高考物理力电综合应用题

合集下载

高中物理力电综合例题

高中物理力电综合例题

高中物理力电综合例题
力电综合题目是高中物理中较为常见的一类题目,通常涉及到力学、电学、电磁学等多个方面的知识,具有较强的综合性和实验性。

以下是两道力电综合例题,供参考:
1. 一个带电球体在电场中运动,其加速度与电场强度大小和球带电量成正比,如果在电场中施加一个恒定的向右的电场,求球体受到的合力大小。

解:这道题涉及到电场力、重力、惯性力等多个力的关系。

根据电场力公式 F=Eq,可得球体受到的合力大小为:
F=Eq=q(Va/R)^2
其中,Va 为球带电球的极板之间的距离,R 为球的半径。

可以根据牛顿第二定律和惯性力定律求解球的加速度 a,进而求出合力大小。

2. 一个长度为 L、带有负电荷的直导线,在与导线垂直的平面内做匀速圆周运动,导线周围的磁场垂直于导线和平面,磁场大小为B,求导线受到的安培力大小。

解:这道题涉及到磁场、电场、重力等多个力的关系。

根据安培力公式 F=BIL,可得导线受到的安培力大小为:
F=BIL=BL(L/R)^2
其中,R 为直导线的半径。

可以根据牛顿第二定律和圆周运动规律求解直导线的加速度,进而求出安培力大小。

以上是两道力电综合例题,提供了一些解决力电综合题目的思路
和技巧。

在解题时,需要充分理解和掌握电场力、重力、惯性力、磁场力等多个力的关系,熟悉各种公式和定理的应用方法,才能够准确、快速地求解问题。

2024版高考物理一轮复习专题基础练专题八静电场热考题型电场中的力电综合问题作业课件

2024版高考物理一轮复习专题基础练专题八静电场热考题型电场中的力电综合问题作业课件

题型2 带电粒子在组合场中的运动
4. [多选][2023辽宁锦州测试]如图所示,相距2L的AB、CD两直线间的区域存在着两个大小不同、方向相反的有
界匀强电场,其中PS下方电场的电场强度大小为E1,方向竖直向上,PS上方电场的电场强度大小为E2、方向竖直向
下。在电场左边界AB上宽为L的PQ区域内,连续分布着带电荷量为+q(q>0)、质量为m的粒子。从某时刻起由Q到
3

1


金属板边缘飞出,则2 =2×2g·( 3 ) 2 +g·3·3 =
1

2 2
,在电场力和重力作用下,沿电场线方向匀加速运动距离为
9


y1=2g·( 3 ) 2 ,沿电场线方向匀速运动距离为y2=g·3·3,电场力做的功W=q·2E0y1+qE0y2,解得W=mg·2 ,C项正确;微粒飞
故D错误;设PQ上到P点距离为h的粒子射入电场后,经过n个类似于Q到R到M(包括粒子从PS上方的电场穿过PS进
入PS下方的电场的运动)的循环运动后,恰好垂直于CD边水平射出,则粒子相邻两次速度变为水平所用的时间为

2
2
1
2
T= = (n=2,3,4……),由于a1∶a2=1∶2,所以粒子第一次到达PS边的时间为3T,则有h=2a1( 3 ) 2 =
运动,当其水平速度与竖直速度大小相等时,即速度方向与小球所受合力方向垂直时,小球克服合力做的功最大,此
时动能最小,而此时小球仍具有水平向左的分速度,电场力仍对其做负功,其电势能继续增大,A、C项错误;小球在
电场力方向上的加速度大小ax=g,竖直方向加速度大小ay=g,当小球水平速度减为零时,克服电场力做的功最大,小

高中物理专项练习:力电综合问题 (2)

高中物理专项练习:力电综合问题 (2)

