2012-2013学年湖北省黄冈市红安二中九年级(上)期中数学模拟试卷

合集下载

黄冈市九年级上学期期中数学试卷

黄冈市九年级上学期期中数学试卷

黄冈市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2019八下·江门月考) 甲、乙两人分别从,两地相向而行,他们距地的距离与时间的关系如图所示,下列说法错误的是()A . 甲的速度是B . 甲出发4.5小时后与乙相遇C . 乙比甲晚出发2小时D . 乙的速度是2. (2分)(2017·高邮模拟) 已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是()A . c=4B . ﹣5<c≤4C . ﹣5<c<3或c=4D . ﹣5<c≤3或c=43. (2分) (2019九上·苏州开学考) 如图,已知点是反比例函数在第一象限图像上的一个动点,连接,以为长,为宽作矩形,且点在第四象限,随着点的运动,点也随之运动,但点始终在反比例函数的图像上,则的值为()A .B .C .D .4. (2分)二次函数的图象经过三点,则它的解析式为()A .B .C .D .5. (2分)(2019·金堂模拟) 将抛物线=(x+1)2向右平移3个单位,再向下平移2个单位,得到抛物线解析式为()A .B . y=C . y=D .6. (2分)如图,已知点E(-4,2)、F(-1,-1),以点O为位似中心,按比例尺1:2把△EFO缩小,则点E的对应点E'的坐标为()A . (2,-1)或(-2,1)B . (8,-4)或(-8,4)C . (2,-1)D . (8,-4)7. (2分)(2020·宿州模拟) 如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=上一点,k的值是()A . 4B . 8C . 16D . 248. (2分)(2017·温州模拟) 如图1,菱形纸片ABCD的边长为2,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P(如图2),则六边形AEFCHG面积的最大值是()A .B .C . 2﹣D . 1+9. (2分)(2020·宿州模拟) 如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD =()A .B .C .D .10. (2分)如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为()A . (,-)B . (-,)C . (-, )D . (,-)二、填空题: (共4题;共5分)11. (1分) (2016九上·永嘉月考) 已知二次函数的图象(0≤x≤3)如图所示,则当0≤x≤3时,函数值y 的范围是________.12. (1分) (2017九下·杭州开学考) 如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=________.13. (1分)(2018·成华模拟) 如图,直线y= x-8分别交x轴,y轴于点A和点B,点C是反比例函数y= (x>0)的图象上位于直线上方的一点,CD∥x轴交AB于D,CE⊥CD交AB于E,AD·BE=4,则k的值为________.14. (2分)(2017·河西模拟) 如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).三、解答题。

湖北省九年级上学期期中数学试卷(II )卷

湖北省九年级上学期期中数学试卷(II )卷

湖北省九年级上学期期中数学试卷(II )卷一、选择题 (共12题;共24分)1. (2分)下列各组数中,互为相反数的是()A . 2与B . (-1)2与1C . -1与(-1)3D . -(-2)与2. (2分)(2017·新泰模拟) 观察下列图形,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)计算2m2n-3m2n的结果为()A . -1B . -C . -m2nD . -6m4n24. (2分)(2016·三门峡模拟) 如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A . 3次B . 4次C . 5次D . 6次5. (2分)(2017·金华) 对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是()A . 对称轴是直线x=1,最小值是2B . 对称轴是直线x=1,最大值是2C . 对称轴是直线x=−1,最小值是2D . 对称轴是直线x=−1,最大值是26. (2分)二次函数的图象的顶点坐标是()A . (-1,3)B . (-1,-3)C . (1,-3)D . (1,3)7. (2分)用配方法解方程x2+10x+9=0,配方后可得()A . (x+5)2=16B . (x+5)2=1C . (x+10)2=91D . (x+10)2=1098. (2分)已知反比例函数,当x>0时,y随x的增大而减小,,则关于x的方程的根的情况是()A . 有两个正根B . 有两个负根C . 有一个正根一个负根D . 没有实数根9. (2分) (2017九上·临海期末) 如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=40°,∠D=110°,则∠α的度数是()A . 30°B . 40°C . 50°D . 60°10. (2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A . 48(1﹣x)2=36B . 48(1+x)2=36C . 36(1﹣x)2=48D . 36(1+x)2=4811. (2分)如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是()A . 56B . 63C . 70D . 7712. (2分)(2014·深圳) 二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1 , x2 ,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A . 2B . 3C . 4D . 5二、填空题 (共6题;共6分)13. (1分) (2017八上·乐清期中) 点A(-3,1)关于原点对称的点的坐标是________.14. (1分) (2018九上·无锡月考) 已知、是方程的两个根,则代数式的值为________.15. (1分)有下列函数:①y=(2x﹣1)2﹣4x2;②y=2x2;③y= (a≠0);④y=x2+2x+1.其中y是x的二次函数有________.(填序号)16. (1分)(2017·沂源模拟) 据某市统计网消息,在全国第六次人口普查中显示,该市常住人口总数约为5400000人,将这个总人口数用科学记数法表示为________.17. (1分)(2016·西安模拟) 某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为________元.18. (1分) (2018八下·邗江期中) 如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是________.三、解答题 (共8题;共120分)19. (5分)解方程:x2-3x+2=020. (30分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(3)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(4)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(5)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).(6)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21. (5分)已知y1=x2﹣9,y2=3﹣x,当x为何值时,y1=y2?22. (10分)(2018·资中模拟) 已知抛物线y=﹣x2+2x+2.(1)写出它的开口方向、对称轴和顶点坐标;(2)在如图3的直角坐标系内画出y=﹣x2+2x+2的图象.23. (15分)(2017·鹤岗模拟) 如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.24. (10分)(2017·淄川模拟) 目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?25. (30分)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(1)当F为BE中点时,求证:AM=CE;(2)当F为BE中点时,求证:AM=CE;(3)若==2,求的值;(4)若==2,求的值;(5)若==n,当n为何值时,MN∥BE?(6)若==n,当n为何值时,MN∥BE?26. (15分)(2018·无锡模拟) 如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.参考答案一、选择题 (共12题;共24分)1、答案:略2、答案:略3、答案:略4、答案:略5、答案:略6、答案:略7、答案:略8、答案:略9、答案:略10、答案:略11、答案:略12、答案:略二、填空题 (共6题;共6分)13、答案:略14、答案:略15、答案:略16、答案:略17、答案:略18、答案:略三、解答题 (共8题;共120分)19、答案:略20、答案:略21、答案:略22、答案:略23、答案:略24、答案:略25、答案:略26、答案:略第11 页共11 页。

