利用EXCE的规划求解进行求解威布尔分布参数
威布尔分布参数计算方法

威布尔分布参数计算方法\[ f(x;\lambda, k) = \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} \]其中,$\lambda>0$和$k>0$是威布尔分布的两个参数,$\lambda$称为尺度参数,$k$称为形状参数。
下面将介绍如何计算威布尔分布的参数。
##最大似然估计法最常用的参数估计方法是最大似然估计法。
假设我们有$n$个样本数据$x_1, x_2, ..., x_n$,要估计威布尔分布的参数$\lambda$和$k$。
首先,根据概率密度函数,我们可以得到似然函数:\[ L(\lambda, k ; x_1, x_2, ..., x_n) = \prod_{i=1}^{n}\frac{k}{\lambda} \left(\frac{x_i}{\lambda}\right)^{k-1} e^{-(x_i/\lambda)^k} \]为了方便计算,我们可以求似然函数的对数:\[ \log L(\lambda, k ; x_1, x_2, ..., x_n) = n \log k - n \log \lambda + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\lambda}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\lambda}\right)^k \]接下来,我们需要最大化对数似然函数。
可以通过求偏导数等于0来求解最大化的参数。
求解$\lambda$的最大似然估计值:\[ \frac{\partial \log L}{\partial \lambda} = -\frac{n}{\lambda} + \frac{(k-1)}{\lambda} \sum_{i=1}^{n}\frac{x_i}{\lambda} - \sum_{i=1}^{n} \frac{x_i^k}{\lambda^{k+1}} = 0 \]化简上式得到:\[ \sum_{i=1}^{n} \left(\frac{x_i}{\lambda}\right)^k =\frac{(k-1)}{n} \sum_{i=1}^{n} \frac{x_i}{\lambda} \]我们可以定义一些中间变量:\[ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]\[ s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]将上面的结果代入方程中:\[ \left(\frac{\bar{x}}{\lambda}\right)^k = \frac{(k-1)}{n} \frac{\bar{x}}{\lambda} \]进一步整理可得:\[ \lambda = \left(\frac{\bar{x}}{k-1}\right)^{1/k} \]接下来求解$k$的最大似然估计值,我们将$\lambda$的最大似然估计值带入似然函数中,得到:\[ \log L(k ; x_1, x_2, ..., x_n) = n \log k - n \log\left(\frac{\bar{x}}{k-1}\right)^{1/k} + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right)^k \]类似地,对上式求偏导等于0,可以得到对$k$的求解。
利用EXCE的规划求解进行求解威布尔分布参数

利用EXCE的规划求解进行求解威布尔分布参数
由于威布尔分布的可以描述独立同分布变量的分布,经常被用于不同
概率密度函数模型之间的相互比较,因此其参数估计一直是建模分析的重
要环节,使用EXCEL可以规划求解威布尔分布参数,我们以以下案例来求
解该分布参数:
假设有一组随机样本x(1),x(2),…,x(n),满足威布尔分布,想对α
和β参数进行估计,那么我们可以使用下面的方法:
1.首先,使用EXCEL编写对数似然函数,其表达式为:
lnL=ln[αβ^(α+n)]+α∑lnx-β∑x-nlnβ
这里α,β为待求参数。
2.编写规划过程求解α、β估计值。
具体而言,我们需要构建EXCEL规划模型,使得对数似然函数最大,而其估计值α、β即为结果。
我们以EXCEL求解威布尔分布参数为例,指导将这一过程编写如下:
1.首先,在EXCEL中编写对数似然函数,其表达式为:
lnL=ln[αβ^(α+n)]+α∑lnx-β∑x-nlnβ
这里α,β为待求参数,其取值范围通常设置为大于0小于100,因此,可以将参数α作为变量编写入EXCEL规划模型,即:
MIN = lnL
S.T.0 < α < 100 and0 < β < 100
2.在EXCEL中编写对数似然函数,其表达式为:
lnL=ln[αβ^(α+n)]+α∑lnx-β∑x-nlnβ
其中α,β为待求参数,α ∑ lnx 为样本的对数期望值, -β ∑x 为样本的期望值,而n ln β 为测量方差。
用Excel求解数学规划