高中物理专项练习:力电综合问题一.选择题1(高考大纲模拟14).如图所示,有竖直向上的匀强磁场穿过水平放置的光滑平行金属导轨,导轨左端连有电阻R.质量相等、长度相同的铁棒和铝棒静止在轨道上.现给两棒一个瞬时冲量,使它们以相同速度v向右运动,两棒滑行一段距离后静止,已知两棒始终与导轨垂直,在此过程中( )A.在速度为v时,两棒的端电压Uab=UcdB.铁棒在中间时刻的加速度是速度为v时加速度的一半C.铝棒运动的时间小于铁棒运动的时间D.两回路中磁通量的改变量相等【参考答案】C【名师解析】两棒的初速度均为v0,根据法拉第电磁感应定律,棒中感应电动势为E=BLv0,由闭合电路欧姆定律知回路中电流为I=ER+r,而电阻R两端电压为U=IR=BLvRR+r,由于铁棒和铝棒接入电路的电阻r不同,故两棒的端电压U ab≠U cd,故A错误;根据牛顿第二定律可知a=B2L2vm R+r,铁棒做加速度减小的减速运动,铁棒在中间时刻的速度小于v2,铁棒在中间时刻的加速度小于速度为v0时加速度的一半,故B错误;由于铝棒的电阻小于铁棒的电阻,根据F安=B2L2vR+r可知铝棒受到的平均安培力大于铁棒受到的平均安培力,根据动量定理-F安Δt=-mv0可知,铝棒运动的时间小于铁棒运动的时间,故C正确;根据动量定理可知-F安Δt=-mv0,而F安Δt=B2L2vΔtR+r=B2L2xR+r=BLΔΦR+r,解得ΔΦ=mvR+rBL,两回路中磁通量的改变量不相等,故D错误.2.(安徽江南十校联考)空间存在水平向右的匀强电场,方向与x轴平行,一个质量为m,带负电的小球,电荷量为-q,从坐标原点以v0=10m/s的初速度斜向上抛出,且初速度v与x轴正方向夹角θ=37°,如图所示.经过一段时间后到达最高点,此时速度大小也是10m/s,该小球在最高点的位置坐标是(si n37°=0.6,cos37°=0.8,g取10m/s2)A.0.6m,1.8mB. -0.6m,1.8mC.5.4m,1.8mD.0.6m,1.08m【参考答案】B【名师解析】3.(安徽江南十校联考)某实验小组制作一个金属安检仪原理可简化为图示模型.正方形金属线圈abcd平放在粗糙水平传送带上,被电动机带动一起以速度v匀速运动,线圈边长为L,电阻为R,质量为m,有一边界宽度也为L的矩形磁场垂直于传送带,磁感应强度为B,且边界与线圈bc边平行.已知线圈穿过磁场区域的过程中速度不变,下列说法中正确的是A.线圈进入磁场时回路中感应电流的方向与穿出时相反B.线圈进入磁场时所受静摩擦力的方向与穿出时相反C.线进入磁场区域的过程中通过导线某一横截面的电荷量R BL 2D 线圈经过磁场区域的过程中电动机多消耗的电功率为Rv L B 2222【参考答案】AC 【名师解析】4. (安徽江南十校联考)如图所示,半径为R 的绝缘闭合球壳,O 为球壳的球心,球壳上均匀分布着正电荷,已知均匀带电的球壳在其内部激发的场强处处为零.现在球壳表面A 处取下一面积足够小、带电量为q 的曲面将其沿OA 连线延长线向上移动至B 点,且AB=R,若球壳的其他部分的带电量与电荷分布保持不变,下列说法中正确的是A.把另一带正电的试探电荷从A 点处移动到O 点过程中系统电势能减少B.球壳剩余部分的电荷在球壳内部激发的电场的电场线由A 点的对称点C 点沿直线指向球壳内表面各点C 球壳内部电场的电场线由球壳各点沿曲线指向A 点D 球心O 点场强的大小为k 243Rq【参考答案】CD 【名师解析】二.计算题1.(高考大纲模拟卷14)如图所示,在平面直角坐标系中,第三象限里有一加速电场,一个电荷量为q、质量为m的带正电粒子(不计重力),从静止开始经加速电场加速后,垂直x轴从A(-4L,0)点进入第二象限,在第二象限的区域内,存在着指向O点的均匀辐射状电场,距O点4L处的电场强度大小均为E=qLB216m,粒子恰好能垂直y轴从C(0,4L)点进入第一象限,如图所示,在第一象限中有两个全等的直角三角形区域Ⅰ和Ⅱ,均充满了方向垂直纸面向外的匀强磁场,区域Ⅰ的磁感应强度大小为B0,区域Ⅱ的磁感应强度大小可调,D点坐标为(3L,4L),M点为CP的中点.粒子运动轨迹与磁场区域相切时认为粒子能再次进入磁场.从磁场区域Ⅰ进入第二象限的粒子可以被吸收掉.求:(1)加速电场的电压U;(2)若粒子恰好不能从OC边射出,求区域Ⅱ磁感应强度大小;(3)若粒子能到达M点,求区域Ⅱ磁场的磁感应强度大小的所有可能值.【参考答案】(1)v=qBL2m,U=qL2B28m(4分)(2)B=24B049(6分)(3)见解析(10分)【名师解析】(1)粒子在加速电场中加速,根据动能定理有:qU=12mv2粒子在第二象限辐射状电场中做半径为R的匀速圆周运动,则:qE=mv24L联立解得:v=qBL2m,U=qL2B28m(2)粒子在区域Ⅰ中运动的速度大小v=qBL 2m,根据洛伦兹力提供粒子在磁场中做匀速圆周运动的向心力,有qB0v=m v2r,得半径r=mvqB=L2,若粒子在区域Ⅱ中的运动半径R较小,则粒子会从OC边射出磁场.恰好不从OC边射出时,作出对应的运动轨迹,如图.满足∠O2O1Q=2θ,sin 2θ=2sin θcos θ=24 25 ,又sin 2θ=rR-r解得:R=4924r=4948L又R =mv qB ,代入v =qB 0L 2m 可得:B =24B 049(3)①若粒子由区域Ⅰ达到M 点每次前进CP 2=2(R -r )cos θ=85(R -r )由周期性得:CM =n CP 2(n =1,2,3……), 即52L =85n (R -r ) R =r +2516n L ≥4948L ,解得n ≤3n =1时R =3316L ,B =833B 0n =2时R =4132L ,B =1641B 0n =3时R =4948L ,B =2449B 0②若粒子由区域Ⅱ达到M 点由周期性:CM =CP 1+n CP 2(n =0,1,2,3……) 即52L =85R +85n (R -r ) 解得:R =52+45n 851+nL ≥4948L解得:n ≤2625n =0时R =2516L ,B =825B 0 n =1时R =3332L ,B =1633B 0.2.(高考冲刺模拟).(12分)如图所示,光滑平行轨道abcd 的水平部分处于竖直向上的匀强磁场中,bc 段轨道宽度是cd 段轨道宽度的2倍,bc 段轨道和cd 段轨道都足够长,将质量相等的金属棒P 和Q 分别置于轨道上的ab 段和cd 段,且与轨道垂直.Q 棒静止,让P 棒从距水平轨道高为h 的地方由静止释放,求:(1)P 棒滑至水平轨道瞬间的速度大小; (2)P 棒和Q 棒最终的速度.【名师解析】(1)设P 棒滑到b 点的速度为v 0,由机械能守恒定律:2012mgh mv =得:02v gh =(2)最终两棒的电动势相等,即:2BLv P =BLv Q得2v P =v Q (此时两棒与轨道组成的回路的磁通量不变)这个过程中的任意一时刻两棒的电流都相等,但由于轨道宽度两倍的关系,使得P 棒受的安培力总是Q 棒的两倍,所以同样的时间内P 棒受的安培力的冲量是Q 棒的两倍,以水平向右为正方向,对P 棒:-2I =mv P -mv 0 对Q 棒:I =mv Q 联立两式解得:2P gh v =22Q ghv =. 3.(安徽江南十校联考)如图所示,在y>0的空间中存在着垂直xoy 平面向外的匀强磁场,在y<0的空间中存在着平行于xoy 平面的匀强电场,场强方向与x 轴负方向成45°角斜向上.一质量为m,带电量为q 的带正电粒子从坐标原点以初速度进入磁场,方向与x 轴负方向成45°角斜向上,然后经过M 点进人电场,并与y 轴负半轴相交于N 点.已知M 点坐标为(L,0),N 点坐标为(0,-2L)(不考虑粒子所受的重力)求: (1)匀强磁场的磁感应强度; (2)匀强电场的电场强度.【名师解析】。

2024届全国高考复习物理历年好题专项(电场中的力电综合问题)练习(附答案)

2024届全国高考复习物理历年好题专项(电场中的力电综合问题)练习(附答案)

