高中数学 论文论文

合集下载

高中数学论文范文参考(热门46篇)

高中数学论文范文参考(热门46篇)

高中数学论文范文参考(热门46篇)
数学的学习以实际的`训练和测试居多,在此过程中,很多学生能够
通过训练发现自己的很多问题,并以错题的形式进行记录。

在二次函数的
学习过程中,这一方法也同样适用,尤其是在基本初等函数及函数的应用
这两个章节的训练中,学生学习的不足会由于知识点复杂,学习不到位而
表露出来,教师应当充分督促学生做好错题记录,并附上相关的知识点,
利用错题再测的方式定期检查学生对于错题集的应用情况。

传统的教学观点对于数学的认识在于其严密的逻辑结构和实际解题方
法的掌握,但在二次方程的学习中,背诵或记忆这个适合于传统文科学习
的方法也同样适用于二次方程。

在二次方程的学习中,有很多经典的知识
点或解题方法,可让学生作为模板来应用于实际的解题中,将解题规范化,避免失去分数。

例如,二次函数y=ax2+bx+c(a>0)图象与零点关系,学
生可以通过合理记忆,在以后的解题时将统计的表格应用于解题的实际步
骤中,一方面保证自己在判断的时候不会遗漏相关知识点,另一方面,解
题的严谨性也减少了失分的可能,对于学生在二次方程学习方面的提高有
极大帮助。

高中数学二次函数的学习与初中方程学习有很大差别,难度也有所提高,因而对于教学方法的研究更为重要。

教师在实际的二次函数教学中,
要帮助学生从概念入手,清楚掌握二次函数的基本定义;同时利用数形结
合的方法及尝试教学法,指引启发学生直观的掌握知识点,自主探寻相关
规律,牢牢记忆二次函数的知识;最后通过实际训练及错题集的应用,帮
助学生加强二次函数知识的复习,提高学习效果,为学生在高中数学学习
方面打好基础。

高中数学论文获奖范文(推荐36篇)

高中数学论文获奖范文(推荐36篇)

高中数学论文获奖范文(推荐36篇)高中数学的教学目的是使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和技能,培养学生的运算能力。

《立体几何》作为高中数学的重要组成部分,既是教学中的重点,又是教学中的难点。

一、上好第一堂课,激发学生学习《立体几何》这门课的兴趣浓厚的学习兴趣不仅可以使学生积极主动地从事学习活动,而且学习起来还会心情愉快,能够做到全神贯注,长期坚持从而形成一种终身的学习习惯。

另外,学生在学习立体几何之前,对立体几何普遍有一种畏惧心理。

所以立体几何的第一堂课是否能抓住学生,调动学生的学习积极性,激发学生学习立体几何的兴趣,非常关键。

二、帮助学生建立空间概念学生由于受学平面几何的思维定势的影响,在学习立体几何时,要建立起空间概念,有一定的困难,只有尽早解决这个问题。

才能学好立体几何。

1.识图与画图在开始学习立体几何时,要让学生特别注意空间图形在平面内的画法,切不可把虚线再当作平面图形中的辅助线,要把平面图形中的角、线段与空间实例相对照。

2.亲自动手,制作模型在解决有些问题时,可以把一些元素用实物来表示。

对于一些折叠图形问题,学生不妨动手自己折一折,观察分析位置关系的变化,这样就容易看清元素间的位置关系。

三、培养学生空间想象的能力在立体几何教学中,空间想象能力是重要的数学能力之一,也是一种基本的数学能力。

它强调对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想象出直观的形象,立体几何承担着培养学生空间想象能力的独特功能。

1.教会学生看空间几何体立体几何的概念教学要从实例引入,对图形的观察、分析来抓住它们的本质特征,抽象出数学概念。

2.重视画图基本功的训练画出正确图形,是学生解决立体几何问题的前提和基础,画图基本功的训练,应贯穿在立体几何教学的全过程。

(1)教师利用教具、实物,让学生观察,分析抽象出概念后,然后画出相应概念的直观图。

(2)边说边画,让学生看到教师画图的过程,或者让学生在练习本上与教师同步绘制,那种把图形事先画在小黑板上的作法,在教学很长一段时间内是不宜使用的。

高中学生数学教学论文10篇【论文】

高中学生数学教学论文10篇【论文】

高中学生数学教学论文10篇第一篇:高中数学情境教学分析一、情境教学在高中数学教学中的应用1.设置问题情境提问是数学教学中必要的交流方式,也是教师了解学生掌握情况的必要手段。