用Excel求解数学规划武汉大学水利水电学院万飚Excel是Microsoft Office办公软件中的一个组件,以其强大的电子表格处理功能备受广大用户的青睐。
由于Excel支持丰富的公式和函数,因而在一般财务计算、高级财务管理、财务分析、信息管理、管理决策、市场营销、工程管理,以及管理科学、经济学和统计学等领域都得到了广泛的应用。
一、关于规划求解“规划求解”是Microsoft Excel中的一个加载宏,借助它可以求解许多运筹学中的数学规划问题。
Excel的“规划求解”工具来自德克萨斯大学奥斯汀分校的Leon Lasdon和克里夫兰州立大学的Allan Waren共同开发的Generalized Reduced Gradient(GRG2)非线性最优化代码;线性规划和整数规划算法来自Frontline Systems公司的John Watson和Dan Fylstra 提供的有界变量单纯形法和分支定界法。
安装Office的时候,系统默认的安装方式不会安装该宏程序,需要用户自己选择安装。
安装方法为:从Excel菜单中选择“工具”→“加载宏”,打开如下对话框:选择其中的“规划求解”后单击“确定”按钮,会出现提示:“这项功能目前尚未安装,是否现在安装?”,选择“是”,系统要你插入Office的安装光盘,准备好后单击确定,很快就会安装完毕。
于是,你会发现在“工具”菜单下多出一个名为“规划求解”的子菜单,说明“规划求解”功能已经成功安装。
二、第一个线性规划问题例:求解以下线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,124 16 48232 21212121x x x x x x x x z max 步骤:1.将模型中的目标函数和约束条件的系数输入到单元格中;为了使我们在操作过程中看得更清楚,可以附带输入相应的标识符,并给表格加上边框。
如下图所示:2.在E4单元格(目标值)输入“=SUMPRODUCT($C$3:$D$3,C4:D4)”;其中,SUMPRODUCT 函数的功能是将数组间对应的元素相乘,并返回乘积之和,即SUMPRODUCT($C$3:$D$3,C4:D4)=C3×C4+D3×D4;$C$3:$D$3表示这几个单元格为绝对引用。
怎么利用EXCEL求解线性规划

利用线性回归方法求解生产计划方法一:1、建立数学模型:①设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润②确定目标函数及约束条件目标函数:y=max+115P90x约束条件:200x .....................⑴+y10≤20x .....................⑵4≤+y16128x .....................⑶+y1015≤220yx ..........................⑷,≥2、在Excel中求解线性规划①首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项:图1②将目标方程和约束条件的对应公式输入各单元格中F2=MMULT(B6:C6,F6:F7);F3=MMULT(B3:C3,F6:F7);F2=MMULT(B4:C4,F6:F7);F2=MMULT(B5:C5,F6:F7);出现图2样式:图2线性规划问题的电子表格模型建好后,即可利用“线性规划”功能进行求解。
选择“工具”→“规划求解”出现“规划求解参数”窗口,如图3所示:图3在该对话框中,目标单元格选择F2,问题类型选择“最大值”,可变单元格选择F6:F7,点击“添加”按钮,弹出“添加约束条件”窗口,如图4所示:图4根据所建模型,共有4个约束条件,针对约束(1):2002010≤+y x ,左端“单元格所引用位置”选择F3,右端“约束值”选择D3,符号类 型选择“<=”,同理继续添加约束(2)(3)(4),完成后选择“确定”,回到“规划求解参数”对话框,如5图所示:图5④点击“选项”按钮,弹出“规划求解选项”对话框,选择“采用线性模型”和“假定非负”两项,如图6所示:图6⑤点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果: 运算结果报告:敏感性报告:极限报告:方法二:1、建立数学模型设生产拉盖式书桌x 台,普通式书桌y 台,总利润为Z 元 确定目标函数及约束条件 目标函数:y x Z 90115max += 约束条件:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0,22010151281642002010..y x y x y x y x t s 2、在Excel 中规划求解在Excel 中建立线性规划模型,如图1所示:图11)在E2中输入“=B2*B6+C2*C6”如图2所示,同理 E3=B3*B6+C3*C6E4=B4*B6+C4*C6B7=B5*B6+C5*C6图22)单击“工具”菜单下的“规划求解”,在弹出的“规划求解参数”对话框输入各项参数:✓目标单元格选择B7✓问题类型选择“最大值”✓可变单元选择B6:C6✓约束条件选择B6:C6≥0;E2:E4≤D2:D4参数设置完毕,如图3:图33)点击“选项”,弹出“规划求解选项”对话框,选择“采用线性模型”、“假定非负”和“显示迭代结果”,说明要求求解的问题是线性模型且所求的变量必须为非负,如图4所示:图44)点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果:运算结果报告:敏感性报告:极限值报告:。
用Excel软件求解规划的方法

