网络模型使用门结构实现了对序列数据中的遗忘与记忆D)使用大量的文本序列数据对 LSTM 模型训练后,可以捕捉到文本间的依赖关系,训练好的模型就可以根据指定的文本生成后序的内容答案:B解析:7.[单选题]relu函数的作用是可以将小于()的数输出为0A)-1B)0C)1D)x答案:B解析:8.[单选题]以下不是语料库的三点基本认识的是A)语料库中存放的是在语言的实际使用中真实出现出的语言材料。

B)语料库是以电子计算机为载体承载语言知识的基本资源,并不等于语言知识。

C)真实语料需要经过加工(分析和处理),才能成为有用的资源。

基于深度学习的手写英文字体识别研究

基于深度学习的手写英文字体识别研究

英文字体的类别信息,证明该算法具有良好的手写英文字体识别效果。
关键词 :深度学习 ;手写英文字体 ;自动编码器 ;组合自编码网络
中图分类号:TP391
文献标识码:A
文章编号:1001-5922(2021)07-0084-04
Research on Handwritten English Font Recognition Baesd on Deep Learning
的数据特征,导致识别准确率不高,故本研究对该算法
进行了改进,将结合标准降噪自动编码与分类降噪自
动编码,形成组合自编码网络算法,以提高算法识别的
准确率。
1.2 算法改进 组合自编码网络算法包括降噪自动编码器、分类
降噪自动编码器、组合特征分类器 3 个部分[7]。预训练 过程中,降噪自动编码与分类降噪自动编码各自独立 完成数据特征提取和类别特征提取,并按照特征比例 进行拼接得到组合特征。然后,组合特征会进入分类器 进行训练,此时,算法会根据最小化代价函数对模型参 数进行更新。最后,通过一定迭代次数的训练,得到识 别结果。组合自编码网络算法结构如图 1 所示。
ADHESION 粘 学术论文 接 Academic papers
数据信息与智能
收稿日期:2020-10-19 作者简介:高燕超(1986-)女 ,汉族,河北保定人,硕士,研究方向:英语翻译、英语信息化。
基于深度学习的手写英文字体识别研究
高燕超 (宝鸡职业技术学院,宝鸡 721000)
摘 要 :针对化学信息手写英文字体识别准确率低,缺少类别信息的问题,本研究基于深度学习,在传统
是图像去噪常用的方法之一,其通过将原始图像像素
至与模板进行对应,计算出输出图像的像素值。
2.3 二值化处理

外文翻译及文献--基于子带离散余弦变换DCT应用于图像水印的技术

外文翻译及文献--基于子带离散余弦变换DCT应用于图像水印的技术

中文2350字毕业论文(设计)外文翻译题目:基于DCT变换的水印算法实现专业:班级:学号:姓名:指导教师:基于子带离散余弦变换DCT应用于图像水印的技术基于子带离散余弦变换DCT应用于图像水印的技术已经被提出并应用。

