柔性直流输电工程用直流支撑电容器的开发探讨
低压直流供电与柔性直流输电及超高压直流输电的探讨

低压直流供电与柔性直流输电及超高压直流输电的探讨摘要:目前直流电在我国电力系统应用有低压直流、柔性直流输电和超高压直流输电。
低压直流主要用于发电厂和变电站的二次回路中,柔性直流输电正应用于智能电网,而超高压直流用于远距离电能输送或系统联网。
低压直流也广泛应用于电子计算机电路中。
关键词:低压直流供电;柔性直流输电;超高压直流输电前言通过对直流电路重要性的了解;低压直流在电子等各行各业的应用;直流在电力系统中的二次回路中的应用、在柔性直流输电的应用以及在超高压特高压直流输电的应用的分析,提出直流电基础学习的重要性。
一、低压直流在电子领域的应用直流广泛用于电子电路、计算机等电路。
电子电路、通信电路、计算机电路等所用直流一般是几伏或几十伏。
如直流在晶体管放大电路中它主要作为集电极和基极的工作电源。
机床控制电路也广泛应用直流。
二、直流在电力系统中的应用2.1直流在二次回路中的应用传统的电力系统继电保护、控制回路、信号回路等二次回路中,广泛应用着直流电,它们所用直流电源电压一般是220V。
随着电力系统自动化水平的提高,在微机保护装置和微机自动装置电路中所用直流电压一般是几毫伏、几伏或几十伏电压。
低压直流还作为厂站应急电源。
2.2在柔性直流输电的应用“柔性”直流输电是采用先进的大功率电力电子器件组成的电压源换流器(VSC),其换流器采用IGBT绝缘栅双极型晶体管,它可以依据电网需要,灵活快捷地改变电能输送的大小和方向,并提供更优质的电能质量。
多端柔性直流输电系统模块化多电平(MMC)技术,可灵活接入多个站点的风能、太阳能、地热能、小水电等清洁能源,通过一个大容量、长距离的电力传输通道,到达多个城市的负荷中心。
这为新能源并网、大型城市供电以及孤岛供电等场合提供了一种有效的解决方案。
我国是从2006年开始研究,2011年上海南汇柔性直流输电工程投运,其电压±30kV,输出电流300A,输出功率18MVA。
柔性直流供电

柔性直流输电适合应用的领域
一、岛屿供电和海上平台供电。以往此类供电通常 采用昂贵的本地发电系统,比如柴油机。但使用 柔性直流输电系统可以直接从大陆上直接输电, 不仅更加便利、便宜,而且没有环境污染。同时 一些偏远地区的发电系统也可以回馈电网。
二、电力系统的互连。当两个独立的电力系统互连, 柔性直流输电的好处能够得到最大的体现,特别 是对于异步的电力系统。这是由于柔性直流输电 系统可以同时控制互连的两个电力系统的无功功 率和电压。
(2)基于晶闸管的直流输电受端网络必须有足够的容 量,即必须有足够的短路比(SCR—Short Circuit Radio),受端网络较弱时容易发生换相失败,这 时会造成几个周期内没有电力传送的状况:对于 向无源网络(或孤立负荷)供电,基于晶闸管的 HVDC技术因无法换相更是无法完成。
针对这些缺陷,同时伴随大功率可自关断器件的 发展,一种全新的高压直流输电方式一一柔性直 流输电开始高速发展开始高速发展。
直流输电特点有何特点
直流线路电流和功率调节迅速、方便,短路电流 较小;在导线几何尺寸和电压有效值相等的条件 下,电晕无线电干扰较小;线路在稳态运行时没 有电容电流,沿线电压分布平稳;每个极可以作 为一个独立回路运行,健全极仍可传送一部分功 率。基于这些优势,高压直流输电(HVDC-High Voltage Direct Current)技术得以大力发展。
交流输电局限性
由于集肤效应、电晕效应以及各自本身结构,当 输电距离超过一定距离(400’700KM),交流输电 成本高于直流输电;交流线路输送功率决定于线 路两端电压相量的相位差,这个相位差随输送距 离增大而增大;交流线路电压控制复杂为了克服 线路电容充电和系统稳定性方面的问题,交流输 电需要进行补偿,直流输电不需要;交流输电无 法实现非同步联网;交流输电中的零序电流在稳 态下是不能容许的,因为大地阻抗很高,不但能 影响电能输送的效率,还会产生电话干扰。
(完整版)柔性直流输电技术

柔性直流输电与常规直流比较
高压直流输电(LCC-HVDC)
柔性直流输电(VSC-HVDC)
晶闸管
相位角控制
晶闸管通过脉冲信号控 制开通,但不能控制关断 ,电网换相。当承受电压 反向时,自动关断。
开关频率50/60 Hz
IGBT或其他可关断功 率器件
脉宽调节控制
可关断器件,可以通 过控制信号关断,完全 可控,自换相。
DC
技术内容
关注点
14
功率器件的开通和关断过程
门极控制电压 导通电流
• 导通和关断由门极信号控制 • 导通和关断过程快速,但非
理想 • 导通和关断存在尖峰电流和
电压
集电极和发射 极电压
实际关断和导通波形
15
功率器件的发展
半控器件
• 开通可控 • 关断不可控
全控器件
• 开通可控 • 关断可控
IGBT/IEGT
GTO和IGCT
GTO
IGCT
集成门极
缓冲层 透明阳极 逆导技术
• 最早的全控器件 • 开关频率低,已很少使用
• 上海50MVAr STATCOM
采用IGCT
19
• 目前只有ABB公司供应
IGBT IGBT和PP IGBT(IEGTP)P IGBT(IEGT)
电子注入增强 低导通电压降 宽安全工作区
• 模块塑封 • 应用最广的全控器件 • 三菱、英飞凌、日立、
ABB等多个供应商
• 压接式封装,双面散热
• 失效后处于短路状态
• 主要供应商有东芝、ABB和
Westcode
20
模块式封装(PMI) 功率器件封装模式