2024届全国高考复习物理历年好题专项(电场中的力电综合问题)练习1.[2023ꞏ湖南长沙雅礼中学一模](多选)如图所示,电子枪产生的电子经过U 0=200 V 的电场加速,进入平行板电容器中央,平行板电容器板长L 和板间距离d 均为10 cm ,距板右侧D =10 cm 处有一竖直圆筒,圆筒外侧粘有白纸,平行板电容器上所加电压u =200sin 2πt(V ),圆筒以n =2 r /s 转动,不计电子通过平行板时极板上电压的变化,白纸上涂有感应材料,电子打到白纸上留下黑色印迹,最后从圆筒上沿轴线方向剪开白纸并展开,由于剪开白纸的位置不同,得到的图像形状不同,以下图像可能正确的是( )2.[2023ꞏ福建莆田联考](多选)如图所示,在竖直平面内有水平向左的匀强电场,在匀强电场中有一根长为L 的绝缘细线,细线一端固定在O 点,另一端系一质量为m 的带电小球.小球静止时细线与竖直方向成θ角,此时让小球获得初速度且恰能绕O 点在竖直平面内沿逆时针方向做圆周运动,重力加速度为g.下列说法正确的是( )A .匀强电场的电场强度E =mg tan θqB .小球动能的最小值为E k =mgL2cos θC .小球运动至圆周轨迹的最高点时机械能最小D .小球从初始位置开始,在竖直平面内运动一周的过程中,其电势能先减小后增大 3.[2022ꞏ全国甲卷](多选)地面上方某区域存在方向水平向右的匀强电场,将一带正电荷的小球自电场中P 点水平向左射出.小球所受的重力和电场力的大小相等,重力势能和电势能的零点均取在P 点.则射出后,( )A .小球的动能最小时,其电势能最大B .小球的动能等于初始动能时,其电势能最大C .小球速度的水平分量和竖直分量大小相等时,其动能最大D .从射出时刻到小球速度的水平分量为零时,重力做的功等于小球电势能的增加量 4.[2023ꞏ天津三中模拟](多选)如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 连线为水平直径,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则( )A .小球运动到B 点时的速度大小为 2gR B .小球运动到B 点时的加速度大小为gC .小球不能运动到C 点D .小球运动到B 点时对轨道的压力大小为3mg +k q 1q 2R 2 [答题区]题号 1 2 3 4 答案5.图甲是近年来兴起的一种静电耳机,图乙是其原理图,A 、B 为两片平行固定金属薄板,M 是位于金属板之间的极薄带电振膜,音频信号加在金属板上,板间将形成随音频信号变化的电场,在静电力作用下振膜振动从而发出声音.若两金属板可看作间距为d 、电容为C 的平行板电容器,振膜质量为m 且均匀带有+q 电荷,其面积与金属板相等,振膜只能沿垂直金属板方向平行移动,不计重力和阻力.(1)当金属板充电至电荷量为Q 时,求振膜的加速度a.(2)若两板所加电压信号U AB 如图丙所示,在t =0时刻振膜从两板正中间位置由静止开始运动,为了使振膜做周期为T 的重复运动并且始终不碰到金属板,求电压u 1和u 2的最大值.6.[2023ꞏ山东烟台一模]如图甲所示,A 和B 是真空中正对面积很大的平行金属板,O 点是一个可以连续产生粒子的粒子源,O 点到A 、B 的距离都是l.现在A 、B 之间加上电压,电压U AB 随时间变化的规律如图乙所示.已知粒子源在交变电压的一个周期内可以均匀产生300个粒子,粒子质量为m 、电荷量为-q.这种粒子产生后,在电场力作用下从静止开始运动.设粒子一旦碰到金属板,它就附在金属板上不再运动,且电荷量同时消失,不影响A 、B 板电势.不计粒子的重力,不考虑粒子之间的相互作用力.已知上述物理量l =0.6 m ,U 0=1.2×103 V ,T =1.2×10-2s ,m =5×10-10kg ,q =1.0×10-7C .(1)在t =0时刻产生的粒子,会在什么时刻到达哪个极板?(2)在t =0到t =T2 这段时间内哪个时刻产生的粒子刚好不能到达A 板? (3)在t =0到t =T2 这段时间内产生的粒子有多少个可到达A 板?7.[2023ꞏ北京大兴区模拟]如图所示,水平地面上方分布着水平向右的匀强电场,有一14 圆弧形的绝缘硬质管竖直固定在匀强电场中.圆心与管口在同一水平线上,管的半径为R ,下端管口切线水平,离水平地面的距离为h ,有一质量为m 的带正电(+q)小球从管的上端口A 由静止释放,小球与管间摩擦不计,小球从下端管口飞出时,对管壁压力为4mg ,求:(1)小球运动到管口B 时的速度大小; (2)匀强电场的场强;(3)若R =0.3 m ,h =5.0 m ,小球着地点与管的下端口B 的水平距离.(g =10 m /s 2)8.[2022ꞏ广东卷]密立根通过观测油滴的运动规律证明了电荷的量子性,因此获得了1923年的诺贝尔奖.如图是密立根油滴实验的原理示意图,两个水平放置、相距为d 的足够大金属极板,上极板中央有一小孔.通过小孔喷入一些小油滴,由于碰撞或摩擦,部分油滴带上了电荷.有两个质量均为m 0、位于同一竖直线上的球形小油滴A 和B ,在时间t 内都匀速下落了距离h 1.此时给两极板加上电压U(上极板接正极),A 继续以原速度下落,B 经过一段时间后向上匀速运动.B 在匀速运动时间t 内上升了距离h 2(h 2≠h 1),随后与A 合并,形成一个球形新油滴,继续在两极板间运动直至匀速.已知球形油滴受到的空气阻力大小为f =km 13v ,其中k 为比例系数,m 为油滴质量,v 为油滴运动速率.不计空气浮力,重力加速度为g.求:(1)比例系数k ;(2)油滴A 、B 的带电量和电性;B 上升距离h 2电势能的变化量; (3)新油滴匀速运动速度的大小和方向.参考答案1.答案:AC答案解析:设电子经电场加速后的速度为v 0,根据动能定理有U 0q =12 m v 20 ,离子在平行板间做类平抛运动,离开电场后做匀速直线运动,设速度方向与水平方向夹角为θ,则有tan θ=v y v 0=UL2U 0d ,根据几何关系可得电子打到圆筒上时的竖直位移y =⎝⎛⎭⎫D +L 2 tan θ=7.5sin 2πt (cm),电子打到白纸上形成的图像是按正弦规律展开的,如图所示,圆筒转动周期是交流电周期的一半,最大竖直位移不超过7.5 cm ,D 错误;由于剪开白纸的位置不同,得到不同的图像形状,若沿①剪开,图形如题图A 所示,若沿②剪开,图形如题图C 所示,因为圆筒周期是交流电周期的一半,电子落在白纸上图像是正弦图线的重合,A 、C 正确,B 错误.2.