水印是波在所有选定的含有若干系数的四个频带段的1级分解。

应用大量的系数使每个波段给出了不同的检测输出结果。

其结果是采取平均检测结果的所有频段的值。

结果表明,最终的结果是优于所检测输出的每个波段所得的结果的,从而实现了非常强大的水印方案。

1、导言数字媒体技术在当今社会已被大范围的使用,从而促使其创立知识产权来保护。

就其性质而言,数字媒体是能够100%被完整复制的,因此,必须采取有效的标识系统(是显而易见的)。

这就是水印的由来。

水印技术是指将无法被看见的数据埋入图像中,从而确定合法的创建者/拥有者。

水印应当具有健全的可以适用于(抵挡)各种各样的图像攻击的技术。

任何尝试从原始图像删除所有权信息的方法(被称为)攻击。

一些常见的攻击包括过滤,压缩,直方图修改,剪裁,旋转和缩小。

(水印)主要有两个嵌入方向,即空间域和变换域。

变换域的技术对普通的图像攻击技术更敏感,如过滤或JPEG压缩。

变换域技术在图像水印中是最受欢迎的。

在这种情况下,图像技术正在通过某些常见的,频繁发生事情改变着,并且使得水印转换系数被高度完美的应用于图像上。

这种转换技术通常使用DCT(离散余弦变换),DFT(二维傅里叶变换)和DWT(离散沃尔什变换)。

发生在现况下的一个问题是各种数量和位置的改变将使其在图像中频繁的变化着。

许多有效方法已经被提出,其中大部分是源于科克斯(Cox’s)的体系。

皮瓦等人扩展了这一方法,从而提出了一种隐藏检测系统(blind detection system)。

在这些全部情况中都将图像处理作为一个整体,但一些系数变化不超过16000,通常的图像尺寸是512x512。

由于大多数的过程都是在数字统计的背景下(执行的),因此我们宁愿使用越多系数越好。

基于PyTorch的机器翻译算法的实现

基于PyTorch的机器翻译算法的实现

基于PyTorch的机器翻译算法的实现李梦洁;董峦【摘要】当向机器翻译模型输入序列时,随着序列长度的不断增长,会出现长距离约束即输入输出序列的长度被限制在固定范围内的问题,因此所建模型的能力会受到约束.序列到序列模型(sequence to sequence model)可以解决长距离约束问题,但单纯的序列到序列模型无法对翻译中要参考词语前后或其他位置的内容来改善翻译质量的行为进行建模.为了弥补该缺陷,提出了注意力机制(attention mechanism).针对以上问题,报告了机器翻译及部分模型的研究现状,简述了深度学习框架,分析了基于神经网络的机器翻译及注意力机制原理,并对使用PyTorch实现的序列到序列模型及注意力机制进行了研究,通过分析翻译的时间消耗和翻译后的词错率以及评价标准的值来评价模型.最终该模型在英法数据集上取得了一定的效果.【期刊名称】《计算机技术与发展》【年(卷),期】2018(028)010【总页数】5页(P160-163,167)【关键词】机器翻译;序列对序列;注意力机制;词错率;循环神经网络【作者】李梦洁;董峦【作者单位】新疆农业大学计算机与信息工程学院,新疆乌鲁木齐 830000;新疆农业大学计算机与信息工程学院,新疆乌鲁木齐 830000【正文语种】中文【中图分类】TP301.60 引言在机器翻译中,如何选择更有效率更适合翻译的模型一直都是深度学习中研究的热点之一。

近年来,很多深度学习、人工智能领域的研究者不断探索改进实现机器翻译的相关模型,反复进行了大量的实验。

随着人工智能的发展,机器翻译相关技术得到了不断的改进创新,使得机器翻译走向了更前沿的水平。

Treisman和Gelade提出了注意力机制方法[1],它是可以模拟人脑注意力的模型,并可通过计算注意力的概率分布来突显输入中某一个输入对于输出的影响作用。

简单来说,就是当人们观察一幅图片时,首先注意到的是图片中的某一部分,而不是浏览全部内容,之后在观察的过程中依次调整注意的聚焦点。

人工智能课后习题答案

人工智能课后习题答案
优化方法
可采用批量梯度下降、随机梯度下降、小批量梯度下降等优化算法,以及动量 法、AdaGrad、RMSProp、Adam等自适应学习率优化方法。
课后习题解答与讨论
• 习题一解答:详细阐述感知器模型的原理及算法实现过程,包括模型结构、激 活函数选择、损失函数定义、权重和偏置项更新方法等。
• 习题二解答:分析多层前馈神经网络的结构特点,讨论隐藏层数量、神经元个 数等超参数对网络性能的影响,并给出一种合适的超参数选择方法。
发展历程
人工智能的发展大致经历了符号主义、连接主义和深度学习三个阶段。符号主义认为人工智能源于对人类思 维的研究,尤其是对语言和逻辑的研究;连接主义主张通过训练大量神经元之间的连接关系来模拟人脑的思 维;深度学习则通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
机器学习原理及分类
深度学习框架与应用领域
深度学习框架
深度学习框架是一种用于构建、训练和部署深度学习模型的开发工具。目前流行的深度学习框架包括 TensorFlow、PyTorch、Keras等。
应用领域
深度学习已广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域,并取得了显著的 成果。
课后习题解答与讨论
习题四解答
讨论人工智能的伦理问题,如数据隐私、算法偏见等,并 提出可能的解决方案。
02 感知器与神经网络
感知器模型及算法实现
感知器模型
感知器是一种简单的二分类线性模型 ,由输入层、权重和偏置项、激活函 数(通常为阶跃函数)以及输出层组 成。
感知器算法实现
通过训练数据集,采用梯度下降法更 新权重和偏置项,使得感知器对训练 样本的分类误差最小化。
时序差分方法