Microsoft Excel软件是当今十分流行的功能 Excel软件是当今十分流行的功能 强大操作方便的软件。在Microsoft Excel软 强大操作方便的软件。在Microsoft Excel软 件中,具有规划求解功能。如图1 件中,具有规划求解功能。如图1,在工具 菜单下,一般有“规划求解” 菜单下,一般有“规划求解”项,若未有, 则应先运行“加载宏” 则应先运行“加载宏”项目把其安装上。
图8
此时按“求解”按钮即可获得结果如图9 此时按“求解”按钮即可获得结果如图9。
图9
这时从A6至E9处可读出模型的最优解为: 这时从A6至E9处可读出模型的最优解为: x11=25000、 x20=14000、x30 =21000、x11=25000、 x20=14000、 x21=16000、y1=1,其余变量均为0。再从F14 x21=16000、y1=1,其余变量均为0。再从F14 处读出模型的最优值为2384095。 处读出模型的最优值为2384095。
图7
进入“规划求解”界面。“ 进入“规划求解”界面。“设置目标单元 格”处输入“F14”,然后选“最小值”,再 处输入“F14” 然后选“最小值” 在“可变单元格”处输入“A6:E9”,在“约 可变单元格”处输入“A6:E9” 束”处添加12个约束:⑴“A8:E8>=0”、 处添加12个约束:⑴“A8:E8>=0” ⑵“A9=1”、⑶“B9:E9=二进制”、⑷ A9=1”、⑶“B9:E9=二进制” “A10=35000”、⑸“B10=0”、⑹ “C10=0”、 A10=35000”、⑸“B10=0” C10=0” ⑺ “D10=0”、⑻ “E10=0”、⑼“F6=G6”、 D10=0” E10=0”、⑼“F6=G6” ⑽ “F7=G7”、⑾ “F8=G8”、⑿ “F9=1”。 F7=G7” F8=G8” F9=1” 最后,规划求解参数界面如图8 最后,规划求解参数界面如图8。再在 “选项”中选择“采用线性模型”。 选项”中选择“采用线性模型”
EXCEL求解线性规划问题

三种类型 :
相对引用、 绝对引用、混合引用
(2) 相对引用
格式: A3 、B6
使用相对引用后,系统将会记住建立公式的单元格和被 引用的单元格的相对位置,在复制这个公式时,新的公式单 元和被引用的单元仍然保持这种相对位置。
(3)绝对引用 格式:$a$3 $d$5
绝对引用是指被引用的单元与引用的公式单元的位置 关系是绝对的,无论将这个公式复制到任何单元,公式所 引用的还是原来单元格的数据。
(4)混合引用
格式: $A3 B$ 3
列是绝对的,行是相对的 列是相对的,行是绝对的
使用Excel进行求解
1.关于“规划求解” 2.如何加载“规划求解” 3. “规划求解”各参数设置 4. “规划求解”步骤 5. 利用“规划求解”解线性规划问题
EXCEL求解线性规划问题
2.如何加载“规划求解”
1) 在“工具”菜单上,单击“加载宏”
可变单元格存放决策变量的取EX值CE,L求可解线变性单规划元问格题数目等于决策变量个数
建立数学公式(步骤三)
• 在工作表的顶部输入数据 • 确定每个决策变量所对应
的单元格位置 • 选择单元格输入公式,找
到目标函数的值 • 确定约束单元格输入公式,
计算每个约束条件左边的 值 • 确定约束单元格输入公式, 计算每个约束条件右边的 值
在目标单元格中,需E要XCE填L求入解线计性规算划目问题标函数值的公式。
建立数学公式(步骤四)
• 在工作表的顶部输入数据 • 确定每个决策变量所对应
的单元格位置 • 选择单元格输入公式,找
到目标函数的值 • 确定约束单元格输入公式,
计算每个约束条件左边的 值 • 确定约束单元格输入公式, 计算每个约束条件右边的 值
Excel求解线性规划问题实验教程要点

