柔性直流输电技术概述

合集下载

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。

随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。

本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。

一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。

其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。

通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。

2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。

(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。

(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。

二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。

传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。

2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。

在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。

3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。

通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。

本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。

我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。

我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。

我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。

通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。

二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。

与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。

柔性直流输电技术的核心在于电压源换流器(VSC)。

VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。

VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。

在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。

VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。

柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。

这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。

柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。

柔性输电技术简介

柔性输电技术简介

柔性输电之直流输电内容简介轻型直流输电技术是20世纪90年代开始发展的一种新型直流输电技术,核心是采用以全控型器件(如GTO和IGBT等)组成的电压源换流器(VSC)进行换流。

这种换流器功能强、体积小,可减少换流站的设备、简化换流站的结构,故称之为轻型直流输电,其系统原理如图2-1所示。

图2.1 柔性直流输电系统原理示意图其中两个电压源换流器VSC1和VSC2分别用作整流器和逆变器,主要部件包括全控换流桥、直流侧电容器;全控换流桥的每个桥臂均由多个绝缘栅双极晶体管IGBT或门极可关断晶体管GTO等可关断器件组成,可以满足一定技术条件下的容量需求;直流侧电容为换流器提供电压支撑,直流电压的稳定是整个换流器可靠工作的保证;交流侧换流变压器和换流电抗器起到VSC与交流系统间能量交换纽带和滤波作用;交流侧滤波器的作用是滤除交流侧谐波。

由于柔性直流输电一般采用地下或海底电缆,对周围环境产生的影响很小。

1引言随着科学技术的发展,到目前为止,电力传输经历了直流、交流和交直流混合输电三个阶段。

早期的输电工程是从直流输电系统开始的,但是由于不能直接给直流电升压,使得输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。

19世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展,逐渐形成现代交流电网的雏形。

大功率换流器的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到人们的重视。

直流输电相比交流输电在某些方面具有一定优势,自从20世纪50年代联接哥特兰岛与瑞典大陆之间的世界第一条高压直流输电(HVDC)线路建成以来,HVDC在很多工程实践中得到了广泛的应用,如远距离大功率输电、海底电缆输电、两个交流系统之间的非同步联络等等。

目前,国内已有多个大区之间通过直流输电系统实现非同步联网:未来几年,南方电网将建成世界上最大的多馈入直流系统;东北电网也有多条直流输电线路正在建设或纳入规划。

电力系统中的柔性直流输电技术研究

电力系统中的柔性直流输电技术研究

电力系统中的柔性直流输电技术研究随着人类社会的快速发展和工业化进程的不断加速,电力的重要性已经愈发凸显。

然而,传统的交流输电方式存在众多的缺陷,因此柔性直流输电技术应运而生。

柔性直流输电技术是指通过直流电进行电力输送、流量控制和系统稳定控制的一种新型电力传输技术。

这项技术早在上世纪80年代就已经开始研究,近年来也得到了快速发展和广泛应用。

在电力系统中,柔性直流输电技术主要被应用于高压直流输电、大容量输电等领域。

相比于传统的交流输电方式,柔性直流输电技术显然具有更多的优势。

首先,柔性直流输电技术可以实现电力的快速传输和高效控制。

由于它采用了直流电进行输送,可以有效减少电力传输过程中的功率损耗,同时也可以灵活控制电流、电压等参数,以达到更高的电力输送效率。

其次,柔性直流输电技术还可以提高电力系统的可靠性和稳定性。

传统的交流输电方式容易受到电压、频率等不稳定因素的影响,从而导致电网的故障、停电等问题。

而柔性直流输电技术则可以通过精密的控制系统,实现对电力流量的调节和系统稳定的控制,提高电网的可靠性和抗干扰能力。

最后,柔性直流输电技术还具有更小的空间占用和环保优势。

随着城市的快速发展和人口的不断膨胀,传统的交流输电方式不仅需要占用大量的土地和空间,而且还会对周围环境造成一定的噪音和辐射污染。

而柔性直流输电技术可以通过更紧密的线路布局和更先进的电力传输技术,实现更小的空间占用和更低的环境影响。

总的来说,柔性直流输电技术的应用和发展对于电力系统的优化和升级具有重要的意义。

未来,在技术不断迭代和创新的基础上,柔性直流输电技术还将逐步实现更加智能化、高效化和可持续化的电力传输体系,在为经济社会的发展和人民生活的改善做出更多贡献的同时,也为推进能源革命和全球环保事业做出应有的贡献。