因此,创造科学的设问情境,可以有效地激发学生的求知欲望,从而提高数学教学的质量。

由于数学本身具有较强的抽象性,因此,教师在设置问题情境的时候,要抓住重点,不要过于宽广,要源自生活,这样的设问情境能让学生较快理解,并且能抓住重点。

例如,教师在讲图形平移时,可以让学生做开窗的活动,然后设置问题情境,问学生刚才开窗时窗户的移动属于什么变化。

这样的问题可以提高学生的思考能力,会在潜意识里增强学生的求知欲,同时也可以增强学生的兴趣。

由此可见,设置问题情境对提高学生的积极性具有重要的意义,教师要不断联系生活实际,让学生不断体会到数学在生活中的应用,进而可以有效地提高学生学习数学的求知欲。

2.设置游戏情境游戏是学生都喜欢的活动,无疑能激发学生的兴趣,让学生积极主动参与进来,在高中数学教学中,教师可以适当地引进游戏来增强学生的兴趣,以便让他们主动投入到学习中来。

另外,安排课堂游戏还可以活跃课堂,让学生带着积极愉快的心情学习数学知识。

例如,教师在讲“数学概率问题”的时候,可以带一些形状相同、颜色不同的小球,让学生蒙住眼睛随机抓取,然后让学生分析抓球的概率。

通过数次的实验,可以加强学生的兴趣,提高学生的积极性,让学生在愉快的氛围中学习到有用的数学知识,并且愉快的氛围可以加深学生对知识的牢记程度,进而有效提升数学成绩。

因此,高中数学教师在进行数学教学时,要适当引进学生感兴趣的活动,以有效提升学生的兴趣,从而提高数学教学质量。

3.设置故事情境高中数学教学中,往往教师的教学形式单一,加上数学本身的枯燥,导致学生缺乏学习数学的兴趣,从而在课堂上很难集中注意力听教师讲课,这就难以提高学生的学习效率,因此,教师要从根本出发,设置能够吸引学生的讲课情境,才能有效提高学生学习数学的兴趣,才能从根本上解决学生注意力不集中的问题。

高中数学教学论文精选3篇

高中数学教学论文精选3篇

高中数学教学论文精选3篇高中数学教学论文篇一1教师应逐渐转变教学观念,提高自身素质能力要想使高中数学生活化,首先教师应树立生活化的教学观念,明确数学与实际的联系,在实际的基础上,把握数学教学的内容和方式,从而构建高效的数学课堂。

教师是教学的组织者,教师的观念和理论对于学生的影响是十分巨大的,因此,教师应努力提高自身的观念意识,使数学与生活密切结合,使数学知识来源于生活,又回归到生活当中。

在当前的数学教学中,教师应努力树立以学生为主体的数学课堂,充分发挥学生的主体作用,以学生的“学”为主,教师只是课堂的组织者和引导者。

生活化的数学教学中,教师要引导学生自主学习,表达自己的见解,说出自己的想法,促使学生逐渐提高数学学习的兴趣,使学生真正成为课堂的主人。

生活化的数学教学,需要在数学教学中结合具体的生活实例,这就要求教师要努力提高自身的知识素养,扩大自己的知识量,学习和阅读不同种类的书籍,丰富自己的知识文化内涵,认真观察生活中的事物,把生活中的现象、人物与数学教学相结合,为生活化的数学提供良好的基础。

在学习数列极限的概念时,教师可以根据生活实际创设这样的案例,如果一个人距墙壁为2米远,他向着墙壁,第一步走1米,第二步走12米,第三步走14米……以后每一步都是前一步的一半长度,问:这个人何时才能走到墙壁?由于这个问题具有真实性,学生又能够进行操作,学生很感兴趣,让学生进行实际的操作,在过程中体味乐趣,又可以轻松地理解数列极限这个概念。