九年级(上)期中数学试卷附试卷答案

九年级(上)期中数学试卷附试卷答案

九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.2.在平面直角坐标系中,反比例函数y=﹣的图象分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.已知两条直线被三条平行线所截,截得线段的长度如图所示,则x的值为()A.3 B.4 C.5 D.64.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=95.如图所示,在⊙O中,OB⊥OC于点O,则∠BAC的度数为()A.30°B.45°C.60°D.90°6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条7.二次函数y=(x+1)(x﹣3)的图象的对称轴是()A.直线x=1 B.直线x=2 C.直线x=3 D.直线x=﹣18.如果△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形9.如图,先将一张长方形的纸沿虚线对折,再对折,然后按图中虚线剪下,将剪下的纸展开,一定可以得到一个()A.菱形B.矩形C.正方形D.梯形10.下列四个函数中,在各自的自变量的取值范围内,函数值y随x值的增大而增大的函数是()A.y=﹣x B.y=3﹣2x C.y=(x>0)D.y=x2(x>0)二、填空题(每小题4分,共16分)11.方程x2=2x的根为.12.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是度.13.二次函数y=2(x+3)2的图象向平移个单位长度就可以得到二次函数y=2x2的图象.14.如图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD•BC=.三、解答题(本大题共6个小题,共54分)15.(1)计算:|﹣2|﹣2sin30°+(﹣)2+(tan45°)﹣1(2)解方程:2x2﹣5x﹣3=0.16.已知关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,求k 的值.17.如图,甲、乙两楼的距离AC=30cm,甲楼高AB=40m,自甲楼楼顶的B处看乙楼楼顶的D处,仰角为28°,求乙楼的高CD的长.(结果精确到0.1m,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)18.如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色)小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)请用列表或画树状图的方法求两人转动转盘得到的两种颜色能配成紫色的概率;(2)两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?说说你的理由.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(2,m)两点,连接OA,OB.(1)分别求这两个函数的表达式;(2)直接写出使得一次函数y=kx+b的值大于反比例函数y=的值的x的取值范围,并求出△OAB的面积.20.如图,在⊙O中,直径AB=4,点C在⊙O上,且∠AOC=60°,连接BC,点P 在BC上(点P不与点B,C重合),连接OP并延长交⊙O于点M,过P作PQ⊥OM交于点Q.(1)求BC的长;(2)当PQ∥AB时,求PQ的长;(3)点P在BC上移动,当PQ的长取最大值时,试判断四边形OBMC的形状,并说明理由.四、填空题(每小题4分,共20分)21.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为.22.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的番号是.23.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.24.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB=.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.五、解答题(本大题共3个小题,共30分)26.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.27.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.28.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到2列正方形的个数依次为2,1,故选:D.2.在平面直角坐标系中,反比例函数y=﹣的图象分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质.【分析】直接根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=﹣中,k=﹣3<0,∴此函数图象的两个分支分别位于第二四象限.故选C.3.已知两条直线被三条平行线所截,截得线段的长度如图所示,则x的值为()A.3 B.4 C.5 D.6【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵两条直线被三条平行线所截,∴,解得:x=4,故选:B.4.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程﹣配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.5.如图所示,在⊙O中,OB⊥OC于点O,则∠BAC的度数为()A.30°B.45°C.60°D.90°【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵ON⊥OC,∴∠BOC=90°,∴∠BAC=∠BOC=×90°=45°.故选B.6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C7.二次函数y=(x+1)(x﹣3)的图象的对称轴是()A.直线x=1 B.直线x=2 C.直线x=3 D.直线x=﹣1【考点】二次函数的性质.【分析】先根据二次函数的解析式求出函数图象与x轴的交点,再根据两交点关于对称轴对称即可得出结论.【解答】解:∵二次函数的解析式为:y=(x+1)(x﹣3),∴此抛物线与x轴的交点为(﹣1,0),(3,0),∴抛物线的对称轴为直线x==1.故选A.8.如果△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,直接得出∠A,∠B的角度从而得出答案.【解答】解:∵sinA=cosB=,∴∠A=∠B=45°,∴△ABC是等腰直角三角形.故选C.9.如图,先将一张长方形的纸沿虚线对折,再对折,然后按图中虚线剪下,将剪下的纸展开,一定可以得到一个()A.菱形B.矩形C.正方形D.梯形【考点】剪纸问题;菱形的判定.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以进行从题后的答案中选择.【解答】解:由题意知,对折实际上就是对称,对折2次的话,剪下应有4条边,并且这4条边还相等,只有菱形满足这一条件.故选:A.10.下列四个函数中,在各自的自变量的取值范围内,函数值y随x值的增大而增大的函数是()A.y=﹣x B.y=3﹣2x C.y=(x>0)D.y=x2(x>0)【考点】反比例函数的性质;一次函数的性质;正比例函数的性质;二次函数的性质.【分析】画出函数的图象即可判断.【解答】解:函数y=x2(x>0)的图象如图所示,图象从左到右是上升的,y随x值的增大而增大,故选D.二、填空题(每小题4分,共16分)11.方程x2=2x的根为x1=0,x2=2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或x﹣2=0,x1=0,x2=2,故答案为:x1=0,x2=2.12.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是30度.