(完整版)柔性直流输电技术

(完整版)柔性直流输电技术

柔性直流输电与常规直流比较
高压直流输电(LCC-HVDC)
柔性直流输电(VSC-HVDC)
晶闸管
相位角控制
晶闸管通过脉冲信号控 制开通,但不能控制关断 ,电网换相。当承受电压 反向时,自动关断。
开关频率50/60 Hz
IGBT或其他可关断功 率器件
脉宽调节控制
可关断器件,可以通 过控制信号关断,完全 可控,自换相。
DC
技术内容
关注点
14
功率器件的开通和关断过程
门极控制电压 导通电流
• 导通和关断由门极信号控制 • 导通和关断过程快速,但非
理想 • 导通和关断存在尖峰电流和
电压
集电极和发射 极电压
实际关断和导通波形
15
功率器件的发展
半控器件
• 开通可控 • 关断不可控
全控器件
• 开通可控 • 关断可控
IGBT/IEGT
GTO和IGCT
GTO
IGCT
集成门极
缓冲层 透明阳极 逆导技术
• 最早的全控器件 • 开关频率低,已很少使用
• 上海50MVAr STATCOM
采用IGCT
19
• 目前只有ABB公司供应
IGBT IGBT和PP IGBT(IEGTP)P IGBT(IEGT)
电子注入增强 低导通电压降 宽安全工作区
• 模块塑封 • 应用最广的全控器件 • 三菱、英飞凌、日立、
ABB等多个供应商
• 压接式封装,双面散热
• 失效后处于短路状态
• 主要供应商有东芝、ABB和
Westcode
20
模块式封装(PMI) 功率器件封装模式
技术成熟 安装工艺简单 器件制造商多 损坏时可能发生爆炸 串联不易实现 器件容量相对较小

柔性直流输电技术简述

柔性直流输电技术简述

柔性直流输电技术介绍1引言柔性直流输电技术(Voltage Sourced Converter,VSC)是一种以电压源变流器、可关断器件(如门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT))和脉宽调制(PWM)技术为基础的新型直流输电技术。

国外学术界将此项输电技术称为VSC-HVDC,国内学术界将此项输电技术称为柔性直流输电,制造厂商ABB 公司与西门子公司分别将该项输电技术命名为HVDC Light和HVDC Plus。

与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。

随着大功率全控型电力电子器件的迅速发展,柔性直流输电技术在高压直流输电领域受到越来越广泛的关注及应用。

传统的低电平VSC具有开关频率高、输出电压谐波大、电压等级低、需要无源滤波器等缺点,而且存在串联器件的动态均压问题;多电平变流器提供了一种新的VSC实现方案。

它通过电平叠加输出高电压,逼近理想正弦波,输出电压谐波含量少,无需滤波设备。

自1997年赫尔斯扬试验工程投入运行以来,柔性直流输电技术迅速发展,目前已有13项工程投入商业运行,最高电压等级已达±200kV,最大工程容量达到400MW,最长输电距离为970km。

通过各个领域专家的不断创新和工程建设运行经验的不断积累,柔性直流输电技术作为一种先进的输电技术已具备大规模应用的条件。

图1两端VSC-HVDC系统典型结构图2008年12月,“柔性直流输电关键技术研究与示范工程”作为国家电网公司的重大科技专项正式启动。

该工程联接上海南汇风电场与书院变电站,用于上海南汇风电网并网,是中国首条柔性直流输电示范工程。

该工程由中国电力科学研究院开发,负责接入系统设计、设备供货及工程实施等工作。

2柔性直流输电技术的研究现状2.1高压大容量电压源变流器技术2.2.1模块化多电平变流器(Modular Multilevel Converter,MMC)模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图2所示。

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究1. 引言1.1 研究背景随着可再生能源的快速发展和应用,传统的交流输电技术已经无法满足对电力系统的需求。