使用AI技术进行机器翻译的步骤与技巧

使用AI技术进行机器翻译的步骤与技巧

使用AI技术进行机器翻译的步骤与技巧随着人工智能(AI)的快速发展,机器翻译已经成为一项受到广泛关注的技术。

通过利用强大的计算能力和大数据分析,AI可以在较短时间内完成大量文本的翻译工作。

本文将介绍使用AI技术进行机器翻译的步骤与技巧。

一、收集并准备训练样本为了让AI系统学习并理解不同语言之间的关系,第一步是收集并准备足够数量和多样性的训练样本。

这些样本应该包括各种主题和领域的文章、网页内容以及其他相关文本资料。

这样做可以确保AI系统具备泛化能力,并能够应对各种实际翻译任务。

二、构建机器翻译模型在拥有足够训练数据后,下一步是构建一个机器翻译模型。

通常情况下,基于神经网络的深度学习模型被广泛应用于机器翻译领域。

这种模型可以通过多层次处理来提取输入文本中隐藏信息,进而生成目标语言的输出结果。

三、训练机器翻译模型训练机器翻译模型需要大量的计算资源和时间。

在这一过程中,AI系统会根据输入的训练样本逐步调整自己的参数,以最大程度地提高翻译准确度。

在迭代的过程中,可以使用一些优化方法来加快训练速度,例如批量梯度下降算法或Adam优化器等。

四、处理长句和复杂结构在进行机器翻译时,经常会遇到一些长句子或复杂结构。

为了提高准确性,可以采取以下策略:首先,在输入之前对句子进行分段处理,并在段落之间建立联系;其次,针对复杂结构设计特定的处理规则,例如将从句分解为简单短语进行独立翻译。

