柔性直流输电技术
柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。
随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。
本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。
一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。
其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。
通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。
2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。
(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。
(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。
二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。
传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。
2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。
在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。
3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。
通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。
柔性直流输电

柔性直流输电一、概述(一)柔性直流输电的定义高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。
第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前。
第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。
通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。
因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。
这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。
LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC目前也是业界研究的一个热点。
1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。
在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。
这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。
2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。
柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。
本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。
我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。
我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。
我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。
通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。
二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。
与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。
柔性直流输电技术的核心在于电压源换流器(VSC)。
VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。
VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。
在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。
VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。
柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。
这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。
柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。
(完整版)柔性直流输电技术

柔性直流输电与常规直流比较
高压直流输电(LCC-HVDC)
柔性直流输电(VSC-HVDC)
晶闸管
相位角控制
晶闸管通过脉冲信号控 制开通,但不能控制关断 ,电网换相。当承受电压 反向时,自动关断。
开关频率50/60 Hz
IGBT或其他可关断功 率器件
脉宽调节控制
可关断器件,可以通 过控制信号关断,完全 可控,自换相。
DC
技术内容
关注点
14
功率器件的开通和关断过程
门极控制电压 导通电流
• 导通和关断由门极信号控制 • 导通和关断过程快速,但非
理想 • 导通和关断存在尖峰电流和
电压
集电极和发射 极电压
实际关断和导通波形
15
功率器件的发展
半控器件
• 开通可控 • 关断不可控
全控器件
• 开通可控 • 关断可控
IGBT/IEGT
GTO和IGCT
GTO
IGCT
集成门极
缓冲层 透明阳极 逆导技术
• 最早的全控器件 • 开关频率低,已很少使用
• 上海50MVAr STATCOM
采用IGCT
19
• 目前只有ABB公司供应
IGBT IGBT和PP IGBT(IEGTP)P IGBT(IEGT)
电子注入增强 低导通电压降 宽安全工作区
• 模块塑封 • 应用最广的全控器件 • 三菱、英飞凌、日立、
ABB等多个供应商
• 压接式封装,双面散热
• 失效后处于短路状态
• 主要供应商有东芝、ABB和
