湍流的模拟

合集下载

SA湍流模型IDDES数值模拟方法

SA湍流模型IDDES数值模拟方法

纳维—斯托克斯方程:()()D 2grad div 2grad div D 3b p t ρρμμ=-+-F S v v 当流体为均质不可压,即ρ=为常数时,div v =0,再若μ也为常数,可写成2D grad D b p tρρμ=-+∇F vv 涡粘性模型涡粘性模型是通过引用湍流粘度(turbulent viscosity),将湍流应力表示成湍流粘度的函数。

湍流粘度是源于Boussinesq 提出的假设,该假设建立Reynolds 应力与平均速度梯度的关系,即23j i i i j t t j i i u u u u u k x x x ρμρμ⎛⎫∂⎛⎫∂∂''-=+-+ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭ i j u u ρ''-表示的Reynolds 应力,t ν为湍流粘度,i u 为时均速度,k 为湍流动能(turbulent kinetic energy):()2221=++22i i u u k u v w '''''=湍流粘度并不是物性参数,它取决于流动状态,1t v f νν=式中1v f 是粘性阻尼函数,31331=+v v f Cχχ (1v C 为常数)=v vχSpalart-Allmaras(SA)模型Spalart-Allmaras(SA)模型又称为单方程模型,只需求解一个修正的涡粘性输运方程。

在SA 模型中,输运变量为v ,在非近壁面区域(忽略粘性影响),输运变量v 等于湍流运动粘度。

()()()221i v b v i jj j u G C Y S t x x x x ννννρνρνμρνρσ⎧⎫⎡⎤⎛⎫∂∂∂∂∂⎪⎪+=+++-+ ⎪⎢⎥⎨⎬ ⎪∂∂∂∂∂⎢⎥⎪⎪⎣⎦⎝⎭⎩⎭上式是输运变量ν的输运方程,式中,v G 是湍流粘度的增加项, v Y 是湍流粘度的减少项,νσ与2b C 为常数,ν 为分子运动粘度,S ν为自定义源项。

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用常用湍流模型及其在FLUENT软件中的应用湍流是流体运动中不可避免的现象,它具有无规则、随机和混沌等特点,对于流体力学研究和工程应用具有重要影响。

为了更好地模拟流体运动中的湍流现象,并进行相关的工程计算和优化设计,科学家们提出了许多湍流模型。

本文将介绍一些常用的湍流模型,并探讨它们在流体动力学软件FLUENT中的应用。

1. 动力学湍流模型(k-ε模型)动力学湍流模型是最为经典和常用的湍流模型之一,主要通过求解湍流动能k和湍流耗散率ε来模拟湍流运动。

这一模型主要适用于较为简单的湍流流动,如外部流场和平稳湍流流动。

在FLUENT软件中,用户可以选择不同的k-ε模型进行计算,并对模型参数进行调整,以获得更准确的湍流模拟结果。

2. Reynolds应力传输方程模型(RSM模型)RSM模型是基于雷诺应力传输方程的湍流模型,它通过求解雷诺应力分量来描述湍流的速度脉动特性。

相比于动力学湍流模型,RSM模型适用于复杂的湍流流动,如边界层分离流动和不可压缩流动。

在FLUENT软件中,用户可以选择RSM模型,并对模型参数进行优化,以实现对湍流流动的更精确模拟。

3. 混合湍流模型混合湍流模型是将多个湍流模型相结合,以更好地模拟不同湍流流动。

常见的混合湍流模型有k-ε和k-ω模型的组合(k-ε/k-ω模型)和k-ε模型和RSM模型的组合(k-ε/RSM模型)等。

在FLUENT软件中,用户可以选择不同的混合模型,并根据具体的流动特征进行模型参数调整,以实现更准确的湍流模拟。

除了上述介绍的常用湍流模型外,FLUENT软件还提供了其他的湍流模型选择,如近壁函数模型(近壁k-ω模型、近壁k-ε模型)、湍流耗散模型(SD模型)、多场湍流模型(尺度能量模型)等。