五、引入语境信息为了更好地理解输入文本并生成更准确的翻译结果,加入语境信息是非常重要的。

通过引入上下文信息或先前翻译的片段,AI系统可以更好地理解当前待翻译句子所处的语义环境,并做出相应调整。

这种技巧能够提高机器翻译的连贯性和准确度。

六、后处理和编辑尽管AI系统在机器翻译方面取得了巨大进展,但人工编辑仍然是确保最终翻译结果质量的关键环节。

在完成机器翻译后,人工编辑可以对文本进行校对,修复可能存在的语法错误或意义不符情况,并调整句子结构以提高自然度。

英中互译模型

英中互译模型

英中互译模型引言随着全球化的发展,多语言之间的互译需求越来越重要。

传统的机器翻译方法面临着精度不高、歧义问题和句法结构处理困难等挑战。

近年来,随着深度学习技术的快速发展,英中互译模型逐渐成为研究的热点之一。

本文将探讨英中互译模型的原理、方法和应用。

英中互译模型原理英中互译模型是基于深度学习的神经网络模型,通过学习大量的源语言和目标语言的双语数据,实现两种语言之间的互译。

其原理主要包括输入表示、编码器-解码器架构和注意力机制。

输入表示对输入句子进行表示是英中互译模型的第一步。

一种常用的表示方法是使用词嵌入技术,将每个单词映射到一个低维向量空间。

这样可以将单词的语义信息编码为连续向量表示,方便神经网络模型进行处理。

编码器-解码器架构编码器-解码器架构是英中互译模型的核心。

编码器将输入句子转换为一个固定长度的向量表示,解码器通过该向量表示生成目标语言的翻译结果。

编码器和解码器一般使用循环神经网络(RNN)或者长短时记忆网络(LSTM)来实现。

编码器逐步处理输入句子的每个单词,并将每个单词的信息存储在隐藏状态中。

解码器根据隐藏状态的信息逐步生成翻译结果。

在每一步,解码器会根据当前的输入和之前的隐藏状态生成一个输出单词,并更新隐藏状态。

直到生成目标语言的终止符号或达到最大翻译长度为止。

注意力机制注意力机制是英中互译模型的一种改进方法,用于解决长句子翻译中的困难。

传统的编码器-解码器架构在生成结果时只能依赖于固定长度的向量表示,无法捕捉句子中每个单词的重要信息。

注意力机制通过引入注意力权重,对输入句子的每个单词赋予不同的重要性。

解码器每次生成输出单词时会自动关注输入句子中与当前输出位置相关的部分。

这样可以使模型更加关注句子中的关键信息,提高翻译的准确性。

英中互译模型方法英中互译模型的方法可以分为有监督学习和无监督学习两种。

有监督学习有监督学习是指模型在训练时同时使用源语言和目标语言的双语数据。

通过最小化源语言和目标语言之间的差异,模型可以学习到两种语言之间的映射关系。

lsb

lsb

华北电力大学实验报告||实验名称课程名称||专业班级:学生姓名:学号:成绩:指导教师:实验日期:一、实验目的及要求1.复习《信息安全技术导论》中有关LSB的相关知识。

2.对其算法进行详细研究与理论分析。

3.利用MATLAB编写程序并仿真结果。

4.了解并掌握LSB信息隐藏和提取的方法,具备初步的独立分析和设计能力;5.提高综合应用所学的理论知识和方法独立分析和解决问题的能力;二、所用仪器、设备MATLAB环境三、实验3.1 信息隐藏及时空域信息隐藏概述信息隐藏技术主要由下述两部分组成:(1)信息嵌入算法,它利用密钥来实现秘密信息的隐藏。