答案:AB答案解析: 小球静止时悬线与竖直方向成θ角,小球受重力、拉力和电场力而处于平衡状态,如图所示,根据平衡条件有mg tan θ=qE ,解得E =mg tan θq ,A 正确;小球恰能绕O 点在竖直平面内做圆周运动,在等效最高点A 速度最小,根据牛顿第二定律有mgcos θ =m v 2L ,则最小动能E k =12 m v 2=mgL2cos θ ,B 正确;小球的机械能和电势能之和守恒,则小球运动至电势能最大的位置机械能最小,小球带负电,则小球运动到圆周轨迹的最左端点时机械能最小,C 错误;小球从初始位置开始,在竖直平面内运动一周的过程中,电场力先做正功,后做负功,再做正功,则其电势能先减小后增大,再减小,D 错误.3.答案:BD答案解析:本题可以看成等效重力场问题,如图,等效重力方向斜向右下方45°,PQ为等效水平方向.小球的运动可以看成类斜上抛运动,小球动能最小时在斜上抛最高点,即如图速度为v ′处,v ′与水平方向夹角为45°,此时小球速度的水平分量等于竖直分量,不是电势能最大处,电势能最大处在Q 处,此时小球速度方向竖直向下,大小等于初速度v ,P 处与Q 处小球动能相等,所以A 、C 错误,B 正确;从P 到Q (Q 点处小球速度水平分量为零)重力做的功等于重力势能的减少量,P 处与Q 处小球动能相等,由于机械能与电势能的总和不变,所以减少的重力势能等于增加的电势能,故D 正确.4.答案:AD答案解析:带电小球q 2在半圆光滑轨道上运动时,库仑力不做功,故机械能守恒,则mgR =12 m v 2B ,解得v B =2gR ,A 正确;小球运动到B 点时的加速度大小为a =v 2B R =2g ,B 错误;小球运动过程中只有动能与重力势能相互转化,因此可以运动到C 点,C 错误;小球到达B 点时,受到重力mg 、库仑力F 和支持力F N ,根据牛顿第二定律有F N -mg -k q 1q 2R 2 =m v 2B R ,解得F N =3mg +k q 1q 2R 2 ,即小球在 B 点时对轨道的压力大小为3mg +k q 1q 2R 2 ,D 正确.5.答案:(1)qQ Cdm (2)12d 2m qT 2 36d 2mqT 2答案解析:(1)由C =Q U ,可知金属板间的电压为U =Q C 又因为E =Ud 且F =Qe ,故其所受的静电力F =Uqd ,根据牛顿第二定律,有a =F m =Uq dm =qQCdm .(2)u 1为正向,A 板电势高于B 板电势,振膜向右运动,如果一直做往复运动且不和金属板发生碰撞,则振膜在一个周期内的总位移应该为零,设u 2的电压为u 1的n 倍,则2×12 ×⎝⎛⎭⎫T 4+1n ꞏT 4 v =2(n -1)×12 ×n -1n ꞏT 4 ꞏv ,解得n =3;a 1=qU 1dm 不碰金属板,即12 a 1⎝⎛⎭⎫T 4 ⎝⎛⎭⎫T 4+T 12 ≤d 2,解得u 1≤12d 2m qT 2 则由两个电压的关系可得u 2≤36d 2m qT 2 . 6.答案:(1)6 ×10-3s 到达A 极板 (2)4×10-3s 时刻 (3)100个答案解析:(1)根据题图乙可知,从t =0时刻开始,A 板电势高于B 板电势,粒子向A 板运动.因为x =qU 04lm ⎝⎛⎭⎫T 2 2=3.6 m>l ,所以粒子从t =0时刻开始,一直加速到达A 板. 设粒子到达A 板的时间为t ,则l =12 ꞏqU 02lm t 2,解得t =6 ×10-3s. (2)在0~T 2 时间内,粒子的加速度大小为a 1=qU 02lm =2×105 m/s 2, 在T 2 ~T 时间内,粒子的加速度大小为a 2=2qU 02lm =4×105 m/s 2可知a 2=2a 1,若粒子在0~T 2 时间内加速Δt ,再在T 2 ~T 时间内减速Δt2 刚好不能到达A 板,则l =12 a 1Δt 2+a 1Δt ꞏΔt 2 -12 a 2ꞏ⎝⎛⎭⎫Δt 2 2 ⎝⎛⎭⎫或l =12a 1Δt ꞏ32Δt 解得Δt =2×10-3s因为T 2 =6×10-3s ,所以在0~T 2 时间内4×10-3s 时刻产生的粒子刚好不能到达A 板. (3)因为粒子源在一个周期内可以产生300个粒子,而在0~T 2 时间内的前23 时间内产生的粒子可以到达A 板,所以到达A 板的粒子数n =300×12 ×23 =100(个).7.答案:(1)3gR (2)mg2q (3)5.5 m答案解析:(1)小球从下端管口飞出时,根据牛顿第二定律有F N -mg =m v 2BR 且支持力F N =F N′=4mg联立解得v B =3gR .(2)小球从A 运动到管口B 的过程中,只有重力和电场力做功,根据动能定理得mgR +qER =12 m v 2B -0解得E =mg2q .(3)小球离开管口B 后,水平方向做匀加速直线运动,竖直方向做自由落体运动, 有h =12 gt 2解得t =1 s水平方向qE =ma ,解得a =0.5g水平距离x =v B t +12 at 2=3gR ꞏt +14 gt 2=(30×0.3 ×1 m +14 ×10×12)m =5.5 m . 8.答案:(1)m 230gth 1 (2)A 不带电,B 带负电 m 0gd (h 1+h 2)Uh 1 -m 0g (h 1+h 2)h 2h 1(3)h 1-h 2213t若h 1>h 2,则v ″>0,新油滴向下运动 若h 1=h 2,则v ″=0,新油滴静止 若h 1<h 2,则v ″<0,新油滴向上运动答案解析:(1)两小油滴匀速下落时,由题意得油滴的速度大小为v =h 1t 由于匀速下落,则油滴的重力等于其所受的空气阻力,即m 0g =f =km 130v 解得k =m 230gth 1.(2)给两极板加上电压,经过一段时间后B 向上匀速运动,而A 仍以原速度下落,说明A 不带电,B 带负电B 匀速上升的速度为v ′=h 2t对B 由平衡条件得q Ud =m 0g +km 13 0v ′解得q =m 0gd (h 1+h 2)Uh 1B 上升距离为h 2的过程,电场力做的功为 W =qEh 2=q Ud h 2=m 0g (h 1+h 2)h 2h1又W =-ΔE p则B 电势能的变化量为-m 0g (h 1+h 2)h 2h 1. (3)假设新油滴最终向下匀速运动,其速度大小为v ″,则新油滴所受空气阻力向上,由平衡条件得2m 0g =q Ud +k ꞏ(2m 0)13 v ″解得v ″=h 1-h 2213t若h 1>h 2,则v ″>0,新油滴向下运动 若h 1=h 2,则v ″=0,新油滴静止若h 1<h 2,则v ″<0,新油滴向上运动.。