Westcode
20
模块式封装(PMI) 功率器件封装模式
技术成熟 安装工艺简单 器件制造商多 损坏时可能发生爆炸 串联不易实现 器件容量相对较小
2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状引言柔性直流输电(Flexible Direct Current Transmission,简称FDCT)作为一种新型的输电技术,具有多种优势,如高效、低损耗和灵活性等。
随着电力需求的不断增长和可再生能源的迅速发展,柔性直流输电市场正逐渐展现出巨大的潜力。
本文将对柔性直流输电市场的发展现状进行分析和探讨。
主要内容1. 柔性直流输电技术简介柔性直流输电技术是一种将输电线路由传统的交流形式转变为直流形式的技术。
该技术利用高压直流输电(High Voltage Direct Current,简称HVDC)系统,通过转换站将交流电转换为直流电进行输送。
相较于传统的交流输电方式,柔性直流输电可以实现更高效率和更远距离的电能传输。
2. 柔性直流输电市场发展趋势柔性直流输电市场正逐渐蓬勃发展,并且呈现出以下几个主要的发展趋势:•可再生能源促进发展:随着可再生能源的快速发展,如风能和太阳能等,柔性直流输电正成为将这些能源从产地输送到用电地点的理想选择。
柔性直流输电系统可以实现大规模清洁能源的长距离传输。
•输电效率提高:与高压交流输电相比,柔性直流输电系统的输电效率更高。
因为直流电在输送过程中的能量损失较小,可以大幅度降低电力传输过程中的能量损耗,提高输电效率。
•电网稳定性提升:柔性直流输电系统具备快速响应和调节电网负荷等特点,可以提高电网的稳定性。
在能源供需波动较大的情况下,柔性直流输电系统可以有效地平衡能源供给和需求,提高电网的可靠性和稳定性。
3. 柔性直流输电市场的挑战柔性直流输电市场的发展也面临着一些挑战,主要包括以下几个方面:•技术难题:柔性直流输电技术相对较新,还存在一些技术难题,如电能转换效率、电气设备可靠性和环境适应能力等问题,需要进一步解决和改进。
•经济可行性:虽然柔性直流输电具有诸多优势,但是其建设和运营的成本相对较高,需要对投资回报作出准确评估,以确保项目的经济可行性。
柔性直流输电技术简述

柔性直流输电技术介绍1引言柔性直流输电技术(Voltage Sourced Converter,VSC)是一种以电压源变流器、可关断器件(如门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT))和脉宽调制(PWM)技术为基础的新型直流输电技术。
国外学术界将此项输电技术称为VSC-HVDC,国内学术界将此项输电技术称为柔性直流输电,制造厂商ABB 公司与西门子公司分别将该项输电技术命名为HVDC Light和HVDC Plus。
与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。
随着大功率全控型电力电子器件的迅速发展,柔性直流输电技术在高压直流输电领域受到越来越广泛的关注及应用。
传统的低电平VSC具有开关频率高、输出电压谐波大、电压等级低、需要无源滤波器等缺点,而且存在串联器件的动态均压问题;多电平变流器提供了一种新的VSC实现方案。
它通过电平叠加输出高电压,逼近理想正弦波,输出电压谐波含量少,无需滤波设备。
自1997年赫尔斯扬试验工程投入运行以来,柔性直流输电技术迅速发展,目前已有13项工程投入商业运行,最高电压等级已达±200kV,最大工程容量达到400MW,最长输电距离为970km。
通过各个领域专家的不断创新和工程建设运行经验的不断积累,柔性直流输电技术作为一种先进的输电技术已具备大规模应用的条件。
图1两端VSC-HVDC系统典型结构图2008年12月,“柔性直流输电关键技术研究与示范工程”作为国家电网公司的重大科技专项正式启动。
该工程联接上海南汇风电场与书院变电站,用于上海南汇风电网并网,是中国首条柔性直流输电示范工程。
该工程由中国电力科学研究院开发,负责接入系统设计、设备供货及工程实施等工作。
2柔性直流输电技术的研究现状2.1高压大容量电压源变流器技术2.2.1模块化多电平变流器(Modular Multilevel Converter,MMC)模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图2所示。
柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述1、简述柔性直流输电技术的背景和发展历程随着能源结构的优化和电网互联的需求增长,直流输电技术以其长距离、大容量、低损耗的优势,在电力系统中占据了举足轻重的地位。
然而,传统的直流输电技术,如基于晶闸管的直流输电(LCC-HVDC),存在换流站需消耗大量无功、无法独立控制有功和无功功率、对交流系统故障敏感等问题。
因此,柔性直流输电技术(VSC-HVDC)应运而生,它采用电压源型换流器(VSC)和脉宽调制(PWM)技术,实现了对有功和无功功率的独立控制,并具有快速响应、灵活调节、易于构成多端直流系统等优点。
柔性直流输电技术的发展历程可以追溯到20世纪90年代初,当时基于绝缘栅双极晶体管(IGBT)的VSC技术开始应用于风电场并网和孤岛供电等领域。
随着电力电子技术的快速发展,VSC的容量和电压等级不断提升,使得柔性直流输电技术在电网互联、新能源接入、城市配电网等领域得到了广泛应用。
进入21世纪后,随着全球能源互联网的提出和新能源的大规模开发,柔性直流输电技术迎来了快速发展的黄金时期。
目前,柔性直流输电技术已经成为直流输电领域的研究热点和发展方向,其在全球范围内的大规模应用也为电力系统的智能化、绿色化、高效化发展提供了有力支撑。
2、阐述柔性直流输电技术在现代电力系统中的重要性在现代电力系统中,柔性直流输电技术已经日益显示出其无法替代的重要性。
它作为一种先进的输电技术,不仅克服了传统直流输电技术的局限性,还以其独特的优势在现代电网建设中占据了举足轻重的地位。
柔性直流输电技术的灵活性和可控性使得它在大规模可再生能源接入电网中发挥了关键作用。
随着可再生能源如风能、太阳能等的大规模开发和利用,电网面临着越来越大的挑战。
这些可再生能源具有随机性、波动性和间歇性等特点,对电网的稳定性造成了威胁。
而柔性直流输电技术通过其独特的控制策略,可以实现对有功功率和无功功率的独立控制,从而有效地解决可再生能源接入电网所带来的问题,提高电网的稳定性和可靠性。
柔性直流输电智能控制技术研究

柔性直流输电智能控制技术研究近年来,随着能源需求的不断增长和可再生能源的普及,人们开始重视柔性直流输电技术的研究和应用。
柔性直流输电是一种高效、安全、可靠、环保的输电方式,具有较强的适应性和灵活性,可以实现跨越长距离的高功率传输,更好地满足能源互联网的建设需求。
而智能控制技术则为柔性直流输电提供了更为便利、快捷、准确的控制手段,为未来的能源系统注入新的活力。