柔性直流输电技术具有较高的适应性和灵活性,可以有效地将分散的可再生能源接入电网,并实现电力的高效输送。

研究柔性直流输电技术在可再生能源接入中的应用具有重要的意义和价值。

在远距离输电方面,柔性直流输电技术也具有明显的优势。

其低损耗、高效率的特点使其在长距离输电中具有巨大的潜力。

在电网调度方面,柔性直流输电技术的灵活性和可控性也为电力系统的平稳运行提供了有力支持。

针对柔性直流输电技术的应用探究具有重要的现实意义和深远的影响,对于推动电力系统的现代化和可持续发展具有重要意义。

1.2 研究意义柔性直流输电技术是电力系统领域的一项重要技术创新,具有极大的研究意义和实际应用价值。

柔性直流输电技术可以提高电网的稳定性和可靠性。

传统的交流输电系统存在输电损耗大、容量受限、电压波动等问题,而柔性直流输电技术可以有效解决这些问题,使电网运行更加稳定可靠。

柔性直流输电技术能够促进可再生能源的大规模接入。

随着可再生能源的发展和普及,如风能、光能等,传统的交流输电系统已经不再适应大规模可再生能源接入的需求。

而柔性直流输电技术具有高效能力调节和低损耗传输特性,能够更好地支持可再生能源的接入。

柔性直流输电技术还可以实现远距离输电。

采用柔性直流输电技术可以降低输电损耗,并且传输距离更远更稳定,为远距离能源互补和资源优化配置提供了新的解决方案。

柔性直流输电技术的研究意义在于提高电网的运行效率和可靠性,推动可再生能源的大规模接入,实现远距离输电和优化电网调度,为电力系统的发展和普及做出重要贡献。

1.3 研究目的研究目的是为了深入探究柔性直流输电技术在电力系统中的应用及其潜在效益,探讨其在可再生能源接入、远距离输电和电网调度等方面的作用,并分析其对电力系统运行的影响与改善。

通过对柔性直流输电技术的研究,旨在提高电力系统的稳定性、可靠性和经济性,满足日益增长的电力需求,促进清洁能源的发展和利用,推动电力行业的现代化和智能化发展。

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述1、简述柔性直流输电技术的背景和发展历程随着能源结构的优化和电网互联的需求增长,直流输电技术以其长距离、大容量、低损耗的优势,在电力系统中占据了举足轻重的地位。

然而,传统的直流输电技术,如基于晶闸管的直流输电(LCC-HVDC),存在换流站需消耗大量无功、无法独立控制有功和无功功率、对交流系统故障敏感等问题。

因此,柔性直流输电技术(VSC-HVDC)应运而生,它采用电压源型换流器(VSC)和脉宽调制(PWM)技术,实现了对有功和无功功率的独立控制,并具有快速响应、灵活调节、易于构成多端直流系统等优点。

柔性直流输电技术的发展历程可以追溯到20世纪90年代初,当时基于绝缘栅双极晶体管(IGBT)的VSC技术开始应用于风电场并网和孤岛供电等领域。

随着电力电子技术的快速发展,VSC的容量和电压等级不断提升,使得柔性直流输电技术在电网互联、新能源接入、城市配电网等领域得到了广泛应用。

进入21世纪后,随着全球能源互联网的提出和新能源的大规模开发,柔性直流输电技术迎来了快速发展的黄金时期。

目前,柔性直流输电技术已经成为直流输电领域的研究热点和发展方向,其在全球范围内的大规模应用也为电力系统的智能化、绿色化、高效化发展提供了有力支撑。

2、阐述柔性直流输电技术在现代电力系统中的重要性在现代电力系统中,柔性直流输电技术已经日益显示出其无法替代的重要性。

它作为一种先进的输电技术,不仅克服了传统直流输电技术的局限性,还以其独特的优势在现代电网建设中占据了举足轻重的地位。

柔性直流输电技术的灵活性和可控性使得它在大规模可再生能源接入电网中发挥了关键作用。

随着可再生能源如风能、太阳能等的大规模开发和利用,电网面临着越来越大的挑战。

这些可再生能源具有随机性、波动性和间歇性等特点,对电网的稳定性造成了威胁。

而柔性直流输电技术通过其独特的控制策略,可以实现对有功功率和无功功率的独立控制,从而有效地解决可再生能源接入电网所带来的问题,提高电网的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柔性直流输电技术概述1柔性直流输电技术简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。

与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。

详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。

这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。

2. 技术特点柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。

它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。

柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点:(1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性;(2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构成既能方便地控制潮流又有较高可靠性的并联多端直流系统,实现多端之间的潮流自由控制;(3)柔性直流输电交流侧电流可被控制,不会增加系统的短路功率;(4)对比传统直流输电方式,采用多电平技术,无需滤波装置,占地面积很小;(5)各站可通过直流线路向对端充电,并根据直流线路电压采取不同的控制策略,因此换流站间可以不需要通讯;(6)柔性直流输电具有良好的电网故障后快速恢复控制能力;(7)系统可以工作在无源逆变方式,克服了传统直流受端必须是有源网络,可以为无源系统供电。