数学与信息科学学院Excel求解线性规划问题实验教程二零一三零八月目录1.关于“规划求解” (1)2.如何加载“规划求解” (2)3.“规划求解”各参数解释和设置 (3)4.“规划求解”的步骤 (6)5.Excel求解线性规划问题 (8)6.Excel求解运输问题 (14)7.Excel求解目标规划问题 (18)8.Excel求解整数规划问题 (22)1.关于“规划求解”“规划求解”是Excel中的一个加载宏,借助“规划求解”,可求得工作表上某个单元格(被称为目标单元格)中公式(公式:单元格中的一系列值、单元格引用、名称或运算符的组合,可生成新的值。
公式总是以等号(=)开始)的最优值。
“规划求解”将对直接或间接目标单元格中公式相关联的一组单元格中的数值进行调整,最终在目标单元格公式中求得期望的结果。
“规划求解”通过调整所指定的可更改的单元格(可变单元格)中的值,从目标单元格公式中求得所需的结果。
在创建模型过程中,可以对“规划求解”中的可变单元格数值应用约束条件(约束条件:“规划求解”中设置的限制条件。
可以将约束条件应用于可变单元格、目标单元格或其它与目标单元格直接或间接相关的单元格。
而且约束条件可以引用其它影响目标单元格公式的单元格。
使用“规划求解”可通过更改其它单元格来确定某个单元格的最大值或最小值。
)Microsoft Excel的“规划求解”工具取自德克萨斯大学奥斯汀分校的Leon Lasdon 和克里夫兰州立大学的Allan Waren共同开发的Generalized Reduced Gradient(GRG2)非线性最优化代码。
线性和整数规划问题取自Frontline Systems公司的John Watson 和Dan Fylstra提供的有界变量单纯形法和分支边界法。
2.如何加载“规划求解”安装office的时候,系统默认的安装方式不会安装宏程序,需要用户根据自己的需求选择安装。
下面是加载“规划求解”宏的步骤:(1)在“工具”菜单上,单击“加载宏”。
利用excel软件求解线性规划问题

数学规划模型实验指导手册Excel的规划求解加载宏求解数学规划问题一、什么是规划求解加载宏?规划求解加载宏(简称规划求解)是Excel的一个加载项1,可以用来解决线性规划与非线性规划优化问题。
规划求解可以用来解决最多有200个变量,100个外在约束和400个简单约束(决策变量整数约束的上下边界)的问题。
可以设置决策变量为整型变量。
规划求解加载宏的开发商是Fronline System公司。
用户通过自定义安装MS-Office所使用的是标准版本规划求解加载宏,Fronline System公司同时提供增强的Premium Solver工具。
规划求解工具在Office典型安装状态下不会安装,可以通过自定义安装选择该项或通过添加/删除程序增加规划求解加载宏。
二、怎样加载规划求解加载宏?加载规划求解加载宏的方法如下:(1)打开“工具”下拉列菜单,然后单击“加载宏”,打开“加载宏”对话框。
(2)在“可用加载宏”框中,选中“规划求解”旁边的复选框2,然后单击“确定”按钮。
1加载项的功能是为Microsoft Office 提供自定义命令或自定义功能的补充程序2如果“规划求解”未列出,请单击“浏览”进行查找。
(3)如果出现一条消息,指出您的计算机上当前没有安装规划求解,请单击“是”用原Office安装盘进行安装。
(4)单击菜单栏上的“工具”。
加载规划求解后,“规划求解”命令会添加到“工具”菜单中。
三、怎样使用规划求解加载宏求解数学规划?规划求解加载宏是一组命令构成的一个子程序,这些命令有时也称作假设分析3工具,其功能是可以求出线性和非线性数学规划问题的最优解和最优值。
使用规划求解加载宏求解数学规划的步骤首先,在Excel工作表中输入目标函数的系数向量、约束条件的系数矩阵和右端常数项(每一个单元格输入一个数据);其次,选定一个单元格存储目标函数(称为目标单元格),用定义公式的方式在这个目标单元格内定义目标函数;再次,选定与决策变量个数相同的单元格(称为可变单元格),用以存储决策变量;再选择与约束条件个数相同的单元格,用定义公式的方式在每一个单元格内定义一个约束函数(称为约束函数单元格);最后,点击下拉列菜单中的规划求解按钮,打开规划求解参数设定对话框(如图4所示),完成规划模型的设定模型设定方法如下:(1)设定目标函数和优化方向:光标指向规划求解参数设定对话框中的“设置目标单元格”提示后的域,点击鼠标左键,然后选中Excel工作表中的目标单元格。