2创设生活情境,激发学生的学习兴趣在传统的数学教学中,教师把自己作为课堂的主体,对学生进行知识的灌输,学生被动的接受知识,在课堂中没有时间和机会发表自己的见解,而且长期采用灌输式的教学模式会使学生课堂感到枯燥、沉闷,对数学教学逐渐失去兴趣,不利于数学课堂教学效果的实现。

生活化的数学课堂要求教师根据生活中的事例为学生创设一定的教学情景,使学生感受到数学来自于实际生活,与人们的生活密切相关,进而激发学生学习的兴趣,使学生积极、主动的参与到数学课堂中来,实现良好的教学效果。

高中数学论文800字三篇

高中数学论文800字三篇

高中数学论文800字三篇第一篇:论数学中的变换思想在解题中的应用摘要变换思想在高中数学解题中具有重要作用,本文通过具体例题分析,探讨了变换思想在函数、几何和代数等领域中的应用,旨在提高学生解决数学问题的能力。

关键词变换思想,解题方法,数学问题,高中教育1. 引言在高中数学教学中,变换思想是一种重要的解题方法。

通过对问题进行合理的变换,可以将复杂问题转化为简单问题,从而提高解题效率。

本文将从函数、几何和代数三个方面,分析变换思想在高中数学解题中的应用。

2. 变换思想在函数解题中的应用函数是高中数学的重要内容之一。

在解决函数问题时,变换思想可以有效地将问题简化。

例如,在求解函数的极值问题时,可以通过换元法将函数转化为简单的一次函数或二次函数,进而求解。

3. 变换思想在几何解题中的应用几何问题是高中数学中的另一个重要部分。

变换思想在几何解题中的应用也十分广泛。

例如,在解决几何证明问题时,可以通过添加辅助线、变换图形位置或形状等方式,将问题转化为已知几何定理或公式,从而简化问题。

4. 变换思想在代数解题中的应用代数问题是高中数学的另一个重要内容。

在解决代数问题时,变换思想同样可以发挥重要作用。

例如,在求解方程组时,可以通过变换方程组的形式,将其转化为已知解法形式的方程组,从而简化问题。

5. 结论变换思想在高中数学解题中具有重要作用。

通过运用变换思想,可以将复杂问题转化为简单问题,提高解题效率。

因此,在日常研究中,学生应加强对变换思想的研究和应用,提高自己的数学解题能力。

第二篇:论高中数学中的分类讨论思想在解题中的应用摘要分类讨论思想是高中数学解题中常用的一种方法。

本文通过对具体例题的分析,探讨了分类讨论思想在数列、函数、几何等领域的应用,以期提高学生解决数学问题的能力。

关键词分类讨论,解题方法,数学问题,高中教育1. 引言在高中数学教学中,分类讨论思想是一种重要的解题方法。

通过对问题进行合理的分类讨论,可以将复杂问题转化为简单问题,从而提高解题效率。

关于高中数学的教研论文

关于高中数学的教研论文

摘要:随着新课程改革的不断深入,高中数学教学面临着新的挑战和机遇。

本文通过对高中数学教学现状的分析,探讨了有效的教学策略,并结合实际教学案例,提出了具体实施措施,旨在提高高中数学教学质量,培养学生的数学素养。

关键词:高中数学;教学策略;实施;数学素养一、引言高中数学作为我国基础教育的重要组成部分,对于培养学生的逻辑思维能力、抽象思维能力以及解决问题的能力具有重要意义。

然而,在当前高中数学教学中,仍存在一些问题,如教学方式单一、学生参与度不高、教学效果不理想等。

因此,探讨有效的教学策略,提高高中数学教学质量,成为当前教育工作者面临的重要课题。

二、高中数学教学现状分析1. 教学方式单一在传统的高中数学教学中,教师往往采用“灌输式”的教学方法,过分强调知识的传授,忽视学生的主体地位,导致学生被动接受知识,缺乏主动探究的能力。