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

高考物理:专题二十四、力学电学综合性应用问题(附解析答案)

高考物理:专题二十四、力学电学综合性应用问题(附解析答案)

专题二十四、力学电学综合性应用问题1.(2013高考浙江理综第24题)(20分)“电子能量分析器”主要由处于真空中的电子偏转器和探测板组成。

偏转器是由两个相互绝缘、半径分别为R A 和R B 的同心圆金属半球面A 和B 构成,A 、B 为电势值不等的等势面,其过球心的截面如图所示。

一束电荷量为e 、质量为m 的电子以不同的动能从偏转器左端M 的正中间小孔垂直入射,进入偏转电场区域,最后到达偏转器右端的探测板N ,其中动能为E k0的电子沿等势面C 做匀速圆周运动到达N 板的正中间。

忽略电场的边缘效应。

(1)判断球面A 、B 的电势高低,并说明理由;(2)求等势面C 所在处电场强度E 的大小;(3)若半球面A 、B 和等势面C 的电势分别为φA 、φB 和φC ,则到达N 板左、右边缘处的电子,经过偏转电场前、后的动能改变量ΔE K 左和ΔE K 右分别为多少?(4)比较|ΔE K 左|和|ΔE K 右|的大小,并说明理由。

解析:(1)电子(带负电)做圆周运动,电场力方向指向球心,电场方向从B 指向A ,B 板电势高于A 板。

(2)据题意,电子在电场力作用下做圆周运动,考虑到圆轨道上的电场强度B 大小相同,有:eE=mv 2/R ,E k0= mv 2/2,R=(R A +R B )/2,联立解得:E=k02E eR =()k04+A B E e R R (3)电子运动时只有电场力做功,根据动能定理,有:ΔE K =qU对到达N 板左侧边缘的电子,电场力做正功,动能增加,有:ΔE K 左=e(φB -φC )对到达N 板右侧边缘的电子,电场力做负功,动能减小,有:ΔE K 右=e(φA -φC )(4)根据电场线的特点,等势面B 与C 之间的电场强度大于C 与A 之间的电场强度,考虑到等势面间距相等,有:│φB-φC│>│φA-φC│即:│ΔE K左│>│ΔE K右│2.(2013高考浙江理综第25题)(22分)为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨。