这些模型针对不同的湍流现象和流动特性,提供了更加丰富和精确的模拟方法。

在FLUENT软件中,用户可以根据具体的工程问题和流动特性选择合适的湍流模型,并进行相应的设置和参数调整。

湍流模型 种类

湍流模型 种类

湍流模型的种类:
1. Spalatrt-Allmaras模型:一种一方程模型,通常用于粘性模拟,适用于无分离、可压/不可压流动问题,以及复杂几何的外部流动。

2. k-epsilon模型:广泛应用于粘性模拟,一般问题,适用于无分离、可压/不可压流动问题,复杂几何的外部流动。

有realizable k-epsilon,RNG k-epsilon等多种变体模型。

3. k-omega模型:广泛应用于粘性模拟,一般问题,适用于内部流动、射流、大曲率流、分离流。

4. transition k-kl-omega模型:应用于壁面约束流动和自由剪切流,可以应用于尾迹流、混合层流动和平板绕流、圆柱绕流、喷射流。

5. transition SST模型:在近壁区比标准k-w模型具有更好的精度和稳定性。

6. Scale Adaptive Simulation(SAS模型):用于分离区域,航天领域。

不稳定流动区域计算类似于LES,稳态区域计算类似于RANS。

7. Detached Eddy Simulation(DES模型):用于外部气动力,气动声学,壁面湍流。

拓展资料
湍流模型是微分方程类型,常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。

湍流模型介绍

湍流模型介绍

湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。

这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。

基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。

另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。

大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。

大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。

大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。

这些对涡旋的认识基础就导致了大涡模拟方法的产生。

Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。

大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。

LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。

应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。

湍流的几种数值模拟方法

湍流的几种数值模拟方法

LES特点
抓大不放小 非常有利,有力的工具 是最近,可预见未来流体 力学研究和应用的热点 近来又出现了VLES, DES等在LES上发展而 来的工具
Will RANS survive LES? Hanjalic自问自答
会。Journal of Fluids Engineering -V127, 5, pp. 831-839 (Will RANS
Prandtl(1925)混合长度模型
也被称作零方程模型 还在被广泛应用 廉价,易收敛 基本在流场比较简单,或者对计算结果 精度要求不高或者流场形状比较复杂的 行业中,比如暖通空调,流体机械等。
Prandtl混合长度模型 缺点
最明显的缺点是:当速度梯度 为零的 时候, 消失, 这与事实不符
Launder and Li(1994), Craft and Launder (1995)
目前有很多学者在继续此方面的工作
Brian E. Launder
本科Imperial College, London 硕博 MIT 实验流体力学 1964-1976 Imperial College 讲师
涡流粘度
Eddy viscosity or turbulent viscosity
二维流场分子粘性力
为描述雷诺应力,Boussinesq 1887 定义了与之相对应的
RANS模型的核心在于给出 的数 学表达式,要求精度高,适用范围广
涡流粘度,
Prandtl 1925 Prandtl 1945 Bradshaw 1968 Kolmogorov, 1942 Hanjalic 1970 Rotta 1951 Chou 1945 Davidov 1961