技术成熟 安装工艺简单 器件制造商多 损坏时可能发生爆炸 串联不易实现 器件容量相对较小
柔性直流输电技术在输电领域的应用分析

柔性直流输电技术在输电领域的应用分析华北电力大学,李欣蔚摘要:柔性直流输电作为新一代直流输电技术,在世界范围内已经得到广泛发展和应用,并逐渐走向成熟。
为了更进一步了解柔性直流输电技术,并且为其发展做出突破性的贡献,本文对柔性直流输电技术在输电领域的应用进行了概括性分析。
通过对目前柔性直流输电技术在输电领域的应用状况,进行较为详细的分析,找到该技术存在的可能的突破点,使其更有利于电力系统的发展。
本文首先简要介绍了柔性直流输电的基本原理及其特点,具体说明了对于柔性直流输电技术可独立控制有功无功功率、谐波含量少等不同优点,在输电领域的各种应用情况,分别为连接小规模发电厂到电网、替代传统直流的大规模送电和交直流联网、异步联网、优化电能质量和向远方孤立负荷供电。
介绍了国内外柔性直流输电工程在输电领域的成功案例,如丹麦Tjaereborg发电工程和上海南汇柔性直流输电示范工程,分析这些工程在输电领域做出的突破性贡献。
最后总结概括分析了我国的柔性直流输电技术在输电领域可能的发展方面,说明了以柔性直流输电为主的智能输电网络的可能性。
所以,目前柔性直流输电工程在中国的发展方向可以包括,建立广域的智能输电网络和长距离架空线输电两大方面。
关键词:柔性直流输电可再生能源异步联网优化电能质量智能输电网络1引言当前,新型的、清洁的、可再生的能源发电已成为电力系统未来的发展方向,国家将大力推进利用风能、太阳能等方式进行发电,但由于其主要特点之一是分散化与小型化,地理条件与发电规模的制约使得传统的交流输电技术不能很好地解决与电网连接经济性的问题。
同时,对于采用柴油发电机供电的钻探平台、岛屿、矿区等远距离负荷,应用交流输电技术供电也同样存在经济性差、环保压力大的问题。
随着用电负荷的不断增加要求电网规模与传输容量保持持续发展,然而增加输电走廊面临经济与环保的限制,这种问题在城市的负荷中心更加突出[1]。
为此,柔性直流输电技术可以说是一种较为经济、灵活、高质量的输电方式用以解决以上问题。
浅析柔性直流输电技术特点、应用及挑战

浅析柔性直流输电技术特点、应用及挑战摘要:柔性直流输电在国家能源结构调整、区域能源互联发展中具有重要的作用,是一种具有广泛应用前景的先进输电技术。
本文分析了柔性直流输电技术的特点及发展现状,总结了柔性直流输电技术的使用范围,简要介绍了厦门柔性直流工程的技术特点,并对柔性直流发电技能发展前景及挑战进行了展望分析。
关键词:柔性直流;技术特点;应用前景引言McGill大学的Boon-TeckOoi等专家在1990年初次提出依据电压源换流器(VSC)的直流输电概念,标志着第三代直流输电技能的诞生。
其技能创新点在于选用大功率绝缘栅双极型晶体管(IGBT)构成的换流器,经过使用脉宽调制技能(PWM),可完成有功功率和无功功率的独立控制,有利于提高系统稳定性、增加动态无功容量、改进电能质量,在新能源并网、孤岛供电、异步电网互联、城市电网供电等方面具有广阔的使用前景。
国际权威电力学术组织将其学术名称定义为“VSC-HVDC”,即“基于电压源换流器的高压直流输电”。
我国为了简化、形象地描述此技术,将该技术简称为“柔性直流输电(HVDC Flexible)”,以区别于采用晶闸管的常规直流输电技术。
1柔性直流技术的发展历程前期由ABB公司建造投产的换流器拓扑主要为两电平VSC以及二极管钳位型三电平VSC。
两电平及三电平换流器电路构造简单、所需电子器材电容器数量少,但因为输出电平数少,须选用高频PWM调制,对开关器材的一致性和均压性要求较高,而且损耗较大,变成制约VSC-HVDC发展的首要问题。
2001年,德国慕尼黑联邦国防军大学R.Marquart和A.Lesnicar提出了模块化多电平换流器(MMC)的拓扑构造。
MMC经过子模块(SM)级联而成,选用阶梯波的方法逼近正弦波,使得IGBT的开关频率从lkHz以上下降至100~300Hz左右,具有损耗低、输出波形质量高、制作难度下降、故障处理能力强的特点,极大地提升了柔性直流输电工程的运转效益。
柔性直流输电

柔性直流输电一、概述一柔性直流输电的定义高压直流HVDC输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破;第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前;第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间;通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论;因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“LineCommutatedConverter”,缩写是“LCC”;这里必须明确一个概念,有人将电流源换流器CSC与电网换相换流器LCC混淆起来,这是不对的;LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC 目前也是业界研究的一个热点;1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-TeckOoi等提出;在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验3MW,±10kV,标志着第三代直流输电技术的诞生;这种以可关断器件和脉冲宽度调制PWM技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议CIGRE和美国电气和电子工程师协会IEEE,将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”;2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电第三代直流输电技术统一命名为“柔性直流输电”;二柔性直流与传统直流的优缺点对比不管是两电平、三电平或MMC换流器,由于都属于电压源换流器,其基波频率下的外特性是完全一致的;柔性直流系统外特性公式如下VSC与LCC相比,具有的根本性优势是多了一个控制自由度;LCC因为所用的器件是晶闸管,晶闸管只能控制导通而不能控制关断,因此LCC的控制自由度只有1个,就是触发角α,这样LCC实际上只能控制直流电压的大小;而VSC因为所用的器件是双向可控的,既可以控制导通,也可以控制关断,因而VSC有2个控制自由度,反映在输出电压的基波相量Uvsc上,就表现为Uvsc的幅值和相位都是可控的;因此从交流系统的角度看,VSC可以等效成一个无转动惯量的电动机或发电机,几乎可以瞬时地在PQ平面的4个象限内实现有功功率和无功功率的独立控制,这就是电压源换流器的基本特性;而柔性直流输电系统的卓越性能在很大程度上就依赖于电压源换流器的基本特性;1、可以归纳出柔性直流输电相对于传统直流输电的技术优势如下:1没有无功补偿问题:传统直流输电由于存在换流器的触发延时角α一般为10-15度和关断角γ一般为15度或更大以及波形的非正弦,需要吸收大量的无功功率,其数值约为换流站所通过的直流功率的40%-60%;因而需要大量的无功功率补偿及滤波设备,而且在甩负荷时会出现无功功率过剩,容易导致过电压;而柔性直流输电的VSC不仅不需要交流侧提供无功功率,而且本身能够起到静止同步补偿器的作用,可以动态补偿交流系统无功功率,稳定交流母线电压;这意味着交流系统故障时,如果VSC容量允许,那么柔性直流输电系统既可向交流系统提供有功功率的紧急支援,还可向交流系统提供无功功率的紧急支援,从而既能提高所连接系统的功角稳定性,还能提高所连接的电压稳定性;2没有换相失败问题:传统直流输电受端换流器逆变器在受端交流系统发生故障时,很容易发生换相失败,导致输送功率中断;通常只要逆变站交流母线电压因交流系统故障导致瞬间跌落10%以上幅度,就会引起逆变器换相失败,而在换相失败恢复前,传统直流系统无法输送功率;而柔性直流输电的VSC采用的是可关断器件,不存在换相失败问题,即使受端交流系统发生严重故障,只要换流站交流母线仍然有电压,就能输送一定的功率,其大小取决于VSC的电流容量;3可以为无源系统供电:传统直流输电需要交流电网提供换相电流,这个电流实际上是相间短路电流,因此要保证换相的可靠性,受端交流系统必须具有足够的容量,即必须有足够的短路比SCR,当受端交流电网比较弱时便容易发生换相失败;而柔性直流输电的VSC能够自换相,可以工作在无源逆变方式,不需要外加的换相电压,受端系统可以是无源网络,克服了传统直流输电受端必须是有源网络的根本缺陷,使利用直流输电为孤立负荷送电成为可能;4可同时独立调节有功和无功功率:传统直流输电的换流器只有1个控制自由度,不能同时独立调节有功功率和无功功率;而柔性直流输电的VSC具有2个控制自由度,可以同时独立调节有功功率和无功功率;5谐波水平低:传统直流输电的换流器会产生特征谐波和非特征谐波,必须配置相当容量的交流侧滤波器和直流侧滤波器才能满足将谐波限定在换流站内的要求;柔性直流输电的两电平或三电平VSC,采用PWM技术,开关频率相对较高,谐波落在较高的频段,可以采用较小容量的滤波器解决谐波问题;对于采用MMC的柔性直流输电系统,通常电平数较高,不需要采用滤波器已能满足谐波要求;6适合构成多端直流系统:传统直流输电电流只能单向流动,潮流反转时,电压极性反转而电流方向不动;因此在构成并联型多端直流系统时,单端潮流难以反转,控制很不灵活;而柔性直流输电的VSC电流可以双向流动,直流电压极性不能改变;因此构成并联型多端直流系统时,在保持多端直流系统电压恒定的前提下,通过改变单端电流的方向,单端潮流可以在正、反两个方向上调节,更能体现出多端直流系统的优势;7占地面积小:柔性直流输电换流站没有大量的无功补偿和滤波装置,交流场设备很少,因此比传统直流输电占地面积少得多;2、当然,柔性直流输电相对于传统直流输电也存在不足,主要表现在如下几个方面:1损耗较大:传统直流输电的单站损耗已低于0.8%,两电平和三电平VSC的单站损耗在2%左右,MMC的单站损耗可以低于1.5%;柔性直流输电损耗下降的前景包括两个方面:①现有技术的进一步提高;②采用新的可关断器件;柔性直流输电单站损耗降低到1%以下是可以预期的;2设备成本较高:就目前的技术水平,柔性直流输电单位容量的设备投资成本高于传统直流输电;同样,柔性直流输电的设备投资成本降低到与传统直流输电相当也是可以预期的;3容量相对较小:由于目前可关断器件的电压、电流额定值都比晶闸管低,如不采用多个可关断器件并联,VSC的电流额定值就比LCC的低,因此VSC基本单元单个两电平或三电平换流器或单个MMC的容量比LLC基本单元单个6脉动换流器的容量低;;目前已投运或正在建设的柔性直流输电工程的最大容量在1000MW左右,与传统直流输电的6000MW以上还存在