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】设坡角为α,根据坡度的定义求出坡角的正切值,根据特殊角的三角函数值解答即可.【解答】解:设坡角为α,∵斜坡的坡度为i=1:,∴tanα==,∴α=30°,故答案为:30.13.二次函数y=2(x+3)2的图象向右平移3个单位长度就可以得到二次函数y=2x2的图象.【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”平移规律即可解决.【解答】解:根据二次函数图象的平移规律“左加右减,上加下减”,可知:二次函数y=2(x+3)2的图象向右平移3个单位长度就可以得到二次函数y=2x2的图象.故答案为:右,3.14.如图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD•B C=10.【考点】相似三角形的判定与性质.【分析】由条件可证明△ADE∽△ABC,可得=,即得到AD•BC=DE•AB,代入可求得答案.【解答】解:∵∠ADE=∠B,∠EAD=∠CAB,∴△ADE∽△ABC,∴=,∴AD•BC=DE•AB,且DE=2,AB=5,∴AD•BC=10,故答案为:10.三、解答题(本大题共6个小题,共54分)15.(1)计算:|﹣2|﹣2sin30°+(﹣)2+(tan45°)﹣1(2)解方程:2x2﹣5x﹣3=0.【考点】解一元二次方程﹣因式分解法;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值得到原式=2﹣2×+3+1﹣1,然后根据零指数幂和负整数指数幂的意义计算;(2)利用因式分解法求解.【解答】解:(1)原式=2﹣2×+3+1﹣1=2﹣2+3+1=4;(2)(2x+1)(x﹣3)=0,2x+1=0或x﹣3=0,所以x1=﹣,x2=316.已知关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,求k 的值.【考点】根的判别式.【分析】由方程的系数结合根的判别式即可得出关于k的一元二次方程,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,∴△=[2(k﹣1)]2﹣4=4k2﹣8k=0,解得:k1=0,k2=2.答:k的值为0或2.17.如图,甲、乙两楼的距离AC=30cm,甲楼高AB=40m,自甲楼楼顶的B处看乙楼楼顶的D处,仰角为28°,求乙楼的高CD的长.(结果精确到0.1m,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可以得到CD的长就是甲楼的高加上BE•tan28°的和,从而可以解答本题.【解答】解:作BE⊥CD,如右图所示,∴∠BED=90°,由题意可得,AC=BE,∴BE=30m,在Rt△BDE中,∠DBE=28°,∴,∴DE=30×tan28°,∵AB=40,AB=CE,∴CD=DE+CE=30×tan28°+40≈30×0.53+40=55.9m,即乙楼的高CD的长是55.9m.18.如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色)小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)请用列表或画树状图的方法求两人转动转盘得到的两种颜色能配成紫色的概率;(2)两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?说说你的理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意,用列表法将所有可能出现的结果,根据概率公式即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,继而可得小亮获胜,得到结论不公平.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.红蓝黄蓝(红,蓝)(蓝,蓝)(黄,蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)则两人转动转盘得到的两种颜色能配成紫色的概率为=;(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小明获胜的概率是;小亮获胜的概率为1﹣=,而>,即小亮获胜的概率大,∴这个“配色”游戏对双方是不公平的.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(2,m)两点,连接OA,OB.(1)分别求这两个函数的表达式;(2)直接写出使得一次函数y=kx+b的值大于反比例函数y=的值的x的取值范围,并求出△OAB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A(﹣1,2)代入反比例函数y=求出n的值即可得出其函数解析式,再把B(2,m)代入反比例函数的解析式即可得出m的值,把AB两点的坐标代入一次函数y=kx+b,求出k、b的值即可得出其解析式;(2)直接根据函数图象可得出x的取值范围,求出一次函数与x轴的交点坐标,再根据三角形的面积公式即可得出结论.【解答】解:(1)∵A(﹣1,2)在反比例函数y=的图象上,∴n=2×(﹣1)=﹣2,∴其函数解析式为y=﹣;∵B(2,m)在反比例函数的图象上,∴m=﹣=﹣1,∴B(2,﹣1).∵A(﹣1,2),B(2,﹣1)两点在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为:y=﹣x +1;(2)∵A (﹣1,2),B (2,﹣1),∴一次函数y=kx +b 的值大于反比例函数y=的值时,0<x <2或x <﹣1. ∵一次函数的解析式为:y=﹣x +1, ∴D (1,0), ∴OD=1,∴S △OAB =S △OAD +S △OBD =×1×2+×1×1=1+=.20.如图,在⊙O 中,直径AB=4,点C 在⊙O 上,且∠AOC=60°,连接BC ,点P 在BC 上(点P 不与点B ,C 重合),连接OP 并延长交⊙O 于点M ,过P 作PQ ⊥OM 交于点Q .(1)求BC 的长;(2)当PQ ∥AB 时,求PQ 的长;(3)点P 在BC 上移动,当PQ 的长取最大值时,试判断四边形OBMC 的形状,并说明理由.【考点】圆的综合题.【分析】(1)在Rt△ABC中,根据BC=AB•sin60°计算即可.(2)在Rt△POB中,求出OP,再根据勾股定理即可计算.(3)因为PQ=,OQ是定值,所以OP最小时,PQ最长,所以当OM ⊥BC时,OP最短,此时PQ最长,由此即可解决问题.【解答】解:(1)如图1中,连接AC.∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴∠A=60°,∵AB是直径,∴∠ACB=90°,∵AB=4,∴BC=AB•sin60°=4×=2.(2)如图2中,连接OQ.∵PQ∥AB,PQ⊥OM,∴OM⊥AB,∴∠POB=90°,∵∠B=30°,∴OP=OB•tan30°=,在Rt△OPQ中,PQ===.(3)如图3中,∵PQ=,OQ是定值,∴OP最小时,PQ最长,∴当OM⊥BC时,OP最短,此时PQ最长,PQ=BC=,∴PQ的最大值为.此时四边形OBMC为菱形.理由:连接BM、CM.∵OM⊥BC,OC=OB,∴∠POB=∠POC=60°,∵OB=OM=OC,∴△OMB,△OCM是等边三角形,∴OC=OB=BM=CM,∴四边形OBMC是菱形.四、填空题(每小题4分,共20分)21.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为3.【考点】根与系数的关系.【分析】由韦达定理可得m+n=2.将其代入原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1可得答案.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m,n,∴m+n=2,则原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1=4﹣1=3,故答案为:3.22.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的番号是①②④.【考点】二次函数图象与系数的关系.