(2)隐蔽信息检测/提取算法(检测器),它利用密钥从隐蔽载体中检测/恢复出秘密信息。

在密钥未知的前提下,第三者很难从隐秘载体中得到或删除,甚至发现秘密信息。

空域隐藏技术是指将秘密信息嵌入数字图像的空间域中,即对像素灰度值进行修改以隐藏秘密信息。

时空域信息隐藏分为:LSB与MSB,LSB对应的中文意思是:最不重要位,有时也称为最低有效位或简称最低位。

MSB,是最重要位。

这里主要介绍最不重要位LSB。

3.2 LSB上的信息隐秘3.2.1 LSB上信息隐秘的原理LSB方法通过调整载体图像像素值的最低若干有效位来来实现数据的嵌入,使所隐藏信息在视觉上很难被发觉,而且只有知道秘密信息嵌入的位置才能正确提取出秘密信息。

显然,LSB隐藏算法最低位被改变的概率是50%,它在原始图像里面引入了极小的噪声,在视觉上是不可见的。

实际上,对于24bit真彩色图像,我们在其最低两位甚至三位来隐藏信息使视觉上仍然是不可见的,对于灰度图像,改变其最低两位也能取得较好的效果。

另外,在LSB方法中,也可以不采用直接嵌入的方法,根据异或的可逆准则,采用替换的准则来实现信息的隐藏。

在嵌入数据位时,嵌入的是数据位与1或者0的异或值。

基于异或的运算也有许多改进的算法,在嵌入的过程中,首先计算每个像素灰度值的每一位的异或值,并把所得到的结果与要嵌入的信息进行异或运算,然后,把像素灰度值的最低位全部清零或置为1,再根据异或运算结果的值来改变最低位的信息,实际上,这相当于对信息进行了一层加密处理,嵌入的不再是原始信息,而是原始信启、的另外一种表达形式,不知道密钥的攻击者很难从中提取出信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文文献资料收集:苏州大学应用技术学院11电子班(学号1116405026)马玲丽Image Information Hiding: An SurveyI. INTRODUCTIONNowadays many problems arise during the image transformation from the sender to the receiver. Strangers can easily snoop into others account and get many secret information even it was hided by some mechanism, without their permission. To avoid this we propose a secure scheme by using steganography concept. Steganography means hiding information in a particular way that prevents the detection of hidden information. In this concept no one can find that there is a hidden message present in the image, Because of information is hidden behind an image in a matrix form, which is created by bit matrix of the object. By using the LSB we can store the characteristics of particular pixels of an image are modified to store a message. Finally we send the final picture and cover image used for hidden the image to the receiver [Johnson & Jajodia, 1998].At first we calculate the height and width of the image, which hide the information then multiply it with 8 and store it in any value. Then we calculate the height and width of the image which is used to hide the object and multiply with each other. Then we compare that answers with both the image which is used to hide the information and which is used to hide the object. The image which is used to hide the object must have greater value than the other image; we choose the object must satisfy the above condition. Then the encoded matrix is mapped with the image by using least significant bit mechanism.Least significant bit only stores the information instead of replacing the pixel of image. So scattering of information takes place while transferring the image so according to human eye there is no difference between the original and stego image. Finally sender sends the both original and stego image to the receiver. In the receiver side to get the information the receiver must do XOR operationbetween bytes present in both the image. Compare the result with 0*00000000 If the output will be yes then store 0 else 1 in a matrix and this matrix will be equal to the width and height of the pixel matrix of the image. Convert the bits into bytes until all bits got utilized. Finally receiver gets the information.1.1. History of Information Hiding1.2. The Basics of EmbeddingThree different aspects in information-hiding systems contend with each other: capacity, security, and robustness. Capacity refers to the amount of information that can be hidden in the cover medium, security to an eavesdropper’s inability to detect hidden information, and robustness to the amount of modification the stego medium can withstand before an adversary can destroy hidden information [FabienA. P. Petitcolas et al., 1999; Sabu M Thampi, 2004; Nameer N. EL-Emam, 2007].1.3. Discrete Cosine TransformFor each color component, the JPEG image format uses a Discrete Cosine Transform (DCT) to transform successive 8 × 8 pixel blocks of the image into 64 DCT coefficients each. The DCT coefficients F(u, v) of an 8 × 8 block of image pixels f(x, y).A simple pseudo-code algorithm to hide a message inside a JPEG image could look like this:Input: message, cover imageOutput: steganographic image containing messageWhile data left to embed doGet next DCT coefficient from cover imageIf DCT =! 0 and DCT =! 1 thenGet next LSB from messageReplace DCT LSB with message bitEnd ifInsert DCT into steganographic imageEnd while1.4. Detection TechniquesMany algorithms were proposed for estimating the length of the secret message in the cover image. Westfeld (2001) proposed the blind steganalysis based on statistical analysis of PoVs (pairs of values). This method, so-called statistical test, gives a successful result to a sequential LSB steganography only. Fridrich et al. proposed the RS steganalysis. This method makes small alternations to the least significance bit plane in an image the by using the following method our process [Kekre et al., 2008; Bin Li et al., 2011].1.5. Security the Packet DecoderThe decode engine is organized around the layers of the protocol stack present in the supported data-link and TCP/IP protocol definitions. Each subroutine in the decoder imposes order on the packet data by overlaying data structures on the raw network traffic. These decoding routines are called in order through the protocol stack, from the data link layer up through the transport layer, finally ending at the application layer. Speed is highlight in this section, and the majority of the functionality of the decoder consists of setting pointers into the packet data for later analysis by the detection engine [Richard Popa, 1998].1.6. Internet Protocol VersionInternet Protocol version 6 (IPv6) is a network layer IP standard used by electronic devices to exchange