一定的距离;但是,如果采用VSC基本单元的串、并联组合技术,柔性直流输电达到传统直流输电的容量水平是没有问题的,技术上并不存在根本性的困难;可以预见,在不远的将来,柔性直流输电也会采用特高压电压等级,其输送容量会与传统特高压直流输电相当;4不太适合长距离架空线路输电:目前柔性直流输电采用的两电平和三电平VSC或多电平MMC,在直流侧发生短路时,即使IGBT全部关断,换流站通过与IGBT反并联的二极管,仍然会向故障点馈入电流,从而无法像传统直流输电那样通过换流器自身的控制来清除直流侧的故障;所以,目前的柔性直流输电技术在直流侧发生故障时,清除故障的手段是跳换流站交流侧开关;这样,故障清除和直流系统再恢复的时间就比较长;当直流线路采用电缆时,由于电缆故障率低,且如果发生故障,通常是永久性故障,本来就应该停电,因此跳交流侧开关并不影响整个系统的可用率;针对此缺陷,目前柔性直流输电技术的一个重要研究方向就是开发具有直流侧故障自清除能力的VSC;三柔性直流输电应用领域及目前工程列表1、应用领域柔性直流输电目前主要的应用领域有异步电网互联、小型发电厂/新能源/分布式能源并网、偏远山区/海上供输电、城市输配电、电能质量改善等方面2、柔直工程列表二、柔性直流输电的分类与结构组成(一)柔性直流输电的分类及优缺点对比已有柔性直流输电工程采用的VSC主要有三种,即两电平换流器、二极管箝位型三电平换流器和模块化多电平换流器MMC,模块化多电平换流器在各种特性上都比较优越,所以模块化多电平为现在普遍应用的技术;两电平换流器的拓扑结构最简单,如图2.1所示;他有六个桥臂,每个桥臂由绝缘栅双极晶体管IGBT和与之反并联的二极管组成;在高压大功率的情况下,为提高换流器容量和系统的电压等级,每个桥臂由多个IGBT及其相并联的二极管相互串联来获得,其串联的个数由换流器的额定功率、电压等级和电力电子开关器件的通流能力与耐压强度决定;相对于接地点,两电平换流器每相可输出两个电平,显然两电平换流器需通过PWM逼近正弦波;二极管箝位性三电平换流器如图2.3所示;三相换流器通常公用直流电容器;三电平换流器每相可以输出三个电平,也是通过PWM逼近正弦波的;模块化多电平换流器MMC的桥臂不是由多个开关器件直接串联构成的,而是采用了子模块Sub-Module,SM级联的方式;MMC的每个桥臂由N个子模块和一个串联电抗器Lo组成,同相的上下两个桥臂构成一个相单元,如图2.5所示;MMC的子模块一般采用半个H桥结构,如图2.6所示;其中,uc为子模块电容电压,usm和ism分别为单个子模块的输出电压和电流;MMC的单相输出电压波形如图2.7所示;可见,MMC 的工作原理与两电平和三电平换流器不同,它不是采用PWM来逼近正弦波,而是采用阶梯波的方式来逼近正弦波;1、相对于两电平和三电平换流器拓扑结构,MMC拓扑结构具有以下几个明显优势:(1)制造难度下降:不需要采用基于IGBT直接串联而构成的阀,这种阀在制造上有相当的难度,只有离散性非常小的IGBT才能满足静态和动态均压的要求,一般市售的IGBT是难以满足要求的;因而MMC拓扑结构大大降低了制造商进入柔性直流输电领域的技术门槛;(2)损耗成倍下降:MMC拓扑结构大大降低了IGBT的开关频率,从而使换流器的损耗成倍下降;因为MMC拓扑结构采用阶梯波逼近正弦波的调制方式,理想情况下,一个工频周期内开关器件只要开关2次,考虑了电容电压平衡控制和其他控制因素后,开关器件的开关频率通常不超过150Hz,这与两电平和三电平换流器拓扑结构开关器件的开关频率在1kHz以上形成了鲜明的对比;(3)阶跃电压降低:由于MMC所产生的电压阶梯波的每个阶梯都不大,MMC桥臂上的阶跃电压和阶跃电流都比较小,从而使得开关器件承受的应力大为降低,同时也使产生的高频辐射大为降低,容易满足电磁兼容指标的要求;(4)波形质量高:由于MMC通常电平数很多,所输出的电压阶梯波已非常接近于正弦波,波形质量高,各次谐波含有率和总谐波畸变率已能满足相关标准的要求,不需要安装交流滤波器;(5)故障处理能力强:由于MMC的子模块冗余特性,使得故障的子模块可由冗余的子模块替换,并且替换过程不需要停电,提高了换流器的可靠性;另外,MMC的直流侧没有高压电容器组,并且桥臂上的Lo与分布式的储能电容器相串联,从而可以直接限制内部故障或外部故障下的故障电流上升率,使故障的清除更加容易;2、当然,MMC拓扑结构与两电平或三电平换流器拓扑结构相比,也有不足的地方:1所有器件数量多:对于同样的直流电压,MMC采用的开关器件数量较大,约为两电平换流器拓扑结构的2倍;2MMC虽然避免了两电平和三电平换流器拓扑结构必须采用IGBT直接串联阀的困难,但却将技术难度转移到了控制方面,主要包括子模块电容电压的均衡控制以及各桥臂之间的环流控制;(二)MMC的工作原理MMC子模块具有如下三种工作模式表中对于表2.1进行分析可得表2.2,表中对于T1、T2、D1和D2,开关状态1对应导通,0对应关断;从表2.2可以看出,对应每一个模式,T1、T2、D1和D2中有且仅有1个管子处于导通状态;因此可以认为,SM进入稳态模式后,有且仅有1个管子处于导通状态,其余3个管子都处于关断状态;另一方面,若将T1与D1、T2与D2分别集中起来作为开关S1和S2看待,那么对应投入状态,S1是导通的,电流可以双向流动,而S2是断开的;对应切除状态,S2是导通的,电流可以双向流动,而S1是断开的;而对应闭锁状态,S1和S2中哪个导通、哪个断开是不确定的;根据上述分析可以得出结论,只要对每个SM上下两个IGBT的