【分析】①由抛物线与x轴的交点在y轴正半轴可得出c>0,①正确;②由抛物线与x轴有两个不相同的交点可得出b2﹣4ac>0,②正确;③由抛物线的对称轴为x=﹣1可得出b=2a,③错误;④由抛物线的对称轴结合点A的坐标即可得出抛物线与x轴的另一交点坐标为(1,0),进而可得出a+b+c=0,④正确.综上即可得出结论.【解答】解:①∵抛物线与y轴交点在y轴正半轴,∴c>0,①正确;②∵抛物线与x轴有两个不同的交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴b2>4ac,②正确;③∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,③错误;④∵抛物线对称轴为直线x=﹣1,且点A的坐标为(﹣3,0),∴抛物线与x轴另一交点的坐标为(1,0),∴当x=1时,y=a+b+c=0,④正确.综上所述:正确结论的番号是①②④.故答案为:①②④.23.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.【考点】列表法与树状图法;二次函数的性质.【分析】根据题意可以所有的可能性,根据所得抛物线中,满足开口向下且对称轴在y轴左侧可以判断a、b的正负,从而可以得到所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率.【解答】解:由题意可得,所有的可能性是:(1,2)、(1,﹣1)、(1,﹣3)、(2,1)、(2,﹣1)、(2,﹣3)、(﹣1,1)、(﹣1,2)、(﹣1,﹣3)、(﹣3,1)、(﹣3,2)、(﹣3,﹣1),∵所得抛物线中,满足开口向下且对称轴在y轴左侧,∴a<0,b<0,∴所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是:,故答案为:.24.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB=24.【考点】三角形的外接圆与外心.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解答】解:作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,有圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴=,即=,解得,AB=24,故答案为:24.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为4+;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【考点】翻折变换(折叠问题);解直角三角形.【分析】①如图作AM⊥BC于M.在Rt△ABM中,由∠AMB=90°,∠B=45°,推出BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,根据AC2=AM2+CM2,可得方程52=x2+(4﹣x)2,求出x即可解决问题.②如图作FN⊥BC于N.由△ACF∽△ABC,得到AC2=AF•AB,推出AF=,BF=AB ﹣AF=,求出FN、CN,根据tan∠BCD=计算即可.【解答】解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.五、解答题(本大题共3个小题,共30分)26.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意即可求得y与x的函数关系式为y=(30﹣2x)x;(2)根据“种植园的面积不小于100m2”列出一元二次不等式,解之可得,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.【解答】解:(1)根据题意得:y=(30﹣2x)x=﹣2x2+30x,(2)由题意得:﹣2x2+30x≥100,解得:5≤x≤10,∵30﹣2x≤18,∴x≥6,∴6≤x≤10,∵y=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,这个种植园的面积的最大值,最大面积为112.5m2.27.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.【考点】三角形综合题.【分析】(1)如图1中,设AD与EF交于点O.首先证明∠AFE=∠EDB,∠FAE=∠B,由∠CAB+∠AFE+∠AEF=180°,∠B+∠BDE+∠DEB=180°,即可证明.(2)如图2中,过A作AG∥ED交BC的延长线于点G.是怎么CG=CD,由DE ∥AG,推出=,由△AEF∽△BED,推出=,推出=,推出DG=AF 即可解决问题.(3)分两种情形求解即可①如图3中,当DE=DF时,易知AD垂直平分线段EF,作DH⊥AB于H.列出方程求解.②当DE=EF时,由△AEF∽△BED,推出AF=BD,CF=CD,即x=y,由此即可解决问题.【解答】解:(1)如图1中,设AD与EF交于点O.∵AD⊥EF,∴∠FOD=∠C=90°,∴∠CDA+∠CFO=180°,∵∠CFO+∠AFE=180°,∴∠AFE=∠ADC=∠ADB,∵CA=CB,∴∠CAB=∠B=45°,∵∠CAB+∠AFE+∠AEF=180°,∠B+∠BDE+∠DEB=180°,∴∠AEF=∠BED.(2)如图2中,过A作AG∥ED交BC的延长线于点G.∵DE∥AG,∴∠G=∠BDE,∵∠BDE=∠ADG,∴∠G=∠ADG,∴AG=AD,∵AC⊥DG,∴GC=CD=x,∴=,∵∠FAE=∠B,∠AEF=∠DEB,∴△AEF∽△BED,∴=,∴=,∴DG=AF,∴2x=2﹣y,∴y=﹣2x+2.(0<x≤1).(3)①如图3中,当DE=DF时,易知AD垂直平分线段EF,作DH⊥AB于H.∵DA平分∠CAB,DC⊥CA,DH⊥AB,∴DC=DH=x,∵∠B=∠HDB=45°,∴BD=x,∴x+x=2,∴x=2﹣2,∴CD=2﹣2.②当DE=EF时,∵△AEF∽△BED,∴AF=BD,CF=CD,∴x=y,∴x=﹣2x+2,∴x=,∴CD=.∴当△DEF是以DE为腰的等腰三角形时,CD的长2﹣2或.28.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.【考点】二次函数综合题.【分析】(1)由直线解析式求出A 、B 坐标,然后得出C 点坐标,再用待定系数法求出抛物线解析式;(2)①过D 作DE ∥y 轴交AB 于E ,则S △ABD =S △BDE +S △ADE =,设出D 点的横标,纵坐标用横坐标表示,同时表示出E 点坐标,从而得出△ABD 的面积表达式,再根据△ABD 的面积为,列出方程解之即可;②分两种情况:第一种,D 为直角顶点;第二种,P 为直角顶点.对于第一种情况,可以验证抛物线的顶点与D 、A 一起刚好构成直角三角形,即P 点就是抛物线的顶点;对于第二种情况,过点P 作GH ∥x 轴,DG ⊥GH 于G ,AH ⊥GH 于H ,由△DGP ∽△PHA 列出相似比例关系求解.【解答】解:(1)当y=0时,2x ﹣10=0,解得x=5,则A (5,0),当x=0时,y=2x ﹣10=﹣10,则B (0,﹣10)∵点C 为OB 的中点,∴C (0,﹣5),把A (5,0),C (0,﹣5)代入y=﹣x 2+bx +c 得,解得,∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①过D 作DE ∥y 轴交AB 于E ,如图,设D (x ,﹣x 2+6x ﹣5),则E (x ,2x ﹣10),∵S △ABD =S △BDE +S △ADE =×5×DE=(﹣x 2+6x ﹣5﹣2x +10) ∴(﹣x 2+6x ﹣5﹣2x +10)=,整理得x 2﹣4x +4=0,解得x 1=x 2=2,∴D (2,3);②∵抛物线解析式为y=﹣x 2+6x ﹣5,∴抛物线的顶点为M (3,4),∴MD=,AD=3,AM=2,∴MD 2+AD 2=AM 2,∴MD ⊥AD ,若D 为直角顶点,则P 与M 点重合,即P (3,4),如图,此时P 点到抛物线对称轴的距离为0;若P 为直角顶点,如图,过点P作GH∥x轴,DG⊥GH于G,AH⊥GH于H,∵∠APD=90°,∴△DGP∽△PHA,∴,设P(t,﹣t2+6t﹣5),则:GP=t﹣2,DG=﹣t2+6t﹣5﹣3,PH=5﹣t,AH=﹣t2+6t﹣5,∴,∴,∴,∴t2﹣5t+5=0,∴t=,∴P点坐标为(,)或(,);若P点坐标为(,),则P点到抛物线对称轴的距离为,若P点坐标为(,),则P点到抛物线对称轴的距离为.。