流体流动中的湍流特性分析与模拟

流体流动中的湍流特性分析与模拟

流体流动中的湍流特性分析与模拟流体流动是自然界中一种非常常见的现象。

它可以在空气中、水中,甚至在地球内部和宇宙的星际空间中发生。

在流体流动中,湍流是一种十分重要且复杂的现象。

本文将对湍流的特性进行分析和模拟,以深入理解这一现象。

湍流是一种一阶的动力学效应,其特点是流体粒子之间的速度和压力可以经常性的在时间上和空间上变化。

相比之下,层流是一种有序的流动,流体粒子在流动方向上的速度变化平缓且有序。

在湍流中,流体粒子的速度和压力变化时而迅疾时而缓慢,因而产生了非线性的速度与压力关系。

这也是湍流难以被精确描述且难以预测的原因之一。

湍流中的流体粒子会发生旋转和交错,使得湍流流动的速度低于平均流速。

这种速度的低下导致了湍流中流体的能量损失,同时也使得湍流中热传输和质量传输的效果变差。

另一方面,湍流中的旋转和交错也使得湍流具有较高的混合性,即使在较短的时间内,流体也能够充分混合。

这种混合性使得湍流在工程应用中有广泛的应用,比如在化工反应器中,湍流可以增强反应物质的混合度,提高反应效率。

湍流现象的理解和模拟在工程领域具有重要意义。

在过去,湍流研究主要依赖于实验观测。

然而,实验的成本高昂且受到实验条件的限制,难以对湍流进行全面的观测和分析。

随着计算机的发展和计算流体力学的成熟,数值模拟成为研究湍流的重要手段之一。

数值模拟可以通过求解流体运动的基本方程组来模拟湍流中流体粒子的运动。

这种方法不仅可以解决湍流的基本规律,还可以模拟湍流在不同参数下的特性,为工程设计提供重要参考。

湍流模拟的关键在于求解流体运动的基本方程组。

这些方程包括质量守恒方程、动量守恒方程和能量守恒方程等。

通过数值方法对这些方程组进行离散化和迭代求解,可以得到湍流中不同位置的流速、压力和温度等参数。

这些参数可以用来分析湍流的特性,比如湍流的速度分布、湍流的压力变化等。

然而,湍流模拟也具有一定的挑战性。

由于湍流是一种非线性的现象,湍流模拟通常需要非常精细的网格划分和高精度的数值方法。

湍流模型介绍

湍流模型介绍

湍流模型介绍
湍流模型是数学模型的一种,用于描述液体或气体中的湍流运动。

湍流是一种不规律的、难以预测的流体运动,通常是由于速度、密度或温度的不规则分布引起的。

湍流模型通过使用一系列方程,描述流体的速度、压力和密度等参数之间的相互作用,以预测和模拟流体的复杂运动行为。

湍流模型主要分为两类:基于雷诺平均的模型(如k-ε模型、k-ω模型)和直接数值模拟(DNS)。

每种模型都有其适用的范围和局限性,需要根据具体问题的特性选择合适的模型。

湍流模型在气象、水文、工程、航空航天等领域中得到了广泛应用。

湍流的理论与分析

湍流的理论与分析

湍流的理论与分析湍流是一种复杂的流动形式,并且广泛存在于自然界和工程实践中。

对湍流的理论研究和分析不仅有助于深入理解流体现象,还可以为湍流控制和能源利用等方面提供支持。

本文将从湍流的定义、产生机理、湍流统计理论和湍流模拟等方面进行探讨。

一、湍流的定义湍流是指一种相对瞬态的流体运动状态,其中流体的速度和方向发生剧烈变化,造成流体的混合和扰动,呈现出随机不规则的涡动结构。

与层流(稳态流动)相比,湍流的运动特征更加复杂,无法用简单的数学公式描述。

湍流的主要特征为不规则、随机、涡动等。

二、湍流的产生机理湍流的产生机理复杂,其中包括传统的机械湍流、自然湍流、边界层失稳等多种因素。

机械湍流是由于固体物体运动时与周围介质相互作用产生的湍流现象,如风力机翼片和涡轮机叶片的湍流。

自然湍流是由于自然界中各种复杂流动引起的,如河流、海洋和大气的运动等。