开关状态进行控制,就可以实现投入或者切除该SM;(三)柔性直流换流器系统的构成1、柔性直流系统结构柔性直流按照接线方式可分为真双极系统和伪双极系统;舟山五端柔直工程采用伪双极主接线结构,该主接线结构包括换流器区和极区,无双极区;厦门柔直工程为世界上第一个真双极MMC柔性直流工程,直流主接线结构包括换流器区、极区和双极区;2、柔性直流系统主要设备如图2.13,可以看到柔性直流系统主要设备有换流阀、阀电抗器、联接变压器、启动电阻、交流接地装置、直流电缆、避雷器、控制保护系统、辅助系统水冷、空调等1联结变压器:在交流系统和电压源换流站间提供换流电抗的作用;进行交流电压变换,使电压源换流站获得理想的工作电压范围;阻止零序电流在交流系统和换流站间流动;2启动电阻系统启动之前,MMC各功率模块电压为零,换流阀中电子元器件处于关断状态;限制功率模块电容的充电电流,减少柔性直流系统上电时对交流系统造成的扰动和防止换流器阀上二极管的过流;串联安装于联接变压器阀侧或交流系统侧;启动电阻仅在系统启动时工作,启动结束后由旁路开关将启动电阻旁路;启动电阻应满足不同的启动要求,包括一端交流电源对本端换流器功率模块电容充电和一端交流电源对两端换流器功率模块电容同时充电;电阻应具有足够的短时电流耐受能力;电阻应具有足够的能量耐受能力;满足开始充电至换流器解锁的时间要求包括交流侧充电和直流侧充电;3阀电抗器桥臂电抗器是电压源换流阀与交流系统之间传输功率的纽带主要功能:抑制换流阀输出电流、电压中的谐波分量;系统发生扰动或短路时,抑制电流上升率和限制短路电流峰值;抑制桥臂环流;阀电抗器可采用空心电抗器,每个换流器配置6个;4避雷器柔性直流输电系统采用无间隙金属氧化物避雷器MOA作为过电压保护的关键设备,它对过电压进行限制,对设备提供保护;综合考虑系统最大持续运行电压、荷电率、保护水平和能量要求等因素,选择避雷器参数;5测量设备电子式电压互感器和电子式电流互感器柔直测量设备难点:速度要求高,延时要求高;为了避免短路故障电流造成IGBT器件损坏,对于阀控系统的过流保护动作的快速性有着苛刻的要求,要求采集桥臂电流的互感器信号传输延时小于100um.准确测量故障时电流上升过程,高采样速度、宽量程;6换流阀换流阀是柔性直流输电换流站中的核心设备,用于实现交\直和直\交变换;如图2.14所示半桥式MMC子模块的基本构成为:T1:上管IGBT;T2:下管IGBT;T3:晶闸管;R1:均压电阻;C1支撑电容;S1:旁路开关;半桥式MMC子模块核心元件及作用:IGBT作用:核心控制器件,通过控制其开通与关断,从而控制子模块输出电压电容作用:支撑和稳定子模块电压,提供电压源的核心元件均压电阻作用:1均衡子模块电压2停运检修时的泄放回路水冷板散热器作用:IGBT的水冷却高压取能电源作用:从电容取电,为子模块控制器提供控制电源;子模块控制器作用:接收阀控设备的控制信号,对子模块进行投入和切除操作、晶闸管触发操作、旁路开关合闸操作,同时向阀控反馈子模块运行状态、故障状态信息旁路开关作用:对故障子模块进行旁路操作,实现子模块的冗余控制晶闸管作用:对故障子模块进行旁路操作进行过流保护三、运行方式(一)舟山工程1、运行模式舟山工程为伪双极五端柔性直流输电工程,所以有五种运行方式,分别为二三四五端运行模式和STATCOM运行模式;2、启动步骤步骤1:换流器解锁前,合上交流进线开关,通过IGBT模块的反并联二极管对直流电容充电,初步建立直流电压;步骤2:工作在直流电压控制模式下的换流站先解锁,将直流电压上升至额定电压;步骤3:功率控制模式和交流电压模式下的换流站解锁,逐步建立功率;3、注意:1当工作在直流电压模式下的换流站闭锁时,需将原工作在功率控制模式换流站调整为直流电压模式,做为直流电网的平衡节点;2当工作在功率控制模式或交流电压模式下的换流站闭锁时,其余换流站可维持原控制模式不变;(二)厦门工程厦门柔性输电工程为真双极两端柔性输电工程,有如下四种运行方式;四、控制保护系统(一)控制系统柔性直流输电的控制系统分成三个层:系统监视与控制层、控制保护层、现场IO层;根据完成的功能与控制的目标,换流站控制保护可以分为系统级控制、换流站级控制、换流阀级控制、子模块级控制;系统级控制:确定柔性直流工程各个换流站的控制目标与相互配合关系;换流站级控制:确定站内的控制策略;换流阀级控制:产生换流阀基本模块的触发脉冲;换流器子模块级控制:该级控制的任务是接收换流器阀级控制产生的触发脉冲信号,根据触发脉冲信号,对子模块IGBT进行开通和关断控制;外环控制:外环控制包括交流电压控制、无功功率控制、直流电压控制、有功功率控制、频率控制内环控制:内环控制包括内环电流控制、PLL控制阀控功能:实现换流阀的控制、保护、监测;与上层控制保护系统以及换流阀的通信;实现子模块电容电压平衡功能以及环流控制等功能;控制功能统计表如下:1、运行方式控制2、控制模式转换3、启停控制4、多端协调5、交流场控制6、无功功率控制7、交流电压控制8、内环电流控制9、锁相同步控制10、桥臂环流控制11、直流场控制12、指令整定13、有功功率控制14、直流电压控制15、频率控制16、换流器限流控制17、换流器监视(二)保护系统如图4.2所示,保护分区主要分为:1交流线路保护、2交流母线保护、3换流变压器保护、4桥臂电抗器保护、5换流站保护、6直流母线保护、7直流线路保护、8子模块保护;保护功能统计如下:1、联结变保护2、阀保护1阀臂过流暂时性闭锁保护2阀臂过流永久性闭锁保护3子模块过压保护3、换流器保护1交流过流保护2桥臂过流保护3桥臂电抗差动保护4阀侧零序分量保护5阀差动保护6桥臂环流保护4、直流场保护1直流电压不平衡保护2直流欠压过流保护3直流低电压保护4直流过电压保护5直流母线差动保护6直流线路纵差保护5、交流保护1内母线保护2交流系统保护3接地装置保护。