2012-2013学年湖北省黄冈市麻城市集美学校九年级(上)期末数学模拟试卷

2012-2013学年湖北省黄冈市麻城市集美学校九年级(上)期末数学模拟试卷

九年级(上)期末数学模拟试卷一.选择题(每小题3分,共24分)1.(3分)(2011•安徽模拟)下面图形:平行四边形,正三角形,正方形,等腰梯形,正六边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为()A.B.C.D.2.(3分)(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.73.(3分)(2012秋•麻城市校级期末)若关于x一元二次方程(m+2)x2+5x+m2+3m+2=0的常数项为0,则m的值等于()A.﹣1 B.﹣2 C.﹣1或﹣2 D.04.(3分)(2008•内江)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,且AB>AD+BC,AB是⊙O的直径,则直线CD与⊙O的位置关系为()A.相离 B.相切 C.相交 D.无法确定5.(3分)(2009•尤溪县校级自主招生)在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°(如图),则r与R之间的关系是()A.R=2r B.R=r C.R=3r D.R=4r6.(3分)(2012•深圳模拟)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P 的半径的比为()A.5﹕3 B.4﹕1 C.3﹕1 D.2﹕17.(3分)(2006•眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°8.(3分)(2008•天门)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2012•深圳模拟)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则点(a,b)在第象限.10.(3分)(2012•深圳模拟)若式子有意义,则x的取值范围是.11.(3分)(2008秋•海淀区期末)若关于x的一元二次方程x2+3x﹣(m﹣2)=0没有实数根,则m的取值范围是.12.(3分)(2012•深圳模拟)若⊙O1和⊙O2相交于点A、B,且AB=24,⊙O1的半径为13,⊙O2的半径为15,则O1O2的长为或.(有两解)13.(3分)(2014•淮阴区校级模拟)如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为cm2.14.(3分)(2012秋•麻城市校级期末)在一所4000人的学校随机调查了100人,其中有24人上学之前没有吃过早餐,则在这所学校里随便问一个人,上学之前吃过早餐的概率是.15.(3分)(2012秋•麻城市校级期末)一个直角三角形的两条边的长是方程x2﹣14x+48=0的两个根,则此直角三角形的周长为.16.(3分)(2009•黄石模拟)如图,将一个含有45°角的三角尺绕顶点C顺时针旋转135°后,顶点A所经过的路线与顶点B所经过的路线长的比值为.三、解答题(共72分)17.(8分)(2012秋•麻城市校级期末)(1)化简:a2+3a﹣(2)解方程:4x2﹣4x+1=x2+6x+9.18.(8分)(2009•武汉)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.19.(8分)(2011秋•宜昌期末)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若3(x1+x2)=x1x2,求k的值.20.(8分)(2011•永春县质检)如图,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)P为BA延长线上的一点,当PC与⊙O相切时,求PO的长.21.(8分)(2014•昌宁县二模)将背面相同,正面分别标有1,2,3,4的四张卡片洗匀后,背面朝上放在桌子上.(1)从中随机抽取两张卡片,求卡片正面上的数字之和大于4的概率;(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成两位数恰好是3的倍数的概率(请用树状图或列表法加以说明).22.(8分)(2012秋•芜湖期末)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?23.(12分)(2012秋•麻城市校级期末)如图,AB是圆O的直径,AD、BC都垂直于AB,AD=13cm,BC=16cm,DC=5cm,点P、Q是动点,点P以1cm/s的速度由A向D运动,同时Q从C向B以2cm/s的速度运动,当其中一点到达时,另一点同时停止运动.(1)当P从A向D运动t秒时,四边形PQCD的面积S与t的关系式;(2)是否存在时间t,使得梯形PQCD是等腰梯形?若存在求出时间t,若不存在说明理由;(3)是否存在时间t,使得PQ与圆相切?24.(12分)(2010秋•鄂州期末)如图,对称轴为直线的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线第四象限上一动点,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x之间的函数关系式,并求出自变量的取值范围;(3)若S=24,试判断▱OEAF是否为菱形;(4)若点E在(1)中的抛物线上,点F在对称轴上,以O、E、A、F为顶点的四边形能否为平行四边形?若能,求出点E、F的坐标;若不能,请说明理由.(第(4)问不写解答过程,只写结论)九年级(上)期末数学模拟试卷参考答案一.选择题(每小题3分,共24分)1.A 2.C 3.A 4.C 5.C 6.D 7.C 8.C二、填空题(共8小题,每小题3分,满分24分)9.三10.-≤x< 11.m12.144 13.112π14.15.24或14+ 16.:1三、解答题(共72分)17.18.19.20.21.22.23.24.。

湖北省黄冈中学九年级上册压轴题数学模拟试卷及答案

湖北省黄冈中学九年级上册压轴题数学模拟试卷及答案

湖北省黄冈中学九年级上册压轴题数学模拟试卷及答案一、压轴题1.如图1 ,一次函数1y kx b =+(k,b 为常数,k≠0)的图象与反比例函数2m y x =(m 为常数,m≠0)的图象相交于点M(1,4)和点N (4,n ).(1)填空:①反比例函数的解析式是 ; ②根据图象写出12y y <时自变量x 的取值范围是 ;(2) 若将直线MN 向下平移a(a>0)个单位长度后与反比例函数的图象有且只有一个公共点,求a 的值;(3) 如图2,函数2m y x=的图象(x >0)上有一个动点C ,若先将直线MN 平移使它过点C ,再绕点C 旋转得到直线PQ ,PQ 交轴于点A ,交轴点B ,若BC =2CA , 求OA·OB 的值.2.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C .(1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.3.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.4.如图1,抛物线24y ax bx =+-与x 轴交于(3,0)A -、(4,0)B 两点,与y 轴交于点C ,作直线BC .点D 是线段BC 上的一个动点(不与B ,C 重合),过点D 作DE x ⊥轴于点E .设点D 的横坐标为(04)m m <<.(1)求抛物线的表达式及点C 的坐标;(2)线段DE 的长用含m 的式子表示为 ;(3)以DE 为边作矩形DEFC ,使点F 在x 轴负半轴上、点G 在第三象限的抛物线上. ①如图2,当矩形DEFC 成为正方形时,求m 的值;②如图3,当点O 恰好是线段EF 的中点时,连接FD ,FC .试探究坐标平面内是否存在一点P ,使以P ,C ,F 为顶点的三角形与FCD ∆全等?若存在,直接写出点P 的坐标;若不存在,说明理由.5.如图1,抛物线221y x x =-+-的顶点A 在x 轴上,交y 轴于B ,将该抛物线向上平移,平移后的抛物线与x 轴交于,C D ,顶点为()1,4E .(1)求点B的坐标和平移后抛物线的解析式;,求点M的坐标;(2)点M在原抛物线上,平移后的对应点为N,若OM ON(3)如图2,直线CB与平移后的抛物线交于F.在抛物线的对称轴上是否存在点P,使C F P为顶点的三角形是直角三角形?若存在,直接写出点P的坐标;若不存在,得以,,请说明理由.6.如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于点,的解析式为,若将抛物线平移,使平移后的抛物线经过点,对称轴为直线,抛物线与轴的另一个交点是,顶点是,连结.(1)求抛物线的解析式;(2)求证:∽(3)半径为的⊙的圆心沿着直线从点运动到,运动速度为1单位/秒,运动时间为秒,⊙绕着点顺时针旋转得⊙,随着⊙的运动,求的运动路径长以及当⊙与轴相切的时候的值.7.如图1,与为等腰直角三角形,与重合,,.固定,将绕点顺时针旋转,当边与边重合时,旋转终止.现不考虑旋转开始和结束时重合的情况,设(或它们的延长线)分别交(或它们的延长线)于点,如图2.(1)证明:; (2)当为何值时,是等腰三角形?8.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ .……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)9.如图,抛物线26y ax x c =-+交x 轴于, A B 两点,交y 轴于点C .直线5y x =-+经过点,B C .(1)求抛物线的解析式;(2)抛物线的对称轴l 与直线BC 相交于点P ,连接,AC AP ,判定APC △的形状,并说明理由;(3)在直线BC 上是否存在点M ,使AM 与直线BC 的夹角等于ACB ∠的2倍?若存在,请求出点M 的坐标;若不存在,请说明理由.10.已知在矩形ABCD 中,AB=2,AD=4.P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF⊥BD,交射线BC 于点F .联结AP ,画∠FPE=∠BAP,PE 交BF 于点E .设PD=x ,EF=y .(1)当点A 、P 、F 在一条直线上时,求△ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结PC ,若∠FPC=∠BPE,请直接写出PD 的长.11.如图,在ABCD 中,E 为边BC 的中点,F 为线段AE 上一点,连结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H ,设AD EF x AB AF==.(1)当1x =时,求:AG AB 的值;(2)设GDH EBAS y S =△△,求y 关于x 的函数关系式; (3)当3DH HC =时,求x 的值.12.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.13.小聪与小明在一张矩形台球桌ABCD 边打台球,该球桌长AB =4m ,宽AD =2m ,点O 、E 分别为AB 、CD 的中点,以AB 、OE 所在的直线建立平面直角坐标系。