data across a packet-switched internetwork. It follows IPv4 as the second version of the Internet Protocol to be formally adopted for general use. Among the improvements brought by IPv6 is the increase of addresses for networked devices, allowing, for example, each cell phone and mobile electronic device to have its own address. IPv4 supports 4.3×109 (4.3 billion) addresses, which is inadequate for giving even one address to every livingperson, much less support the burgeoning market for connective devices. IPv6 supports 3.4×1038 addresses, or 5×1028(50 octillion) for each of the roughly 6.5 billion people alive today.Normally the packets are transferred from one system to another in packets. The packets are transferred through the tcp connection in a more secure way.II. HIDE AND SEEK: AN INTRODUCTION TO STEGANOGRAPHY2.1. Problem FormulationIn the past, for the security purpose people used hidden tattoos or invisible ink to convey steganographic content. Today for hiding purpose computer and network technologies provide easy-to-use communication channels for steganography [Saraju P. Mohant, 2003; Muhalim Mohamed Amin et al., 2003].Steganographic system because of their invasive nature, leave the detectable traces in the cover medium. The secret content is not revealed, but its statistical properties changed so the third party can detect the distortions in the resulting image [Morkel et al., 2005]. The process of finding the distortions is called statistical steganalysis.2.2. Research DesignThis paper explains the steganagraphic systems and presents the recent research in detecting them through statistical steganalysis.Steganographic systems for the JPEG format seem more interesting, because the systems operate in a transform space and are not affected my visual attacks.Visual attacks mean that we can see steganographic images on the low bit planes of an image because they overwrite the visual structures.2.3. FindingThe JPEG image format uses a discrete cosine transform to transform successive 8*8 pixel blocks of the image into 64 DCT coefficients each. The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), V ol. 1, No. 1, March-April 2013 ISSN: 2321 – 2381 © 2013 | Published by The Standard International Journals (The SIJ) 3The embedding algorithm sequentially replaces the least significant bit ofDCT coefficients with the message data. The same process is also done in the JPEG format.The author and his colleague used a support vector machine to create a nonlinear discrimination function. Then they present a less sophisticated but easier to understand method for determining a linear discrimination function.2.4. Conclusion and LimitationsWe offer four details for our inability to find steganographic content on the internet. They are,·All steganographic system users carefully choose passwords that are not susceptible to dictionary attacks.·May be images from sources we did not analyze carry steganographic content.·Nobody uses steganographic systems that we could find.·All messages are too small for our analysis to detect.Although steganography is applicable to all data objects that contain redundancy, we consider JPEG images only for steganography.2.5. ImplicationsWe insert the tracer images into every stegbreak job. The dictionary attack follows the correct passwords for these images.III. STEGANOGRAPHY AND STEGANALYSIS3.1. Problem FormulationThe growth of computer networks and internet has explored means of business, scientific, entertainment, and social opportunities.The digital information can be easily duplicated and distributed has led to the need for effective copyright protection tools such as steganography and cryptography [Stefano Cacciaguerra & Stefano Ferretti, 2003; Robert Krenn, 2004].3.2. Research DesignSecrets can be hidden inside all sorts of cover information: text, images, audio, video and more. Most steganographic utilities nowadays, hide information inside images, as this is relatively easy to implement [Christian Cachin, 1998].Hiding information inside images is a popular technique nowadays [Shashikala Channalli, 2009]. An image with a secret message inside can easily be spread over the World Wide Web or in newsgroups.The most common methods to make alterations in the image present in noisy area involve the usage of the least-significant bit or LSB, masking, filtering and transformations on the cover image. These techniques can be used with varying degrees of success on different types of image files.3.3. FindingMore techniques are developed for hiding the information to detect the use of steganography. While the information can be hidden inside texts in a way that the message can only be detected with the knowledge of the secret key.A widely used technique for image scanning involves statistical analysis, with the statistical analysis on the lsb, the difference between random values real image value can easily be detected.The statistical analysis method can be used against the audio files too, since the lsb modification technique can be used on sounds too, including that several other things also detected.While steganograms may not be successfully detected instead of that we use the statistical analysis from possible cover sources.3.4. Conclusions and LimitationsSteganography combined with cryptography is a powerful tool which enables people to communicate without possible eavesdroppers even knows that there is a communication in the first place.Steganography might also become limited laws, since government already claimed that criminals