高考物理考点《动量和能量的综合应用》真题练习含答案

高考物理考点《动量和能量的综合应用》真题练习含答案1.[2024·浙江省宁波十校联盟一模]如图,质量为0.1 kg 的方形铝管静置在足够大的绝缘水平面上,现使质量为0.2 kg 的条形磁铁(条形磁铁横截面比铝管管内横截面小)以v =3 m/s 的水平初速度自左向右穿过铝管,忽略一切摩擦,不计管壁厚度.则( )A .磁铁穿过铝管过程中,铝管受到的安培力可能先水平向左后水平向右B .磁铁穿过铝管后,铝管速度可能为4 m/sC .磁铁穿过铝管正中央时,铝管加速度为零D .磁铁穿过铝管过程所产生的热量可能达到0.2 J答案:D解析:根据楞次定律的“来拒去留”可知,磁铁对铝管的安培力一直水平向右,A 错误;磁铁与铝管组成的系统动量守恒,如果铝管足够长,则磁铁穿过铝管时二者共速,由动量守恒定律得m v =(M +m )v ′,解得v ′=1 m/s ,所以铝管的速度不可能大于1 m/s ,B 错误;磁铁穿过铝管正中央时,由楞次定律可知,磁铁始终受到铝管的磁场力方向向左,根据牛顿第三定律,磁铁对铝管的反作用力水平向右,根据牛顿第二定律得,铝管加速度不为零,C 错误;磁铁的初动能为E k1=12 m v 2=12×0.1×32 J =0.45 J ,假设铝管足够长,则二者共速,根据对B 项分析可知磁铁穿过铝管过程所产生的热量最多为Q =12 m v 2-12(M +m )v ′2=0.45 J -0.15 J =0.30 J ,所以磁铁穿过铝管过程所产生的热量可能达到0.2 J ,D 正确.2.如图所示,质量为M 的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m 的木块以初速度v 0水平地滑至车的上表面,若车足够长,则木块的最终速度大小和系统因摩擦产生的热量分别为( )A .M v 0m +M mM v 20 2(m +M )B .M v 0m +M mM v 20 m +MC .m v 0m +M mM v 20 2(m +M )D .m v 0m +M mM v 20 m +M答案:C解析:木块在小车上表面滑动的过程中动量守恒,有m v 0=(M +m )v ,系统因摩擦产生的热量Q =12 m v 20 -12 (M +m )v 2,两式联立解得木块的最终速度v =m v 0M +m,摩擦产生的热量Q =mM v 202(M +m ),C 正确. 3.如图所示,在光滑的水平面上静止一质量M =8 kg 的小车B ,小车左端固定一根轻质弹簧,弹簧的自由端C 到小车右端的距离L =1 m ,这段车厢板与木块A (可视为质点)之间的动摩擦因数μ=0.1,而弹簧自由端C 到弹簧固定端D 所对应的车厢板上表面光滑.木块A 以速度v 0=15 m/s 由小车B 右端开始沿车厢板表面向左运动.已知木块A 的质量m =2 kg ,重力加速度g 取10 m/s 2.则木块A 压缩弹簧过程中弹簧的最大弹性势能为( )A .45 JB .178 JC .225 JD .270 J答案:B解析:由题意知,小车和木块系统动量守恒,有m v 0=(M +m )v ,由能量守恒,得12m v 20 =12(M +m )v 2+μmgL +E pmax ,联立解得E pmax =178 J ,B 项正确. 4.[2024·浙江省宁波金兰教有合作组织联考]如图所示,质量为2m 、长为L 的长木板c 静止在光滑水平面上,质量为m 的物块b 放在c 的正中央,质量为m 的物块a 以大小为v 0的速度从c 的左端滑上c ,a 与b 发生弹性正碰,最终b 刚好到c 的右端与c 相对静止,不计物块大小,物块a 、b 与c 间动摩擦因数相同,重力加速度为g ,则下列说法正确的是( )A .a 与b 碰撞前b 的速度始终为零B .a 与b 碰撞后,a 与b 都相对c 滑动C .物块与木板间的动摩擦因数为3v 20 8gLD .整个过程因摩擦产生的内能为12m v 20 答案:C解析:物块a 滑上长木板c 后,假设物块b 与长木板c 一起滑动,设物块a 与长木板c间的动摩擦因数为μ,则有μmg =3ma ,解得a =13μg ,则物块b 与长木板c 间的静摩擦力为f 静=ma =13μmg <μmg =f max ,所以假设成立,物块b 与长木板c 一起做匀加速直线运动,速度并不为零,即a 滑上c 后,b 不会相对c 滑动.a 与b 发生弹性正碰,a 与b 质量相等,所以正碰后速度发生交换,物块a 的速度与长木板c 的相等,一起做匀加速直线运动,直到最终b 刚好滑到c 的右端与c 相对静止,A 、B 错误;b 刚好到c 的右端与a 、c 相对静止时,设共同速度为v 共,以a 、b 、c 为整体,系统动量守恒,则m v 0=(m +m +2m )v 共,根据能量守恒可得12 m v 20 -12(m +m +2m )v 2共 =μmgL =Q ,所以整个过程因摩擦产生的内能为Q =38 m v 20 ,物块与木板间的动摩擦因数为μ=3v 20 8gL,C 正确,D 错误. 5.如图所示,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一光滑圆弧轨道,BC 段是水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块(可视为质点)从小车上的A 点由静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C 点.已知M =3m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g .则下列说法正确的是( )A .滑块从A 滑到C 的过程中,滑块和小车组成的系统动量守恒B .滑块滑到B 点时的速度大小为2gRC .滑块从A 滑到C 的过程中,小车的位移大小为13(R +L ) D .水平轨道的长度L =R μ答案:D解析:滑块从A 滑到C 的过程中水平方向动量守恒,竖直方向上合力不为零,系统动量不守恒,故A 错误;滑块刚滑到B 点时速度最大,取水平向右为正方向,由水平方向动量守恒定律和机械能守恒定律得0=m v m -M v M ,mgR =12 m v 2m +12M v 2M ,解得v m = 3gR 2 ,v M = gR 6 ,滑块滑到B 点时的速度为 3gR 2,故B 错误;设全程小车相对地面的位移大小为s ,根据题意可知全程滑块水平方向相对小车的位移为R +L ,则滑块水平方向相对地面的位移为x ′=R +L -s ,滑块与小车组成的系统在水平方向动量守恒,取水平向右为正方向,在水平方向,由动量守恒定律得m (R +L -s )-Ms =0.已知M =3m ,解得s =14 (R +L ),x ′=34(R +L ),故C 错误;系统在水平方向动量守恒,以向右为正方向,对整个过程,由动量守恒定律得0=(m +M )v ′,解得v ′=0,由能量守恒定律得mgR =μmgL ,解得L =R μ,故D 正确. 6.如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1 kg 的小球a 从直轨道上的A 点以大小为4 m/s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2 m(未脱离轨道).取重力加速度大小g =10 m/s 2,两球均视为质点,不计空气阻力.下列说法正确的是( )A .碰撞后瞬间,小球b 的速度大小为1 m/sB .碰撞后瞬间,小球a 的速度大小为3 m/sC .小球b 的质量为3 kgD .两球会发生第二次碰撞答案:C解析:由机械能守恒m b gh =12m v 2B 可得碰后小球b 在B 点的速度为v B =2 m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒可得12 m a v 20 =12 m a v 21 +12m b v 2B ,联立求得m b =3 kg ,v 1=-2 m/s ,碰撞后瞬间,小球a 的速度大小为2 m/s ,故B 错误,C 正确;碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.7.如图甲所示,在光滑水平面上有A 、B 两个滑块,已知A 滑块的质量m A =1 kg ,初始时刻滑块B 静止,A 以一定的初速度向右运动,之后与B 发生碰撞并一起运动,它们的位移时间图像如图乙所示(规定向右为位移正方向),则:(1)碰撞前、后,滑块A 的速度分别为多大?(2)滑块B 的质量为多少?(3)滑块A 、B 碰撞过程中A 、B 系统损失的机械能为多少?答案:(1)4 m/s 1 m/s (2)3 kg (3)6 J解析:(1)由图乙可得,碰撞前A 的速度v A =164m/s =4 m/s 碰撞后A 、B 粘在一起的速度v =20-168-4m/s =1 m/s (2)依据动量守恒,有m A v A =(m A +m B )v解得m B =3 kg(3)A 、B 系统损失的机械能ΔE =12 m A v 2A -12(m A +m B )v 2 解得ΔE =6 J8.[2024·广东省深圳市外国语学校检测]如图所示为春节期间燃放的“火箭”型爆竹,由上下A 、B 两部分构成,A 的质量为0.1 kg ,B 的质量为0.2 kg ,A 、B 中间夹有少量火药.开始时让“火箭”在距地面1.8 m 高处自由释放,“火箭”着地瞬间以原速率反弹,同时火药爆炸,经极短时间后A 、B 分离,此时B 恰好停在地面上.不计空气阻力和“火箭”的体积,火药爆炸所释放的化学能全部转化为A 、B 的机械能,重力加速度取10 m/s 2.求(1)“火箭”着地时的速度大小;(2)A 上升的最大高度;(3)火药爆炸所释放的化学能.答案:(1)6 m/s (2)16.2 m (3)10.8 J解析:(1)“火箭”在距地面1.8 m 高处自由释放,做自由落体运动,则有v 2=2gh 解得“火箭”着地时的速度大小为v =2gh =2×10×1.8 m/s =6 m/s(2)“火箭”着地瞬间以原速率反弹,同时火药爆炸,经极短时间后A 、B 分离,此时B 恰好停在地面上,取向上为正方向,根据动量守恒可得(m A +m B )v =m A v ′解得v ′=18 m/sA 做竖直上抛运动,则有0-v ′2=-2gh ′解得A 上升的最大高度为h ′=v ′22g =1822×10m =16.2 m (3)根据能量守恒可得E 化=12 m A v ′2-12(m A +m B )v 2 解得火药爆炸所释放的化学能E 化=10.8 J9.有一款推拉门,其三扇门板俯视如图所示,每扇门的宽度均为L =1.00 m ,质量均为m =20 kg ,边缘凸起部位的宽度均为d =0.05 m .门完全关闭时,1号门板的左侧以及3号门板的右侧分别与两侧的门框接触时,相邻门板的凸起部位也恰好接触.测试时,将三扇门板均推至最左端,然后用恒力F 水平向右推3号门板,每次都经过相同的位移s =0.20 m 后撤去F ,观察三扇门的运动情况.发现当恒力为8.5 N 时,3号门板恰好能运动到其左侧凸起与2号门板右侧的凸起接触处.设每扇门与轨道间的动摩擦因数均相同,门板凸起部位间的碰撞及门板与门框的碰撞均为完全非弹性碰撞(不黏连).不考虑空气阻力,取g =10 m/s 2.(1)求每扇门与轨道间的动摩擦因数.(2)若要实现三扇门恰好完全关闭,则恒力应是多大?(3)若想让三扇门都到达最右侧门框处,则恒力至少是多大?答案:(1)0.01 (2)42.5 N (3)314.5 N解析:(1)设每扇门与轨道间的动摩擦因数为μ,根据动能定理F 1s -μmg (L -3d )=0解得μ=0.01(2)设3号门板和2号门板碰撞前速度的大小为v 1,根据动能定理F 2s -μmg (L -3d )=12m v 21 设3号门板和2号门板碰撞后速度的大小为v 2,根据动量守恒定律有m v 1=2m v 23号门板与2号门板碰撞后一起向右运动的过程中,根据动能定理-μ(2m )g (L -3d )=0-12(2m )v 22 解得F 2=42.5 N(3)设3号门板和2号门板碰撞前速度的大小为v 3,根据动能定理F 3s -μmg (L -3d )=12m v 23 设3号门板和2号门板碰撞后速度的大小为v 4,根据动量守恒定律有m v 3=2m v 43号门板与2号门板碰撞后一起向右运动到与门框接触前的速度大小为v 5,根据动能定理-μ(2m )g (L -3d )=12 (2m )v 25 -12(2m )v 24 设2号门板与1号门板碰撞后速度的大小为v 6,根据动量守恒定律有m v 5=2m v 6从2号门板与1号门板碰撞后到1号门板恰好停止过程中,根据动能定理-2μmg (L -3d )=0-12m v 26 联立解得F 3=314.5 N。

高考物理动能定理的综合应用题20套(带答案)