湖北省黄冈市红安县2023-2024学年九年级上学期月考数学试题

湖北省黄冈市红安县2023-2024学年九年级上学期月考数学试题

湖北省黄冈市红安县2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程2660x x +-=配方后的正确结果为()A .2(3)3x +=B .2(3)3x -=C .2(3)15x -=D .2(3)15x +=2.抛物线y=﹣x 2+2kx+2与x 轴交点的个数为()A .0个B .1个C .2个D .以上都不对3.关于方程210y y ++=的说法正确的是()A .两实数根之和为1-B .两实数根之积为1C .两实数根之和为1D .无实数根4.要组织一场足球赛,每两队之间进行两场比赛,计划踢56场比赛,则要邀请()个足球队.A .10B .9C .8D .75.某牧民要围成面积为352m 的矩形羊圈,且长比宽多2米,则此羊圈的周长是()A .20米B .24米C .26米D .20或22米6.已知方程20x bx a ++=有一个根是a (0a ≠),则代数式a b +的值是()A .1-B .1C .0D .以上答案都不是7.已知x 为实数,且满足(x 2+3x)2+2(x 2+3x)-3=0,那么x 2+3x 的值为()A .1B .-3或1C .3D .-1或38.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0三、解答题△的面积是(1)若PCQ△的面积能否为(2)PCQ23.人民商场销售某种商品,统计发现:每件盈利调查发现,该商品每降价()1假如现在库存量太大,。

黄冈市中考数学全真模拟试卷(二)含答案解析

湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线A D、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y 轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x 轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵D E∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n ①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。