浅析柔性直流输电工程发展

浅析柔性直流输电工程发展文章介绍了柔性直流输电工程国内外应用领域及应用现状,对柔性直流输电在相关工程技术领域、工程应用情况等进行了总结和分析,分析了柔性直流输电工程发展的前景,进而说明了其对未来电网模式发展是一种必然趋势。
标签:柔性直流输电;优势;工程应用1 概述柔性直流输电技术概念于20世纪80年代提出,特别是在伴随着包括电力电子技术、自动控制技术以及计算机微处理技术等多方面的发展,经过三十多年的发展进化,柔性直流输电技术在当前形势下,演变发展以来产生的诸多关键性问题逐渐得到一一解决,此技术(柔性直流输电技术)在HVDC以及HV AC系统中得到了越来越多的相关人员及专业的重视。
2 柔性直流输电相关技术介绍2.1 柔性直流输电工程中的换流器技术柔性直流输电的换流器根据换流器桥臂的等效特性,可分为:可控电源型和可控开关型两类。
可控电源型交流器其换流桥臂等效为可控电压源,其储能电容分散于各桥臂中,并且通过改变某桥臂的等效电压,就能间接改变交流侧输出的电压。
可控开关型换流器通过适当的脉宽调制技术控制桥臂的开通与关断,其换流桥臂可以等效为可控开关,从而将直流侧电压传递到交流侧。
无论是两电平还是半桥型模块化多电平换流器,于目前投入工程应用的换流器技术中,同时全桥式和钳位双子模块型模块化多电平换流器,均存有不可在直流故障下实现交直流系统隔离的问题。
在直流电压急剧降低时,仍然可以支撑交流电压,究其原因可以使桥臂等效输出电压为负值,从而实现抑制交流侧短路电流的目的。
2.2 柔性直流输电系统中的主接线设计电力系统中的变电站主接线设计是电力系统规划设计中的重中之重。
柔性直流输电换流站中采用两电平、三电平换流器,其站址一般采用在直流侧中性点接地的方式,原因在于电压等级过高,而我国交流电网110kV及以上的电力系统大多都采用中性点直接接地的方式。
与此同时采用模块化多电平的柔性直流输电系统则一般采用交流侧接地的方式,和国家电网公司设计规程吻合。
柔性直流输电技术:应用、进步与期望 付金琪

柔性直流输电技术:应用、进步与期望付金琪发表时间:2019-07-23T14:10:07.560Z 来源:《基层建设》2019年第13期作者:付金琪王帅[导读] 摘要:柔性直流输电技术总体来说比较灵活,且为能源再生、电网的高效利用提供便利的途径,而当前资源的发展讲究可持续,这代表着直流输电未来的主要发展方向是可持续,逐渐成为智能实现的关键技术之一。
国网冀北电力有限公司工程管理分公司北京市 100067摘要:柔性直流输电技术总体来说比较灵活,且为能源再生、电网的高效利用提供便利的途径,而当前资源的发展讲究可持续,这代表着直流输电未来的主要发展方向是可持续,逐渐成为智能实现的关键技术之一。
在这个的大环境中,本文在分析中以异步互联、风电场并网、海上平台供电、城市负荷中心供电为大环境的根本,以此为原点进行柔性直流输电技术应用、进步、期望的简要分析,笔者希望通过自己的分析为相关的发展提供建设性的建议,推动直流电网的充分发展。
关键词:柔性直流输电;应用;期望引言所谓的柔性直流输电,其实就是对脉宽调制技术电压源直流气的建立,这个概念首次出现是在加拿大,并在这之后出现电压源换流技术的直流输电工程,简称为赫尔斯杨试验。
由于电压源型换流器在使用中能进行有效的控制、谐波性能良好,因此在国内推广使用中被称之为柔性直流输电。
早期使用的直流输电一般是采用两电平、三电平的换流器结构,但在这个结构中IGBT器件的串联存在动态均压方面的难题,且低电平树木的电压源换流器谐波、损耗性都有较大的区别,这一方面为早期柔性直流输电系统的发展带去难题。
基于上述的问题,本文着重对柔性直流输电技术的应用进行分析,此外还分析了柔性直流输电技术的发展方向。
1我国柔性直流输电技术的发展状况具笔者的了解来看,我国最早出现的柔性直流输电技术应该是在20世纪初期,最初的应用是因为模块化多电平结构的运转离不开柔性直流换技术的支持,与国外的柔性直流输电技术相比而言,国内的发展速度更快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第38卷第3期:0095—0098 2017年6月 电力电容器与无功补偿
Power Capacitor&Reactive Power Compensation Vo1.38,No.3:0095—0098
Jun.2017
DOhlO.140440.1674-1757.pcrpc.2017.03.017
柔性直流输电工程用直流支撑电容器的开发探讨
李维维,高琪,芦锋 (西安西电电力电容器有限责任公司,陕西西安710082)
摘 要:文章介绍了一种用于柔性直流输电工程中的自愈式直流支撑电容器。主要从产品的设计 与制造方面进行详细论述.包含金属化聚丙烯薄膜材料的选取、元件和心子的设计以及产品结构设 计等。重点论述了该类电容器在研制及生产制造过程中存在的关键问题以及解决过程,并分析了样 机型式试验结果,样机各项试验参数均满足有关国标要求。本文可为自愈式直流支撑电容器产品设 计及制造提供参考。 关键词:柔性直流输电;直流支撑电容器;电力电子电容器;自愈式;金属化膜