use these techniques to communicate. More restrictions are provided in the time of terrorist attacks.3.5. ImplicationsIn the future the most important use of steganographic techniques will lie in the field of digital watermarking. Content providers are eager to protect their copyrighted works against illegal distribution and digital watermarks provide a way of tracking the owners of these materials.Although it will not prevent the distribution itself, it will enable the content provider to start legal actions against the violators of the copyrights, as they can now be tracked down.IV. HIDING ENCRYPTED MESSAGE IN THE FEATURES OF IMAGES4.1. Problem FormulationSteganography is the art and science of writing hidden messages in such a way that no one can’t know about the intended recipient knows the existence of the message. It simply takes one piece of information and hides it with another [Kh. Manglem Singh et al., 2007].4.2. Research DesignThis process explains the least significant bit embedding algorithm for hiding encrypted messages in nonadjacent and random pixel locations in edges of images. It first encrypts the secret message and detects image in the cover image.The simplest way to hide data on an image is to replace the least significant bits of each pixel sequentially in the scan lines across the image in raw image format with the binary data.An attacker can easily see the message by repeating the process. To avoid this to add better security, the message to be hidden is first encrypted using the simplified data encryption standard and then it is distributed randomly by a pseudo random number generator across the image.4.3. FindingMany algorithms are used to estimate the length of the secret message in the cover image. Here they propose the blind steganalysis based on statistical analysis of pairs of values. This method is called statistical test.They propose the detection algorithm based on higher order statistics for separating original images from stego images.Blind detection algorithm that estimates the accuracy of embedded message through the analysis of the variation of the energy resultant from the lsb embedding.4.4. Conclusions and LimitationsThe paper described a novel method for embedding secret message bit in least significant bit of nonadjacent and random pixel locations in edges of images. No original cover image is required for the extraction of the secret message. It has been shown experimentally that the blind LSB detection technique like the gradient energy method could not estimate the length of the secret message bits accurately for the proposed algorithm.4.5. ImplicationsThe message to be hidden in the image was first encrypted using the S-DES algorithm. Then estimate the length of the secret message bits by the gradient energy technique. Gradient energy technique could not estimate the length of the secret message bit accurately.4.6. AdvantagesA message in cipher text, for instance, might arouse suspicion on the part of the recipient while an “invisible” message created with steganographic met hods will not.Watermarking is either “visible” or “invisible”. Although visible and invisible are visual terms watermarking is not limited to images, it can also be used to protect other types of multimedia object.In steganographic communication senders and receivers agree on a steganographic system and a shared secret key that determines how a message is encoded in the cover medium. Without the key they can’t identify the secret message.In steganographic systems the images we used for hiding may be JPEG format seem more interesting because the systems operate in a transform space andare not affected by visual attacks.4.7. DisadvantagesEncryption protects contents during the transmission of the data from the sender to receiver. However, after receipt and subsequent decryption, the data is no longer protected.By using the secret key we are deliver the secret message safer at the same time if any hacker finds the key then they can easily get the secret message.Visual attacks mean that you can see steganographic messages on the low bit planes of an image because they overwrite visual structures; this usually happens in BMP images.V. PROPOSED SYSTEMSteganography is used to hide the information in the form of multimedia objects considering two things that is size and degree of security.This concept assists the scattering of information at the time of hiding and implements the non traceable randomization to differentiate from the existing work.Double embedding is done for more security.5.1. AdvantagesSteganography is the concept of hidden messages in such a way that no one apart from the intended recipient knows of the existence of the message. Here double embedding takes place. So it is safer.It doesn’t have any key to decrypt the ima ge. So the hacker has no chance to get the message in this way.This concept deals that the eavesdroppers will not have any suspicion that message bits are hidden in the image and standard steganography detection methods can not estimate the length of the secret message correctly.With steganography we can send messages without anyone having knowledge of the existence of the communication.There are many countries where it is not possible to speak as freely as it is insome more democratic countries. Then it is the easy method to send news and information without being censored and without the fear of the messages being interrupted.5.2. DisadvantagesThis concept is applied only for images not for audio and video files.The