2. 学生参与度不高由于教学方式的单一,学生对于数学学习的兴趣不高,课堂参与度低,难以形成良好的学习氛围。

3. 教学效果不理想受限于教学方式和学生参与度,高中数学教学效果不理想,学生数学素养难以得到有效提升。

三、高中数学教学策略探讨1. 创设情境,激发兴趣教师在教学中应注重创设情境,将抽象的数学知识与学生实际生活相结合,激发学生的学习兴趣。

例如,在讲授“三角函数”时,可以结合音乐、舞蹈等艺术形式,让学生在轻松愉快的氛围中理解三角函数的概念。

2. 引导探究,培养能力教师在教学中应引导学生主动探究,培养学生的逻辑思维能力和抽象思维能力。

可以通过小组合作、问题探究等方式,让学生在解决问题的过程中,逐步形成自己的知识体系。

3. 注重实践,提高素养数学是一门实践性很强的学科,教师在教学中应注重培养学生的实践能力。

可以通过开展数学实验、数学建模等活动,让学生在实际操作中提高数学素养。

4. 激励评价,激发潜能教师在教学中应注重激励评价,关注学生的个体差异,激发学生的学习潜能。

可以通过设立不同的评价标准,鼓励学生发挥自己的特长,提高数学素养。

高中数学教学论文

高中数学教学论文

高中数学教学论文高中数学是一门重要的基础学科,对于学生的逻辑思维、分析问题和解决问题的能力培养起着关键作用。

在教学过程中,如何提高教学质量,使学生更好地掌握数学知识,是每一位高中数学教师需要深入思考的问题。

一、高中数学教学的现状当前,高中数学教学面临着一些挑战。

首先,数学知识的抽象性和逻辑性使得部分学生感到学习困难,缺乏学习兴趣。

其次,教学方法相对单一,部分教师仍然以传统的讲授式教学为主,缺乏与学生的互动和实践环节,难以激发学生的主动性和创新思维。

此外,教材内容的更新速度与实际应用的结合不够紧密,导致学生在学习过程中感到所学知识与现实生活脱节。

二、激发学生学习兴趣的重要性兴趣是最好的老师,在高中数学教学中,激发学生的学习兴趣至关重要。

当学生对数学产生兴趣时,他们会更加主动地投入学习,积极思考问题,勇于探索新知识。

这样不仅能够提高学习效果,还能培养学生的自主学习能力和创新精神。

为了激发学生的兴趣,教师可以从多个方面入手。

例如,在教学中引入数学史和数学故事,让学生了解数学的发展历程和数学家们的探索精神;通过实际生活中的数学问题,让学生感受到数学的实用性和趣味性;利用多媒体等教学手段,以生动形象的方式展示数学知识,吸引学生的注意力。