Discussion on the Development of DC-link Capacitor for Flexible HVDC Transmission Project LI Weiwei,GAO Qi,LU Feng (Xi’an XD Power Capacitor Co.,Ltd.,Xi’an 710082,China) Abstract:In this paper,a kind of self-healing DC—link capacitor for the flexible HVDC transmission project is introduced.The detailed description is made mainly from such aspects as design and manuf- acture of the product,including selection of metallized polypropylene film material,design of components and core and design of the product structure etc.The key problem existed in the research and developm— ent as well as production period of the capacitor and solution process are mainly described,the type test result of the prototype is analyzed and each parameter of the prototype meets related international requ-irement.This paper can provide reference for the design and manufacture of the self-healing DC-link capacitor. Keywords:flexible HVDC transmission;DC-link capacitor;power electronic capacitor;self-healing;met- al】ized film
0引言 近几年来。国家大力发展柔性直流输电技术.该 技术具有谐波大为减弱、无功补偿容量减少、不会出 现换相失败故障等优点…。柔性直流输电是指基于 电压源换流器的高压直流输电技术(VSC—HVDC), 其主要特点是采用由全控电力电子器件构成的电 压源换流器(VSC),取代了以往直流输电中基于半 控型器件的电流源换流器(CSC) 。 直流支撑电容器,又称DC—Link电容器,具有 耐电压高、耐电流大、低电感、损耗小、温度性能好、 安全防爆稳定性好等优点.被广泛应用于电力电子 行业。文中提到的自愈式直流支撑电容器主要应用 于柔性直流输电中直流侧整流桥臂模块中.作为储 能元件,起到电压支撑、谐波滤波等作用。目前国内 收稿日期:2016—10.13 该类产品的中高端市场主要依靠进口,需求量在逐 年增加,其国产化进程不断加快。近2年,我公司已 成功研制出该直流支撑电容器样机(ZDMJ4.4—360) 并完成型式试验,各项指标优异。本文主要介绍该 电容器的相关设计以及制造过程中遇到问题及解 决办法,并通过国家检测机构进行了型式试验验证. 获取了认证报告。
1直流支撑电容器基本参数和主要性能指标 1.1基本参数 电容器型号为ZDMJ4.4—360;额定电压 为 4.4 kV(DC);纹波电压 为960 V(AC),100 Hz; 额定电容为360 IxF;电容值偏差为0一+5%;最大电 流,删为100 A;损耗角正切值tan8为≤0.000 8;储 存能量 为3 485 Ws。保护装置为过压力检测
・95 ・ 2017年第3期 电力电容器与无功补偿 第38卷 器:薄膜材料为金属化聚丙烯薄膜;结构为无磁不 锈钢充氮气干式结构。 l-2主要性能指标 1_2.1使用条件 户内安装使用;工作环境温度为一25 oC~+70 oC; 存储温度:一40 oC~+70℃;环境相对湿度≤95%。 1.2.2电气参数 端子与外壳间交流耐压为7 240 V(AC),10 S; 端子间直流耐压为6 600 V(DC),10 S。 2设计过程 2.1 设计思路 单俞电容器电压高。由于同类产品电压一般 都在2~3 kV左右.心子一般为全并联结构。目前国 内使用的进口产品额定电压很少超过4 kV,作者 设计时选用4.4 kV.主要是考虑到型式试验报告 中高电压可以覆盖同类型的低电压产品,也可以为 企业节省一些费用。在电容值一定的条件下,单台 电容器电压高,绝缘强度要求高、质量大、体积大、 使制造过程中可操作性降低。单台电压高,且为 全并结构。相对于外串结构来说,全并结构内阻和 内电感小.喷金层与薄膜的连接处线电流密度也 小.电容器整体损耗因数低。但是,全并结构的心子 承受全电压.单体电压高,要用到元件的内串结构 设计.这时要着重考虑金属化薄膜留边的选取、方 阻值以及布局,元件电容值的大小等。对此,我们采 取了相应的解决方案.采用均衡分布的内串金属 化膜结构,中等阶梯型方阻,最大限度地提高了 元件的自愈性能,为保证串联结构分压不均的情 形.单体元件储能不超过100 J ]。另外,为了适 应市场需求。提高比能,该电容器设计时采用金 属化聚丙烯薄膜卷绕的压扁型心子制造技术,通过 一些专用的工装设备,完成卷绕、喷金及心子的成型 工艺。 