receiver must know about the least significant bit technique.VI. CONCLUSIONHere we conclude that we prevent the detection of hidden information by using steganography concept and propose a The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), V ol. 1, No. 1, March-April 2013 ISSN: 2321 –2381 © 2013 | Published by The Standard International Journals (The SIJ) 5 secure scheme for image transformation. Here we use least significant Bit modification technique to insert the image into another image for hidden purpose. Image is hidden into another image is the technique we introduced in our paper. In other security mechanisms the strangers can easily stole the message from the image by repeating the process. But in our technique without the stego key we can’t extract the message from the image. This technique facilitates the scattering of information at the time of hiding; this is new method we proposed in our paper.VII. FUTURE ENHANCEMENTApart from this, any kind of future endeavor in this field will definitely route it a path to design a secure system using the proposed algorithm for both Internet and Mobile Communication Technology. The scattering of information technique is used at the time of hiding is useful for many news papers based on steganography. Development in covert communications and steganography will research in building more robust digital watermarks that can survive image manipulation and attacks. We hope some commercial and effective schemes will be available in future. In the near future, the most important use of steganographic techniques will probably lie in the field of digital watermarking. Content providers are eager to protect their copyrighted works against illegal distribution and digitalwatermarks provide a way of tracking the owners of these materials. In future we can use this paper in the Government, Software Company, Detective agencies etc. The same step is involved to embed the information and send to particular user.REFERENCES[1] N.F. Johnson & S. Jajodia (1998), “Exploring Steganography: Seeing the Unseen Computer”, Vol. 31, No. 2, Pp. 26–34. [2] Richard Popa (1998), “An Analysis of Steganographic Techniques”, Pp. 1–17. [3] Christian Cachin (1998), “An Information-Theoretic Model for Steganography”, Information Hiding, Lecture Notes in Computer Science, V ol. 1525, Pp 306-318. [4] Fabien A. P. Petitcolas, Ross J. Anderson & Markus G. Kuhn (1999), “Information Hiding –A Survey”, Proceedings of the IEEE, Special Issue on Protection of Multimedia Content, V ol. 87, No. 7, Pp. 1062–1078. [5] A. Westfeld (2001), “F5-A Steganographic Algorithm: High Capacity Despite Better Steganalysis”, Proceedings of 4th International Workshop Information Hiding, Pp. 289–302. [6] Saraju P. Mohant (2003), “Digital Watermarking: A Tutorial Rev iew Niels Provos, Peter Honeyman, Hide and Seek: Introduction to Steganography”. [7] Muhalim Mohamed Amin, Subariah Ibrahim, Mazleena Salleh & Mohd Rozi Katmin (2003), “Information Hiding using Steganography”, Information Hiding using Steganography Approach , V ol. 71847, Pp. 1–34. [8] Stefano Cacciaguerra & Stefano Ferretti (2003), “Data Hiding: Stegnography and Copyright Marking”, Department of Computer Science, University of Bologna, Italy, Pp. 1–30. [9] Robert Krenn (2004), “Steganography and Steganalysis”. [10] Sabu M Thampi (2004), “Information Hiding Techniques: A Tutorial Review”, ISTE-STTP on Network Security & Cryptography, LBSCE 2004. [11] T. Morkel, JHP Eloff & MS Olivier (2005), “An Overview of Image Steganography”, Proceedings of the Fifth Annual Information Security South Africa Conference(ISSA2005), Sandton, South Africa. [12] Nameer N. EL-Emam (2007), “Hiding a Large Amount of Data with High Security using Steganography”, Algorithm Journal of Computer Science, Vol. 3, No. 4, Pp. 223–232. [13] Kh. Manglem Singh, S. Birendra Singh & L. Shyam Sundar Singh (2007), “Hiding Encrypted Message in the Features of Images”, International Journal of Computer Science and Network Security (IJCSNS), V ol. 7, No.4. [14] H.B. Kekre, Archana Athawale & Pallavi N. Halarnkar (2008), “Increased Capacity of Information Hiding in LSB’s Method for Text and Image”, World Academy of Science, Engineering and Technology, Pp. 910–913. [15] Shashikala Channalli (2009), “Steganography: An Art of Hiding Data”, International Journal on Computer Science and Engineering, V ol. 1, No. 3, Pp 137–141. [16] Bin Li, Junhui He, Jiwu Huang, Yun Qing Shi (2011), “A Survey on Image Steganography and Steganalysis”, Journal of Information Hiding and Multimedia Signal Processing, V ol. 2, No. 2, Pp. 142–171. D. Saravanan c urrently working as an Assistant Professor in the department of computer applications in Sathaybama University, Chennai. His areas of interest are image processing, data mining, DBMS. He has published paper in five national conferences & two international journals in the field of data mining. A. Ronold Doni working as an Assistant Professor in the department of computer applications in Sathaybama University, Chennai. His areas of interest are image processing, data mining, DBMS. He has published paper in three national conferences & one international journal in the field of data mining. A. Abisha Ajith studying First Year MCA in Sathyabama University, Chennai. Her areas of interest are image processing, data mining, DBMS. She has published paper in one national conference & one international journal in the field of data mining.中文翻译稿翻译:苏州大学应用技术学院11电子班(学号1116405026)马玲丽图像信息隐藏:调查1.介绍现如今从发送端到接收端的图像变换过程中出现了许多问题。

相关文档
最新文档