3我国对柔性直流输电技术的需求3· 1可再生能源开发在能源清洁化的新趋势下,风能、太阳能等可再生能源开发己经成为全球关注的重点。

我国有着极其丰富的风能资源,实际可开发量达230Gw,主要分布在东南沿海及其岛屿、西北、华北和东北地区。

除了少数风能就地消纳外,大部分风能都需要并入主网,实现远距离输送。

但由于可再生能源发电具有波动性和间歇性的特点,大规模并网将给系统调峰调频、运行调度、功率预测、供电质量等带来巨大挑战,目前可再生能源的并网接入方案还不够理想,采用常规的交直流输电技术并网还不够经济。

而利用柔性直流输电具有环保、效率高、对电网干扰小的优点,为实现可再生能源的可靠接入提供了一种可行的技术选择。

3·2城市电网发展随着城市社会经济的高速发展,城市电网作为主要负荷中心,负荷密度越来越高,用电负荷量、质的需求不断增加,以交流输电为主的城市电网电能输送面临越来越大的困难和挑战。

(1)环境保护和有限的土地资源严重制约了大容量电源的建设。

对于大型城市,从外地输入大量电力的必然趋势使得城市电网对区域大电网的依赖性大大增强,电网安全稳定运行的压力越来越大。

(2)现代的城市线路走廊资源日益紧张,架空送电线路走廊匮乏,增加了对地下电缆等新型输电方式的迫切性。

(3)随着城市用电负荷和供电容量的增加,动态无功不足,短路电流超标日益成为大型城市电网的重要问题,如上海500kv短路电流即将达到63,对系统中的开关设备及其他网络元件的安全运行造成了极大的威胁。

(4)城市负荷对于供电可靠性以及电能质量的要求越来越高。

谐波污染、电压间断、电压波形闪变等问题使一些敏感设备如工业过程控制装置、电子系统等失灵,往往造成巨大的经济损失。

虽然交流电缆输电解决了城市电网面临的一些问题,但是其潮流难以控制、短路电流超标等问题使其局限性日益凸显。

为了确保城市电网持续发展,需要研究运行灵活、可控性高的新型输电技术,针对性地解决城市电网电源支撑弱、无功电压支撑能力不足等关键问题。

3·3智能电网发展随着科技的进步和城市化、信息化水平的提高,智能楼宇、智能社区、智能城市相继出现,电动汽车智能家电等也将推广应用,电网智能化成为未来电网的必然趋势。

这对现有的输、配、用电方式提出了新的挑战。

利用交流对电动汽车充电装置供电需要进行AC·DC转换,不可避免地造成电能损失,同时充电产生的谐波也对电网形成不利影响。

在现有的交流电供电模式下,以IT设备为基础的智能家电的广泛使用同样面临AC·DC转换造成的巨大损失,也不利于实现太阳能等分布式电源的就地供应。

同时,分布式电源的大量接入将改变现有配电网结构和潮流分布,会引起谐波、三相电压不平衡等电能质量问题,对交流配电网的无功平衡、电压调节、控制等技术都提出了挑战,因此需要研究利用柔性直流输电技术灵活的潮流控制等优势,实现分布式电源与主网的协调运行。

4柔性直流输电技术应用领域展望4· 1有助实现可再生能源并网我国风电资源丰富,如张家口地处内蒙古高原与华北平原的交界处,域内风能资源可开发量超过IOGW,具备建设世界级大型风电场的良好条件。

而另外一风能资源丰富地区如东南沿海岛屿、西北地区等经济落后,交通不便,处于电网末端,要经过长距离输电才能并网。

地理条件、发电规模和风力发电特点的制约使得利用现有交流输电技术将这些“孤岛” 电源与电网连接困难较大,而且会对电网产生不利的影响,如可能引起谐振等。

因此,对于容量、距离等满足不了传统高压交直流输电经济可行性要求的风电场,利用柔性直流输电并网、对负荷中心进行供电具有明显的技术优势,如换流站可以自行换相,不需要借助外部电压源或同步调相机等来支持电能传输:柔性直流输电技术可以独立控制有功和无功,缓解风电场输出功率波动引起的电压波动问题,改善电能质量;当主网交流系统发生短路时,可以有效地隔离故障,保障风电场的稳定运行,并提供“黑启动”能力,帮助系统恢复。