高考物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。

一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。

一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。

小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。

(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。

(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。

【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。

(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。

【2017年整理】高考物理真题分类解析专题24力学电学综合性应用问题

【2017年整理】高考物理真题分类解析专题24力学电学综合
性应用问题
解析:(1)逆时针方向。

撤去磁场瞬间,环所围面积的磁通量突变为零,由楞次定律可知,环中电流的磁场方向应与原磁场方向相同,即向上。

由安培定则可知,环中电流方向是沿逆时针方向。

(2)设圆环周长为L,电阻为R,由电阻定律,得R=ρL/S。

设t时间内环中电流释放焦耳热而损失的能量为△E,由焦耳定律得:△E=I2Rt。

设环中单位体积内定向移动电子数为n,则:
I=nevS。

式中n、e、S不变,只有定向移动电子的平均速率的变化才会引起环中电流的变化。

电流变化大小取△I时,相应定向移动电子的平均速率变化的大小为△v,则:△I=neS△v。

设环中定向移动电子减少的动能总和为△Ek,则:△Ek=nLS[
12mv2-12m(v-△v)2].由于△I<
△I。

根据能量守恒定律,得:△E=△Ek。

联立解得:ρ=
2
mvSIetI?。

(3)由ρ=2mvSIetI?看出,在题设条件限制下,适当增大超导电流,可以使实验获得ρ的准确程度更高。

通过增大穿过该环的磁通量变化率可实现增大超导电流。

2025年高考人教版物理一轮复习专题训练—带电粒子在电场中的力电综合问题(附答案解析)

错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!2025年高考人教版物理一轮复习专题训练—带电粒子在电场中的力电综合问题(附答案解析)1.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b。

不计空气阻力,则下列说法正确的是()A.小球带负电B.静电力与重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒2.(多选)(2023·黑龙江齐齐哈尔市八中模拟)如图所示,四分之一光滑绝缘圆弧槽B处切线水平,一可视为质点的带正电小球从圆弧槽A处由静止释放,滑到B处离开圆弧槽做平抛运动,到达水平地面的D处,若在装置所在平面内加上竖直向下的匀强电场,重复上述实验,下列说法正确的是()A.小球落地点在D的右侧B .小球落地点仍在D 点C .小球落地点在D 的左侧D .小球离开B 到达地面的运动时间减小3.(多选)(2022·浙江6月选考·15)如图为某一径向电场示意图,电场强度大小可表示为E =ar ,a 为常量。

比荷相同的两粒子在半径r 不同的圆轨道运动。

不考虑粒子间的相互作用及重力,则( )A .轨道半径r 小的粒子角速度一定小B .电荷量大的粒子的动能一定大C .粒子的速度大小与轨道半径r 一定无关D .当加垂直纸面磁场时,粒子一定做离心运动4.(2023·四川省三模)如图所示,A 、B 、C 、D 、E 、F 、G 、H 是竖直光滑绝缘圆轨道的八等分点,AE 竖直,空间存在平行于圆轨道面的匀强电场,从A 点静止释放一质量为m 的带电小球,小球沿圆弧恰好能到达C 点。

若在A 点给带电小球一个水平向右的冲量,让小球沿轨道做完整的圆周运动,则小球在运动过程中( )A .E 点的动能最小B .B 点的电势能最大C .C 点的机械能最大D .F 点的机械能最小5.(2023·江西上饶市二模)如图所示,在电场强度为E 的匀强电场中,电场线与水平方向的夹角为θ,有一质量为m的带电小球,用长为L的细线悬挂于O点,当小球静止时,细线OA 恰好呈水平状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力电综合应用题 复习精要对综合性强、过程较为复杂的题,一般采用“分段”处理,所谓的“分段”处理,就是根据问题的需要和研究对象的不同,将问题涉及的物理过程,按照时间和空间的发展顺序,合理地分解为几个彼此相对独立、又相互联系的阶段,再根据各个阶段遵从的物理规律逐个建立方程,最后通过各阶段的联系量综合起来解决,从而使问题化整为零,各个击破。

006江苏省南通市08届第一次基础调研测试16.(14分)如图所示,MN 是一固定在水平地面上足够长的绝缘平板(右侧有挡板),整个空间有平行于平板向左、场强为E 的匀强电场,在板上C 点的右侧有一个垂直于纸面向里、磁感应强度为B 的匀强磁场,一个质量为m 、带电量为-q 的小物块,从C 点由静止开始向右先做加速运动再做匀速运动.当物体碰到右端挡板后被弹回,若在碰撞瞬间撤去电场,小物块返回时在磁场中恰做匀速运动,已知平板NC 部分的长度为L ,物块与平板间的动摩擦因数为μ,求: (1)小物块向右运动过程中克服摩擦力做的功;(2)小物块与右端挡板碰撞过程损失的机械能;(3)最终小物块停在绝缘平板上的位置.解:(1)设小物块向右匀速运动时的速度大小为v1,由平衡条件有 01=+-)B qv mg (qE μ ①(1分)设小物块在向右运动过程中克服摩擦力做的功为W ,由动能定理有02121-=-mv W qEL ②(2分)由①②式解得qB mgqE v μμ-=1 ③22222B q )mg qE (m qEL W μμ--= ④(2分)(2)设小物块返回时在磁场中匀速运动的速度大小为v2,与右端挡板碰撞过程损失的机械能为E ∆,则有 02=-mg B qv⑤(2分)22212121mv mv E -=∆ ⑥(1分)由③⑤⑥式解得 22223222B q g m )mg qE (m E μμμ--=∆⑦(2分)(3)设最终小物块停止的位置在板上C 点左侧x 距离处,由能量守恒定律有mgx mv μ=2221 ⑧(2分)LMN E C B由⑤⑧式解得2222B q g m x μ= ⑨(2分)gk012.高考理综宁夏卷24、(17分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外.有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场.质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d .接着,质点进入磁场,并垂直于OC 飞离磁场.不计重力影响.若OC 与x 轴的夹角为φ,求:⑴粒子在磁场中运动速度的大小; ⑵匀强电场的场强大小.解: (1)质点在磁场中的轨迹为一圆弧。

由于质点飞离磁场时,速度垂直于OC ,故圆弧的圆心在OC 上。

依题意,质点轨迹与x 轴的交点为A ,过A 点作与A 点的速度方向垂直的直线,与OC 交于O '。

由几何关系知,AO '垂直于OC ',O '是圆弧的圆心。

设圆弧的半径为R ,则有ϕsin d R = ①由洛仑兹力公式和牛顿第二定律得R v mqvB 2= ② 将①式代入②式,解得: ϕsin m qBd v =③⑵质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a ,运动时间为t ,则有ϕcos v v =0 ④at sin v =ϕ ⑤d =v0t ⑥联立④⑤⑥解得:d cos sin v a ϕϕ2=⑦设电场强度的大小为E ,由牛顿第二定律得qE =ma ⑧联立③⑦⑧解得: ϕϕcos sin m dqB E 32= ⑨这道试题考查了带电粒子在匀强磁场中的匀速圆周运动的半径公式,通常这类试题要求掌握如何定圆心、确定半径,能画出轨迹图。