2.2金属化薄膜的选取 自愈式电容器设计的核心就是金属化薄膜材 料的设计,设计工作主要从金属化薄膜材质的选择、 金属化薄膜的宽度和厚度、内串数的选择、方阻值 和镀层的确定等几个方面进行研究:引。结合以前的 设计经验,考虑到该电容器的运行环境。我们在确 定材料的本身厚度和宽度的同时,对其方阻值和镀 层方式也进行了很大的调整.以使自愈性能进一步 提高…。另外,采用边缘加厚的梯形镀法,改善了镀 层厚度的变化对材料本身过电流能力和损耗角因 数的影响 。 ・96・ 2.3元件和心子的设计 该电容器采用压扁型电容器元件制造技术。为 适应市场需求.我们引进了专用的卷绕机以及喷金 机。通过对原材料以及压扁型元件进行大量的试验 验证.并结合我公司同类产品的实际运行经验,选择 了合适的工作场强。做到了压扁型电容器心子和以 往生产的圆柱型电容器心子的电气性能一致.并能 更好地在直流下工作,这样不仅节省了空间,而且 使系统在电气性能稳定的基础上,实现小型化、轻量 化。电容器心子通过铜片相互连接,并采用真空热聚 合工艺。 2.4产品结构 根据实际需求,该直流支撑电容器设计为不锈 钢外壳,双套管结构.表面抛光处理.如图1所示。电 容器心子是由金属化聚丙烯薄膜卷制而成的压扁 型电容器元件并联而成.通过专用焊接设备焊接。压 扁型电容器元件通过专用的卷绕设备在净化问内 压制而成,如图2所示。电容器内部引线选用铜片 结构,具有足够的截面积和机械强度,引线尽可能 短的与元件可靠连接并进行同定.一方面减少了同 有电感,另一方便避免了在使用过程中产生的电动 力的作用下,内部引线发生断裂和出现大的位移。
图1 ZDMJ 4.4—360外形 Fig.1 Appearance of ZDMJ 4.4——360
图2电容器元件 Fig.2 Capacitor elements
3关键问题及解决过程 本产品为不锈钢充氮气干式结构,元件采用金 属化膜卷绕并压扁.产品带有过压力检测器保护装 2017年第3期 李维维,等柔性直流输电工程用直流支撑电容器的开发探讨 (总第171期) 置。元件为全并联结构,采用紫铜板连接。在专有的 压扁型产品设计生产线上完成整个加工过程,关键 问题有以下几点。 3.1 压扁型元件的卷绕参数及喷金 元件的卷绕.采购能生产压扁元件的专用卷绕 机,通过调整不同的卷绕参数和压紧系数,对元件 进行了一系列的耐压试验、自愈性试验以及耐久性 试验等。并结合试验数据进行对比分析,掌握了卷 绕参数和压紧系数不同对元件电气性能产生的影 响。元件摆放、运输均在专用工装上,采用自行设计 的容量动态纠正软件,实时监测卷绕情况。使容量 控制偏差小,紧度、平整度均达到设计要求。因为是 压扁元件。为此专门引进了专用喷金机,并根据实 际操作情况改进了喷金工装E6],实现了通过不同工 位的喷枪移动来完成元件的喷金工艺。 3.2心子的加工及热聚合工艺 压扁型元件叠放在一起并联连接组成电容器 心子,进行真空热聚合工艺。采用真空热聚合工艺, 使电容器心子施加一定的压力[ ,在烘箱中抽真空 后,用氮气破空再进行加热,使心子热聚合 。电容 器心子通过专用的带弹簧结构的压紧工装设备进 行相应的压紧系数调整,确保电容值偏差的一致性。 还采用由电脑控制的阶段式升温烘箱进行温度控 制,使电容器元件实现了从常温加热到高温再降到 常温的过程,保证了每批产品有完全一致的曲线.避 免差异,使心子性能更加稳定。 3.3工装相互配合问题 压扁型心子制造技术,加工过程相对比较复杂, 大部分参数都是靠专用的工装来实现的。如何保证 这些工装相互配合问题也是一个难点。针对这一问 题,引用了专门的三维绘图软件,可以直观地看到 各工装配件的配合问题,并模拟实际的工作过程, 为设计提供依据。 另外,我们还专门进行了有限元分析法的计算, 对薄膜和心子的损耗进行分析,实时掌握。 3.4产品的质量控制 公司有完整的质量管理体系,从原材料进来,到 产品出厂,都有一套完整的记录。单个元件都有标 识,工序之间均有自检、互检等手段,实现了产品的 可靠性及可追溯性。为进一步提高产品可靠性.我们 在加工过程中进行工序检测,对单个心子进行耐压 试验。通过自愈声、目测以及电气测试等手段剔除 有不良因素的元件,确保产品品质。另外,我们设计 了单件流作业装配平台,以实现单元轻型化制造,模 块化装配等,提高了产品质量,缩短了加工周期。 4试验结果 本项目于2014年8月试制8台样机.按照GB厂I' 17702--2013《电力电子电容器》和GB/r 25121--2010 《轨道交通机车车辆设备电力电子电容器》国家标 准,并委托西高院进行型式试验,目前已通过各项 试验[9_10]。作者试验时,以GB/T 17702--2013标准 为主。以GB/T 25121--2010标准为参考.但是GB/T 25121--2010标准中耐久性试验要求和涌流放电试 验要求均高于GB/T 17702--2013。故这2个试验项 目按照高标准执行,现将关键试验项目加以说明。 4.1耐久性试验 试品共3台,分为3个阶段,第1阶段和第3阶 段各为1-3倍的额定电压连续运行500 h.电容器放 置于70℃密闭恒温箱中。(GB/T 17702中没对电 容器试验温度作要求,而GB/T 25121标准对电容器 试验温度有要求,作者在这里按照GB/T 25121标准 进行,结合试验自身情况,将试验温度定为70℃)。 第2阶段为充放电阶段,试验电压1.1 ,放电电 流为16 kA,反压75%,充放电波形如图3所示。耐 久性试验前后,电容值变化及损耗角正切值见表1。