鉴于这些优势,我国目前正在上海南汇风电场研究建设实施柔性直流输电技术并网示范工程,积累了重要的研究经验。

4.2便于实现分布式电源接入随着储能技术的日益成熟,采用太阳能等分布式电源实现家庭供电的智能楼宇、社区将相继出现,利用柔性直流输电技术搭建微电网,一方面将过剩的分布式电源接入主网,一一方面在分布式电源不足的情况下进行补充供电,既实现分布式电源的充分利用,又保障电网兼容各类电源和用户接入与退出的能力,满足用户多元化需求,实现电网和用户的供电安全可靠。

目前日本在这方面进行了大量研究,开发了交直流混合配电盘实现直流供电。

我国高科技家电的普及和日益扩大的智能化需求为柔性直流输电技术提供了一个广阔的空间。

另外,海上发电等一些小规模电源,装机容量小、供电质量不高。

采用交流输电进行并网在经济、技术上都难以满足要求。

利用柔性直流输电技术实现接入一方面可以保证这些地区的供电稳定,另一方面可以充分利用这些分布式电源,避免能源浪费或环境污染,如海上采油平台不再需要燃烧多余气体,而可以转换成电能传输到电网中。

4.3便于实现偏远孤立地区的供电我国一些偏远地区,如新疆、西藏的无电地区等远离电网,负荷轻而且日负荷波动大,其输电距离和输电容量尚不能很好满足传统高压交直流输电的经济性要求,地区与交流主网连接在技术、经济上都难以实施。

沿海岛屿、天然气井或原油井以及钻井平台等负荷供电也只能依靠就地电厂(火电厂),且往往是柴油发电机。

柔性直流输电技术不但可以通过直流电缆将交流主网中高效电厂(如坑口电厂或水电厂)的能源传输到偏远地区或孤岛负荷,促进地区经济发展,而且彻底消除就地电厂的污染和噪声问题,环保效益巨大。

4 ·4城市电网增容与直流供电由于土地资源的限制和城市电网建设环境要求的日益苛刻,利用交流架空线路增加城市电网输送容量的代价越来越昂贵。

而采用地埋式直流电缆进行输电,既可以回避线路走廊问题,又能够有效控制短路容量,提高输送容量,因此柔性直流输电技术将成为城市电网增容的可靠方式。

国外研究表明,把传统的高压交流线路改造成直流线路能够大幅度提高输送容量。

利用柔性直流输电技术对城市电网进行供电,一方面可以快速控制系统的有功和无功,解决电压闪变问题,改善供电的电能质量,防止敏感设备因电能质量问题造成的经济损失;另一方面可以灵活控制交流侧的电流,控制电网的短路容量,解决城市电网短路电流超标的问题,保证城市电网的供电安全。

另外随着城市电网中电动汽车充电装置、IT设备用电等直流负荷不断增长,利用柔性直流输电技术进行供电,可以有效避免交直流转换效率问题,降低谐波等对电网系统的危害,产生巨大的经济和社会效益,符合节能、环保、智能的发展趋势。

5总结柔性直流输电除了具备传统直流输电固有的优点以外,还具有4 象限运行、对交流系统要求低、可向无源网络供电,以及占地面积小等优势,因此在一些特定的场合,如长距离的跨海电缆送电、拥挤的城市供电、远距离向弱交流系统供电等得到比较多的应用。

同时由于它在功率反向时改变电流方向而电压极性不变,因此对于未来可能建设的直流电网是一种很好的解决方案。

但目前受到电压源型换流器件的工艺及参数水平、工作机制,以及线路故障后的恢复慢等限制,柔性直流输电仍然有许多局限性,如控制系统要求高、输送容量小、损耗大、造价高、输电距离短等等,因此还不能很好地应用于高电压、大容量、长距离送电,但这必将是柔性直流输电的一个重要发展方向。

未来随着电力电子器件、计算机控制等技术的不断发展,柔性直流输电的输送容量、电压等级将不断提高,而系统损耗和成本将逐渐下降,加上我国能源战略和能源结构的有序调整和完善,以及国内外工程运行经验的不断积累,柔性直流输电将会在更多领域得到更广泛的应用。

相关文档
最新文档