利用圆的几何知识和向心力公式解决相关问题。

y EAO xB Cvφ φ y O xCA φ E Bvφ O'008.07-08学年度唐山市重点中学模拟试卷三11.(13分)如图所示,一个质量为m =2.0×10-11kg ,电荷量q = +1.0×10-5C 的带电微粒(重力忽略不计),从静止开始经U1=100V 电压加速后,水平进入两平行金属板间的偏转电场中。

金属板长L=20cm ,两板间距310=d cm 。

求:(1)微粒进入偏转电场时的速度v0是多大?(2)若微粒射出偏转电场时的偏转角为θ=30°,并接着进入一个方向垂直于纸面向里的匀强磁场区,则两金属板间的电压U2是多大? (3)若该匀强磁场的宽度为310=D cm ,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B 至少多大?解:带电粒子经过三个物理过程,加速场中匀加速直线运动,偏转场中类平抛运动,匀强磁场中匀速圆周运动。

在确定圆周运动时要注意临界轨迹和临界半径以及圆心位置的确定。

(1)由动能定理得20121mv qU =(1分)得v0=1.0×104m/s(2)微粒在偏转电场中做类平抛运动,L=v0t ,md qU a 2=,at v y = (2分) 飞出电场时,速度偏转角的正切为312120===d U L U v v tan y θ (2分)解得 U2=100V (1分)(3)进入磁场时微粒的速度是θcos v v 0=(2分)轨迹如图,由几何关系得,轨道半径32Dr =(2分)由洛伦兹力充当向心力:r mv Bqv 2=得Bq mv r = (2分) 解得B =0.20T (1分)所以,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B 至少为0.20T 。

034.徐州市07—08学年度第一次质量检测18.(13分)如图所示,粒子源S 可以不断地产生质量为m 、电荷量为+q 的粒子(重力不计).粒子从O1孔漂进(初速不计)一个水平方向的加速电场,再经小孔O2进入相互正交的匀强电场和匀强磁场区域,电场强度大小为E ,磁感应强度大小为B1,方向如图.虚线PQ 、MN 之间存在着水平向右的匀强磁场,磁感应强度大小为B2(图中未画出).有一块折成直角的硬质塑料板abc(不带电,宽度很窄,厚度不计)DθBU 1U 2vD θBU1U2 v0r放置在PQ 、MN 之间(截面图如图),a 、c 两点恰在分别位于PQ 、MN 上,ab=bc=L ,α= 45°.现使粒子能沿图中虚线O2O3进入PQ 、MN 之间的区域. (1) 求加速电压U1.(2)假设粒子与硬质塑料板相碰后,速度大小不变,方向变化遵守光的反射定律.粒子在PQ 、MN 之间的区域中运动的时间和路程分别是多少?解:(1)粒子源发出的粒子,进入加速电场被加速,速度为v0,根据能的转化和守恒定律得:20121mv qU =(2分)要使粒子能沿图中虚线O2O3进入PQ 、MN 之间的区域, 则粒子所受到向上的洛伦兹力与向下的电场力大小相等, B qv qE 0=得到10B Ev =(2分)将②式代入①式,得21212qB mE U =(1分)(2)粒子从O3以速度v0进入PQ 、MN 之间的区域,先做匀速直线运动,打到ab 板上,以大小为v0的速度垂直于磁场方向运动.粒子将以半径R 在垂直于磁场的平面内作匀速圆周运动,转动一周后打到ab 板的下部.由于不计板的厚度,所以质子从第一次打到ab 板到第二次打到ab 板后运动的时间为粒子在磁场运动一周的时间,即一个周期T . 由R mv qvB 202=和运动学公式02v R T π=,得22qB m T π= (2分)粒子在磁场中共碰到2块板,做圆周运动所需的时间为T t 21= (2分)粒子进入磁场中,在v0方向的总位移s=2Lsin45°,时间为02v st =(2分)则t=t1+t2=EL B qB m 1224+π (2分)004.南京师大物理之友电学综合(二) 21、如图所示,坐标系xOy 在竖直平面内,水平轨道AB 和斜面BC 均光滑且绝缘,AB 和BC 的SO 1 O 2O 3 B2 B1U 1EPQabc α+ + + + + + +- - - -αMN长度均为L ,斜面BC 与水平地面间的夹角θ=600ׁ,有一质量为m 、电量为+q 的带电小球(可看成质点)被放在A 点。

已知在第一象限分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强大小q mgE =2,磁场为水平方向(图中垂直纸面向外),磁感应强度大小为B ;在第二象限分布着沿x轴正向的水平匀强电场,场强大小m qLB E 621=。

现将放在A 点的带电小球由静止释放,则小球需经多少时间才能落到地面(小球所带的电量不变)?解:设带电小球运动到B 点时速度为vB 则由功能关系:2121Bmv qL E =解得:m BLq v B 33= ① 设带电小球从A 点运动到B 点用时为t1,则由动量定理:qB mt mv qt E B 32:111==解得 ②当带电小球进入第二象限后所受电场力为mgq E F ==2电 ③所以带电小球做匀速圆周运动:R v mBqv BB 2= ④ 则带电小球做匀速圆周运动的半径L qB mv R B 33==⑤则其圆周运动的圆心为如图所示的O '点,L cos BC OC ,L R BO O O ,L cos BC BO 2160632330=⋅==-='=⋅=假设小球直接落在水平面上的C '点,则OC L O O R C O =='-='21)(22C C 与'∴重合,小球正好打在C 点。

120='∠C O BO 60A yx E2DCB EO 60A yxE2CEO ′ B所以带电小球从B 点运动到C 点运动时间qB m T t 32312π== ⑥ 所以小球从A 点出发到落地的过程中所用时间.323221qB mqB m t t t π+=+= ⑦036.江苏泰州市07~08学年度第二学期期初联考17.(本题15分)如图所示,水平细杆MN 、CD ,长度均为L 。

两杆间距离为h ,M 、C 两端与半圆形细杆相连,半圆形细杆与MN 、CD 在同一竖直平面内,且MN 、CD 恰为半圆弧在M 、C 两点处的切线。

质量为m 的带正电的小球P ,电荷量为q ,穿在细杆上,已知小球P 与两水平细杆间的动摩擦因数为μ,小球P 与半圆形细杆之间的摩擦不计,小球P 与细杆之间相互绝缘。

(1)若整个装置处在方向与之垂直、磁感应强度为B 的匀强磁场中,如图(甲)所示。

小球P 以一定的初速度v0从D 端出发,沿杆滑到M 点以后恰好在细杆MN 上匀速运动。

求: ①小球P 在细杆MN 上滑行的速度;②小球P 滑过DC 杆的过程中克服摩擦力所做的功;(2)撤去磁场,在MD 、NC 连线的交点O处固定一电荷量为Q 的负电荷,如图(乙)所示,使小球P 从D 端出发沿杆滑动,滑到N 点时速度恰好为零。

相关文档
最新文档