边界层失稳是当涡旋从高速的流动区进入低速的流动区时产生的,例如水流从管道进入膨胀段时发生的湍流现象。

三、湍流统计理论湍流统计理论是对湍流运动规律的理论分析,是研究湍流基本性质和湍流现象的一种方法。

湍流统计理论中有两个重要的概念,一个是湍流的集成时间,另一个是湍流脉动,这两个概念分别给出了湍流时间与空间扰动中的统计特征。

其中湍流的集成时间是指机械能向湍流能转化和湍流能转化为机械能时所需的时间因子,而脉动是指在一个给定点的流动路径上,流体参数波动的相对不稳定性。

四、湍流模拟湍流模拟是一种基于数值计算的湍流研究方法,主要有两种方式:直接数值模拟(DNS)和大涡模拟(LES)。

直接数值模拟是对湍流运动的一种高精度的数值计算方法,它通过离散化流动中的微小物理尺度,运用数值方法以求解流场运动方程,得到高精度的湍流场数据。

但DNS需要的计算量庞大,计算成本高昂。

大涡模拟是在保留湍流中大尺度涡旋信息的同时,模拟和模拟所得的速度与涡旋脉动能谱于实验结果的吻合程度。

而LES所需要的计算量较之DNS低,同时保留的流场尺度也比DNS更大,能够得到更加直观的湍流现象展示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湍流运动的构成: 大尺度的涡破裂后形成小尺度的涡,较小尺度的涡破裂 后形成更小的涡。大尺度的涡从主流获得能量,通过涡间的转化将能量 传给小尺度的涡。最后由于粘性的作用,小尺度的涡不断消失,机械能 就转化(即耗散)为流体的热能。同是,由于边界的作用,扰动及速度梯 度的影响,新的涡又不断产生。
湍流一个重要特点: 物理量脉动,非稳态N-S方程对湍流运动仍是适用的。
而在Re数比较低的区域,湍流发展不充分,湍流的脉 动影响可能不如分子粘性大,在贴近壁面的底层内, 流动可能处于层流状态。
必须采用特殊的处理,一般有二种解决方法, 1) 壁面函数法 2)低Re数的k- 模型。
壁面函数法的处理
壁面函数法的基本思想是: 对于湍流核心区的流动使用k-模型求解; 而在壁面区不进行求解,直接使用半经验公式将壁面上的
湍流数值模拟
主要内容
湍流认识及N-S 方程 传统湍流模型 湍流直接数值模拟 湍流模型在Fluent中的应用
第一部分 湍流认识及N-S 方程
湍流的认识
所谓湍流的确切定义尚难明确,认为它具有:
(1) 不规则性 只能用统计方法 (2) 扩散性 传递速度加快 (3) 具有明显的旋涡脉动 (尺寸大小:含能大、小, 脉动具有耗散性) (4) 是一种流动(是流体受约束转弱的自收运动状态)
前提: 流体微团做湍流脉动引起的动量交换机理可以与气体 分子运动引起的应力机理相类似。
湍流模型
零方程模型
单方程模型 双方程模型
Reynolds应力模型(RSM)
非线性 k 模型 多尺度 k 模型 RNG k 模型
代数应力模型(ASM)
FLT模型 SSG模型
零方程-- Boussinesq涡粘模型 (湍流粘性系数法)
仍需要定义混合长度L
单方程模型
在RL方程和连续性方程的基础上,再建立一个湍流动能方程 来使方程组封闭。
体现了湍流经历!
在混合长度理论中,湍流粘性系数仅与时均速度场有关,而 与湍流的特性参数无关,一方程模型改进了这一缺点。它引 入了湍流脉动动能的平方根,作为湍流脉动速度的代表。
单方程模型缺陷
单方程事实上并未完全使湍流运行微分方程组真正封闭,还需 要引用Prandtl混合长度的概念,但事实上l的数值很难确定。
l
为计算的封闭性,再引入耗散率的控制方程。这就是k-二 方程模型。
双方程模型
双方程k-湍流模型
系数的确定
近壁区的处理
以上模型均是针对湍流发展非常充分的湍流流动来建 立的,是针对高Re数的湍流计算模型,适用于离开壁 面一定距离的湍流区域。这里的Re数是以湍流脉动动 能的平方根作为速度(又称湍流Re数)计算的,是分子 扩散造成的动力粘性。