本文将着重探讨柔性直流输电智能控制技术的研究现状、面临的挑战和未来的发展方向。
一、柔性直流输电概述柔性直流输电技术是一种基于现代电力电子器件和控制系统的新型输电技术。
传统的交流输电线路有着很多的缺点,如线路损耗大、传输距离短、线路容量有限等等。
而柔性直流输电具有无土地占用、无电磁污染、无电感阻抗等优点。
同时,它可以实现高效的能量传输,为未来的能源互联网架构提供更为坚实的基础。
在柔性直流输电系统中,主要设备包括换流器、直流断路器、柔性直流电缆等。
其中,换流器是最为核心的元器件之一,在进行交流和直流之间的转换过程中发挥着至关重要的作用。
二、智能控制技术在柔性直流输电中的应用柔性直流输电技术的应用主要包括以下方面:1、电力系统中的柔性直流输电柔性直流输电技术可以实现远距离的高功率传输,使得电力系统在某些情况下具有更高的可靠性和稳定性。
同时,还能提高输电线路的利用率,减少损耗,降低成本。
2、船舶和高速铁路等场景中的柔性直流输电随着交通运输的发展,对于船舶和高速铁路等场景中的电力系统,更高的供电需求和更好的供电质量成为了一种必要,柔性直流输电技术可以更好地实现这一点。
在进行柔性直流输电过程中,智能控制技术可以发挥很多的作用,主要表现为以下三个方面:1、电力系统质量控制由于柔性直流输电涉及的设备种类繁多、参数不确定,因此在进行电力系统控制的时候需要强大的智能化支持,通过对系统的监控和控制实现电力系统的质量控制。
2、工艺参数优化针对柔性直流输电系统特有的工艺参数,通过智能控制技术来优化这些参数,不仅执行效果更佳,而且对系统的安全性和稳定性也有更为显著的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柔性直流输电
一、柔性直流输电技术
1. 柔性直流输电系统换流站的主要设备。
柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。
2. 柔性直流输电技术的优点。
柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。
此外,柔性输电还具有一些自身的优点。
1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。
保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。
2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。
功率变化时,滤波器不需要提供无功功率。
3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。
4)采用双极运行,不需要接地极,没有注入地下的电流。
3. 柔性直流输电技术的缺点。
系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。
在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。
可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。
二、常规直流输电技术和柔性直流输电技术的对比
1. 换流器阀所用器件的对比。
1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。
2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。
2. 换流阀的对比。
1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,
可以输送大功率。
2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。
故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。
3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。
3. 换流站控制方式的对比。
1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。
2)功率反向输送能力的对比。
柔性直流输电系统在潮流反转时,只需改变电流方向,而直流电压极性不变,功率反向时系统不停运,这使得柔性直流输电系统改变功率方向时,两端换流站的控制策略不变,更不需要投切交流滤波器或闭锁换流器。
而常规直流输电改变功率方向时需要改变电压极性,而直流电流极性不变,功率反向时,换流站需退出运行,改变控制策略,并且需要对滤波器和无功补偿设备的投切情况进行实时判断。
3)对交流网络的依耐性方面的对比。
柔性直流输电不需要依靠交流系统的能力来维持电压和频率稳定,无需无功补偿,换流器自身可提供无功功率。
而常规直流输电要求受端交流系统具有足够的短路容量,需要外加的换相容量,不能向无源或弱网络送电。
4)有功和无功功率控制方面的对比。
柔性直流输电的有功、无功可以独立控制。
常规直流输电的有功、无功不能独立控制,调节无功需要特殊装置和额外费用,需交流系统或增加无功补偿设备提供换流站消耗的无功功率。
5)电压控制方面的对比。
柔性直流输电本身可以起到STATCOM的作用,稳定交流母线电压,而常规直流输电需要借助无功补偿设备稳定交流母线电压。
6)黑启动能力方面的对比。
柔性直流输电有黑启动能力。
即当一端交流系统发生电压崩溃或停电时,瞬间启动自身的参考电压,向切除电源的交流系统供电,相当于备用发电机,随时向瘫痪的电网供电。
而常规直流输电无黑启动能力。
经过常规直流输电与柔性直流输电的比对发现,随着直流输电技术的飞速发展,以及节能和绿色能源的要求,尤其在可再生能源发电并网和孤岛供电方面,未来以IGBT为代表的柔性直流输电必将成为市场的主流,柔性直流输电尤其是基于电压源型换流器的直流输电将会快速发展,与常规直流输电并存,甚至超过后者。
三.运行方式
实现柔性直流输电系统的3种运行方式:
1)运行方式1
只有直流线路的运行方式。
送端换流站有功类控制器选择频率控制,无功类控制器选择交流电压控制;受端换流站有功类控制器选择直流电压控制,无功类控制器选择交流电压控制或无功功率控制,并且交流电压控制和无功功率控制可以手动切换。
2)运行方式2
交直流并联的运行方式。
送端换流站有功类控制器选择有功功率控制,无功类控制器选择交流电压控制或无功功率控制;受端换流站有功类控制器选择直流电压控制,无功类控制器选择交流电压控制或无功功率控制。
2个站的交流电压控制和无功功率控制均可手动切换。
3)运行方式3
STATCOM运行方式。
2个换流站的直流连接断开,可以分别作为2个独立的STATCOM运行。
有功类控制器选择直流电压控制,无功类控制器选择交流电压控制或无功功率控制。
交流电压控制和无功功率控制可以手动切换。