三、多样化的教学方法1、问题驱动教学法教师可以通过提出具有启发性的问题,引导学生思考和探索。

例如,在讲解函数的概念时,可以先提出一些与函数相关的实际问题,如气温随时间的变化、汽车行驶的路程与时间的关系等,让学生在解决问题的过程中理解函数的定义和性质。

2、小组合作学习法将学生分成小组,共同探讨问题、完成任务。

这样可以培养学生的团队合作精神和交流能力,同时也能让学生从不同的角度思考问题,拓宽思路。

3、探究式教学法给学生提供一些探究性的课题,让他们通过自主探究、实验和观察,得出结论。

这种方法能够培养学生的科学研究能力和创新思维。

四、注重培养学生的思维能力高中数学教学不仅要让学生掌握知识,更要注重培养学生的思维能力。

高中数学教学论文10篇完美版

高中数学教学论文10篇完美版

高中数学教学论文10篇完美版引言本文旨在探讨高中数学教学的相关问题,并提出一些可行的解决策略。

通过分析数学教学的现状和存在的问题,我们可以提供一些有助于改进教学效果的建议。

论文1:高中数学教学现状分析本文主要分析了当前高中数学教学的现状,包括教学内容、教材选择、教学方法等方面。

通过深入了解现状,可以为进一步改进数学教学提供一个基础和参考。

论文2:高中数学知识结构与能力培养这篇论文着重探讨了高中数学知识结构的重要性以及如何培养学生的数学能力。

通过合理的知识结构设计和培养方法,可以提高学生的数学能力和应用能力。

论文3:高中数学教学中的兴趣培养本文旨在讨论教师如何培养学生对数学的兴趣,从而提高他们的研究积极性和研究效果。

通过灵活多样的教学方法和兴趣引导,可以激发学生对数学的兴趣和热情。

论文4:高中数学教学中的问题解决能力培养这篇论文探讨了如何培养学生的问题解决能力,并提出一些实际操作方法。

通过培养学生的逻辑思维和解决问题的能力,可以提高他们的数学研究能力和应对能力。

论文5:高中数学教学中的差异化教学本文重点研究了如何进行差异化教学,满足不同学生的研究需求。

通过个性化教学,可以更好地帮助学生理解和掌握数学知识,提高整体教学效果。

论文6:高中数学教学中的评价方法研究这篇论文主要探讨了高中数学教学中的评价方法,并提出一些改进的建议。

通过科学合理的评价方法,可以更全面地了解学生的研究情况,从而及时调整教学策略。

论文7:高中数学教学中的信息技术应用本文讨论了高中数学教学中信息技术的应用,并分享了一些成功的案例。

通过合理利用信息技术,可以提高教学效率,增加教学趣味性,培养学生的信息素养和创新能力。

论文8:高中数学教学中的学科整合这篇论文着重讨论了高中数学教学与其他学科的整合问题。

通过与其他学科的融合,可以帮助学生更好地理解和应用数学知识,培养跨学科思维能力。

论文9:高中数学教学中的思维训练本文探讨了高中数学教学中的思维训练方法,并提供了一些实践案例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学论文论文近几年来,旨在教会学生会学习、提高学生自学能力的学法指导的研究和实践已是基础教育改革的一个热门课题。

这一课题的提出和研究,不仅对当前提高基础教育质量、实施素质教育具有现实意义,而且对培养未来社会发展所需要的人才、促进科教兴国具有历史意义。

随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。

不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。

因此,提高基础教育中的数学教学质量,就显得尤为重要。

可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。

在数学教学中,开展学法指导,正是改革数学教学的一个突破口。

一对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。

首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。

针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学习总结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。

诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。

但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。

可以说,这才是数学学法指导之内核和要害。

也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。

有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

二从数学的角度出发,就是要考察数学的特点。

关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。

比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。

因此,学习数学首当其冲的是要学习抽象。

而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。

比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。

根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。

比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。

在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。

事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。

探求数学问题的解法也就是寻找相应的证明或计算的具体方法。

从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。

又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。

应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。

也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。

根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

三从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。

关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。

通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。

由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。

所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。

因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。

在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。

无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。

②重视数学思想的挖掘和渗透。

由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。

常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。

③注重数学方法的明晰教学。

数学方法作为解决问题的手段,是建立数学知识结构的桥梁。

常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。

而这种学习机制主要就是对学习新知过程的监控和调节,即所谓的元学习。

实质上,能否会学,关键就在于这种学习是否建立起来。

于是,元学习的指导又成为数学方法指导的重要内容。

为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。

程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。

情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。

②尽可能让学生了解影响数学学习(数学认知)的各种因素。

比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。

这些学习材料和学习任务方面的因素,都对数学学习产生影响。

③要充分揭示数学思维的过程。

比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。

④帮助学生进行自我诊断,明确其自身数学学习的特征。

比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。

⑤指导学生对学习活动进行评价。

如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。

⑥帮助学生形成自我监控的意识。

如监控认知方向意识、认知过程意识和调节认知策略意识等等。

四根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。

相应地,数学学法指导的实施亦需分别落实到这5类教学之中。

这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

1.根据学生的学情安排例题。

如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。

因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。

在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。

所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。

所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。

所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

2.根据学习目标和任务精选例题。

例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。

为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。

具体的策略是:增、删、并。

这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。

这里的删,即指删去那些作用不大或者过时的例题。

所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

3.根据解题的心理过程设计例题教学程序。

按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。

这是针对解题过程本身而言的。

但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。

对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。

而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。

一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。

严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。

相关文档
最新文档