基于Boussinesq1887年的假设,它将湍流脉动所造成的 附加应力(Reynolds应力)同层流运动应力那样与时均的 应变率关联起来.
vi'
v
' j
T
(
vi x j
v j vi
)
T为湍流粘性系数,是标量且为常数;
这一假设并无物理基础,且采用各向同性的湍流动力粘 度来计算湍流应力,难于考虑旋转流动和表面曲率变化 的影响,但以此为基础的湍流模型目前在工程计算却应 用最为广泛。
湍流流场涡结构图
大尺度涡
小尺度涡
湍流旋涡结构包括大尺度涡和小尺度涡
流体控制方程组
Navier-Stokes 方程
第二部分 传统湍流模型
湍流流场数值模拟方法
传统模 式理论
大涡模拟
格子气
常用数值 模拟方法
直接 模拟
离散涡方法
传统模式理论
Reynolds平均法 在这类方程中,将非稳态N-S方程对时间作平均,
直接数值模拟 (DNS方法)
给出了时间平均的流动信 息,易于工程应用
抹去了流动的 瞬态特性及细观结构
介于RANS与DNS之间 亚网格湍流模型
无需湍流模型,能精确给 出湍流瞬态演变过程
数值求解方法和两相间 湍流多尺度耦合难度大
国内外均有许多研究 寻找更适合的RANS
湍流模型
国内外已有相关研究 寻找更合理的亚网格
零方程– Prandtal混合长度理论
• 1925年提出. 通过比较湍流扩散和分子扩散过程, 提出了 新参数lm的概念;
• 混合长度定义:
脉动微团在经历这段距离内保持有不变的脉动速度值。
表示:微流微团的作用范围。
T
lm2
d vx dy
• 湍流应力和局部平均速度梯度的联系是通过混合长度和 湍流黏度建立的是一个局部平衡的概念。
• 湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 • 湍流中流体的各个物理参数,如速度、压力、温度等都随时 间与空间发生随机变化。
湍流的认识
从物理机理上说: 可以把湍流看成是各种不同尺度的涡旋叠合而成的,这 些涡的大小及旋转方向分布是随机的。 大尺度的涡旋主要由流动的边界条件所决定,其尺寸可与流场的大小 相比拟,是引起低频脉动的原因; 小尺度的涡主要是由粘性力所决定的,其尺寸可能只有流场尺度的千 分之一,是引发高频脉动的原因。
湍流模型
单相流动国内外已有研究
高雷诺数湍流直接数 值模拟少见报道
湍流模式理论局限性
▪ 对经验数据的依赖性;
▪ 将脉动运动的全部细节一律抹平从 而丢失大量重要信息;
▪ 目前各种模型,都只能适用于解决 一种或者几种特定的湍流运动。
时间平均方程
雷诺应力!
湍流模式理论简介
湍流模式理论以Reynolds时均运动方程 和脉动运动方程为基础,依靠理论与经 验的接合,引进一系列模型假设,从而 核心区内的求解变量联系起来。它需要把第 一个节点布置在对数律层,对第一个节点的值由公式确定。 不需要对壁面内的流动进行求解,可直接得到与壁面相邻 控制体积的节点变量。各种改进的壁面函数法越来越准确 的模拟壁面的相关特性。
湍流脉动的长度标尺,一般不等于混合长度。为了计算需要 引入它的控制方程。在一方程模型中,湍流长度标尺是由经 验公式给出的,其实它也应是一个变量,需要通过微分方程 计算。
即: 增加一个方程:K与L的组合量。
双方程模型
引入一个耗散率的概念,表示各向同性的小尺度涡的机 械能转化为热能的速率。
k3/2
即把湍流运动看成二个流动的叠加: 时间平均流动 瞬时脉动流动。
所得的时均的N-S方程中包含了脉动量乘积的时 均值等未知量,称为Reynolds应力,它包括了六 个未知量。显然方程的个数小于未知量的个数。 要让方程封闭,必须作出假设。
模型评价
湍流模型方法 (RANS方法)
大涡模拟方法 (LES方法)
相关文档
最新文档