2013年湖北省黄冈市中考数学试卷及解析

2013年湖北省黄冈市中考数学试卷一、选择题(下列各题A 、B 、C 、D 四个选项中,有且仅有一个十正确的,每小题3分,共24分)1.﹣(﹣3)2=( ) A . ﹣3 B . 3 C . ﹣9 D . 9考点: 有理数的乘方. 分析: 根据有理数的乘方的定义解答. 解答: 解:﹣(﹣3)2=﹣9. 故选C . 点评: 本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( ) A .B .C .D .考点: 中心对称图形. 分析: 根据中心对称图形的定义,结合选项所给图形进行判断即可. 解答: 解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误; 故选A . 点评: 本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.如图,AB ∥CD ∥EF ,AC ∥DF ,若∠BAC=120°,则∠CDF=( )A . 60°B . 120°C . 150°D . 180°考点: 平行线的性质. 专题: 计算题. 分析: 根据两直线平行,同旁内角互补由AB ∥CD 得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC ∥DF ,根据平行线的性质得到∠ACD=∠CDF=60°. 解答: 解:∵AB ∥CD ,∴∠BAC+∠ACD=180°,∵∠BAC=120°, ∴∠ACD=180°﹣120°=60°, ∵AC ∥DF , ∴∠ACD=∠CDF , ∴∠CDF=60°. 故选A . 点评: 本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.4.下列计算正确的是( )A . x 4•x 4=x 16B . (a 3)2•a 4=a 9C . (ab 2)3÷(﹣ab )2=﹣ab 4D . (a 6)2÷(a 4)3=1考点: 同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析: 根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.解答: 解:A 、x 4×x 4=x 8,原式计算错误,故本选项错误; B 、(a 3)2•a 4=a 10,原式计算错误,故本选项错误;C 、(ab 2)3÷(﹣ab )2=ab 4,原式计算错误,故本选项错误;D 、(a 6)2÷(a 4)3=1,计算正确,故本选项正确; 故选D . 点评: 本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.5.已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A .B .C .D .考点: 由三视图判断几何体;简单组合体的三视图. 分析: 首先根据俯视图和左视图判断该几何体,然后确定其主视图即可; 解答: 解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示, 故选D . 点评: 本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.已知一元二次方程x 2﹣6x+C=0有一个根为2,则另一根为( ) A . 2 B . 3 C . 4 D . 8考点: 根与系数的关系. 分析: 利用根与系数的关系来求方程的另一根.解答: 解:设方程的另一根为α,则α+2=6,解得α=4. 故选C . 点评: 本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x 1,x 2是方程x 2+px+q=0的两根时,x 1+x 2=﹣p ,x 1x 2=q ,反过来可得p=﹣(x 1+x 2),q=x 1x 2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7. 已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A . πB . 4πC . π或4πD . 2π或4π考点: 几何体的展开图. 分析: 分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.解答: 解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π. 故选C . 点评: 考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间(小时)之间的函数图象是( ) A . B . C .D .考点: 函数的图象. 分析: 分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可. 解答: 解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加; ③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大; 结合图象可得C 选项符合题意. 故选C . 点评: 本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题(每小题3分,满分21分)9.计算:=﹣(或).考点:分式的加减法.专题:计算题.分析:分母相同,直接将分子相减再约分即可.解答:解:原式===﹣,(或).点评:本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.10.分解因式:ab2﹣4a=a(b﹣2)(b+2).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.考点:等边三角形的性质;等腰三角形的判定与性质.分析:根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可.解答:解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.点评:本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.12.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.考点:反比例函数系数k的几何意义;等腰三角形的性质.分析:根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB 即可.解答:解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.点评:此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.考点:垂径定理;勾股定理.专题:探究型.分析:首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.解答:解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OEM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.点评:此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.考点:一次函数的应用.分析:根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.解答:解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程由a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,故计划准点到达的时刻为:7:00.故答案为:7:00.点评:本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.考点:弧长的计算;矩形的性质;旋转的性质.专题:规律型.分析:如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.解答:解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.点评:本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)解方程组:.考点:解二元一次方程组.专题:计算题.分析:把方程组整理成一般形式,然后利用代入消元法其求即可.解答:解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.考点:菱形的性质.专题:证明题.分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.解答:证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△GHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.点评:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?考点:条形统计图;用样本估计总体;加权平均数;中位数;众数.分析:(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求法即可;(3)根据样本估计总体得出答案即可.解答:解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;(3)样本中不超过12吨的有20+40+10=70(户),∴黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).点评:此题主要考查了平均数、众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.19.(6分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.考点:列表法与树状图法.分析:(1)画出树状图即可;(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.解答:解:(1)如图所示:(2)根据树状图可得共有12种情况,都是红色情况有2种,概率为=.点评:本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.解答:(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.点评:此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.考点:一元一次不等式组的应用.分析:根据设租用甲种货车x辆,则租用乙种6﹣x辆,利用某市民政局组织募捐了240吨救灾物资,以及每辆货车的载重量得出不等式求出即可,进而根据每辆车的运费求出最省钱方案.解答:解:设租用甲种货车x辆,则租用乙种6﹣x辆,根据题意得出:45x+30(6﹣x)≥240,解得:x≥4,则租车方案为:甲4辆,乙2辆;甲5辆,乙1辆;甲6辆,乙0辆;租车的总费用分别为:4×400+2×300=2200(元),5×400+1×300=2300(元),6×400=2400(元)>2300(不合题意舍去),故最省钱的租车方案是租用甲货车4辆,乙货车2辆.点评:此题主要考查了一元一次不等式的应用,根据已知得出不等式求出所有方案是解题关键.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF﹣BF即可得出答案.解答:解:依题意可得:∠AEB=30°,∠ACE=15°,又∵∠AEB=∠ACE+∠CAE∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100m,在Rt△AEF中,∠AEF=60°,∴EF=AEcos60°=50m,AF=AEsin60°=50m,在Rt△BEF中,∠BEF=30°,∴BF=EFtan30°=50×=m,∴AB=AF﹣BF=50﹣=≈58(米).答:塔高AB大约为58米.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为y2=(1)用x的代数式表示t为:t=6﹣x;当0<x≤4时,y2与x的函数关系为:y2=5x+80;当4<x<6时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?考点:二次函数的应用.分析:(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6﹣x;根据平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系及t=6﹣x即可求出y2与x的函数关系:当0<x≤4时,y2=5x+80;当4≤x<6时,y2=100;(2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①0<x≤2;②2<x≤4;③4<x<6;(3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可.解答:解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0≤6﹣x<2,即0≤t<2,此时y2=100.故答案为6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x<6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x<6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∴x=4时,w最大=640.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为64万元.点评:本题考查的是二次函数在实际生活中的应用,有一定难度.涉及到一次函数、二次函数的性质,分段函数等知识,进行分类讨论是解题的关键.24.(15分)如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).考点:二次函数综合题.分析:(1)利用待定系数法求出二次函数解析式即可;(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2<t≤3时,Q在OC边上运动,得出△OPQ 不可能为直角三角形;(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2<t≤3时,求出t的值,根据t的取值范围得出答案.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得:,解得:,即所求抛物线解析式为:y=﹣x2+x+;(2)如图1,依据题意得出:OC=CB=2,∠COA=60°,∴当动点Q运动到OC边时,OQ=4﹣t,∴△OPQ的高为:OQ×sin60°=(4﹣t)×,又∵OP=2t,∴S=×2t×(4﹣t)×=﹣(t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=,PQ==,∵∠POQ<∠POC=60°,∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t﹣3)2=3+(3﹣t)2,解得:t1=1,t2=0(舍去),若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3﹣t)2+6+(3t﹣3)2=4t2,解得:t=2,当2<t≤3时,Q在OC边上运动,此时QP=2t>4,∠POQ=∠COP=60°,OQ<OC=2,故△OPQ不可能为直角三角形,综上所述,当t=1或t=2时,△OPQ为直角三角形;(4)由(1)可知,抛物线y=﹣x2+x+=﹣(x﹣2)2+,其对称轴为x=2,又∵OB的直线方程为y=x,∴抛物线对称轴与OB交点为M(2,),又∵P(2t,0)设过P,M的直线解析式为:y=kx+b,∴,解得:,即直线PM的解析式为:y=x﹣,即(1﹣t)y=x﹣2t,又0≤t≤2时,Q(3﹣t,),代入上式,得:(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2<t≤3时,OQ=4﹣t,∠QOP=60°,∴Q(,),代入上式得:×(1﹣t)=﹣2t,解得:t=2或t=(均不合题意,舍去).∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ能够交于一点,此时0≤t≤2.点评:此题主要考查了二次函数的综合应用以及待定系数法求二次函数解析式和待定系数法求一次函数解析式等知识,利用分类讨论思想得出t的值是解题关键.。

九年级上学期期中数学试题(含答案)

九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( ▲ )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( ▲ )新-课 -标-第- 一-网A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( ▲ )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( ▲ )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( ▲ )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( ▲ )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( ▲ )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( ▲ )A . 1个B .2个C .3个D .4个 9.已知线段AB ,点P 是它的黄金分割点,AP >BP ,设以AP 为边的等边三角形的面积 为S 1,以PB 、AB 为直角边的直角三角形的面积为S 2,则S 1与S 2的关系是 ( ▲ )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 210.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、 AC 的中点,P是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =10,PB =1,则QE 的值为( ▲ ) A . 3 B .3 2 C .4 D .4 2二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x :y =2:3,则(x +y ):y = ▲ .12.在相同时刻的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是 ▲ m .13.某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到1 210辆,则该厂四、五月份的月平均增长率为 ▲ .14.在△ABC 中,∠A 、∠B 为锐角,且||tan A -1+(12-cos B )2=0,则∠C = ▲ °.15.如图,在□ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE =4:3,且BF =2,则DF = ▲ .AD F CBOE(第7题)A CP FEQ(第10题)ACD(第8题)A BCDE F(第15题)16.如图,在△ABC 中,AB =BC ,AC =8,点F 是△ABC 的重心(即点F 是△ABC 的两条中线AD 、BE 的交点),BF =6,则DF = ▲ .17.关于x 的一元二次方程mx 2+nx =0的一根为x =3,则关于x 的方程m (x +2)2+nx +2n =0的根为 ▲ .18.如图,△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2017次剪取后,余下的所有小三角形的面积之和是 ▲ .三、解答题(本大题共10小题,共84分. 解答需写出必要的文字说明或演算步骤.) 19.计算或解方程:(每小题4分,共16分) (1)计算:(12)-2-4sin60°-tan45°;(2)3x 2-2x -1=0;(3)x 2+3x +1=0(配方法); (4)(x +1)2-6(x +1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为 ▲ ;(3)判断点D (5,-2)与⊙M 的位置关系.OABCxy (图2) ACB DE ACDE FACDE F(图1)(第18题)AB D CEF (第16题)……21.(本题满分6分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 中点.(1)求证:AC 2=AB •AD ;(2)若AD =4,AB =6,求ACAF 的值.22.(本题满分6分)已知关于x 的方程x 2+(m -3)x -m (2m -3)=0. (1)证明:无论m 为何值方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x 天后一次性出售,则x 天后这批猴头菇的销售单价为 ▲ 元,销售量是 ▲ 千克(用含x 的代数式表示); (2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售?ADCEF(第21题)24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为50cm ,与水平桌面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平桌面所形成的夹角∠OCA ,∠OBA 分别为90°和30°.(不考虑其他因素,结果精确到0.1cm .参考数据:sin75°≈0.97,cos75°≈0.26,3≈1.73)(1)求该台灯照亮水平桌面的宽度BC .(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC 为60°,书的长度EF 为24cm ,点P 为眼睛所在位置,当点P 在EF 的垂直平分线上,且到EF 距离约为34cm (人的正确看书姿势是眼睛离书距离约1尺≈34cm )时,称点P 为“最佳视点”.试问:最佳视点P 在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P (-1,0)为圆心的圆,交x 轴于B 、C 两点(B 在C 的左侧),交y 轴于A 、D 两点(A 在D 的下方),AD =23,将△ABC 绕点P 旋转180°,得到△MCB .(1)求B 、C 两点的坐标;(2)请在图中画出线段MB 、MC ,并判断四边形ACMB 的形状(不必证明),求出点M 的坐标;(3)动直线l 从与BM 重合的位置开始绕点B 顺时针旋转,到与BC 重合时停止,设直线l 与CM 交点为E ,点Q 为BE 的中点,过点E 作EG ⊥BC 于点G ,连接MQ 、QG .请问在旋转过程中,∠MQG 的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.OCE D PAC O P BDxy26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC的长.(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.(第27题)28.(本题满分10分)如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .已知点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1)用含t 的代数式表示:QB = ▲ ,PD = ▲ ;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变匀速运动的点Q 的速度,使四边形PDBQ 在某一时刻为菱形,求出此时点Q 的速度.(3)如图2,在整个P 、Q 运动的过程中,点M 为线段PQ 的中点,求出点M 经过的路径长.ABC PDQ(图1)MA BCPQ(图2)九年级数学期中试卷参考答案与评分标准2017.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D 二、填空题(本大题共8小题,每小题2分,共计16分)11、5:3 12、18 13、10%14、75°15、16、2.517、1或-2 18、1/22016三、解答题(10小题,共84分)19.(每小题4分)(1)1—2 (2)x 1=1,x 2=-31(3)x 1=25,x 2=25(4)x 1=0,x 2=420.(本题6分) 解:(1)略 ……2分(2)M 的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D 在⊙M 内……6分21. 解:(1)∵AC 平分∠DAB ,∴∠DAC =∠BAC 又∵∠ADC =∠ACB =90°∴△ADC ∽△ACB …………………………………………(1分) ∴AC AD = A B AC∴AC 2=AB •AD ………………………………………(2分)(2)∵∠ACB =90°,E 为AB 中点.∴CE =21AB =AE =3∴∠EAC =∠ECA ………………………………………(3分) 又∵AC 平分∠DAB , ∴∠DAC =∠EAC∴∠DAC =∠ECA ………………………………………(4分) ∴AD ∥EC∴△ADF ∽△ECF ………………………………………(5分) ∴FC AF =EC AD =34 ∴ AF AC =47. ………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分) 2000―6x;(1分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。

湖北省黄冈市九年级上学期期中数学试卷

湖北省黄冈市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·恩施期中) 下列图形中,轴对称图形的个数为()A . 2个B . 3个C . 4个D . 5个2. (2分) (2017九上·黄冈期中) 下列方程中是一元二次方程的是()A . x2-7x=1B . 3x+4=1C . 3x2-2xy-5y2=0D . =03. (2分)若(m+1)x2-mx+2=0是关于x的一元二次方程,则m的取值范围是()A . m≠-1B . m=-1C . m-1D . m≠04. (2分) (2017九上·顺德月考) 用配方法解方程,下列配方结果正确的是().A .B .C .D .5. (2分)(2013·资阳) 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A . 48B . 60C . 76D . 806. (2分)(2017·全椒模拟) 若矩形的长和宽是方程x2﹣7x+12=0的两根,则矩形的对角线之和为()A . 5B . 7C . 8D . 107. (2分)如图,从地面坚直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2 ,那么小球从抛出至回落到地面所需要的时间是()A . 6sB . 4sC . 3sD . 2s8. (2分)直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A . (2,-3)B . (2,3)C . (3,-2)D . (-2,-3)9. (2分)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A . 12πB . 24πC . 6πD . 36π10. (2分)(2014·贺州) 已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+ 与反比例函数y= 在同一坐标系内的大致图象是()A .B .C .D .二、细心填一填,你一定是最优秀的 (共10题;共13分)11. (1分) (2018九上·宁江期末) 请写出一个无实数根的一元二次方程________12. (4分)(2017·兰州模拟) 把一元二次方程(x+1)(1﹣x)=2x化成二次项系数大于零的一般式是________,其中二次项系数是________,一次项的系数是________,常数项是________;13. (1分) (2019九上·平房期末) 抛物线的顶点坐标是________.14. (1分) (2018九上·长宁期末) 若抛物线的开口向上,则的取值范围是________.15. (1分)(2018·成都模拟) 已知实数满足,那么的值为________.16. (1分) (2019九上·贾汪月考) 方程的根是________.17. (1分) (2018九上·前郭期末) 如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x 轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是________.18. (1分) (2016九上·余杭期中) 如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是________.19. (1分)如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是________.20. (1分) (2019八下·淮安月考) 在等腰直角中,,,如果以的中点为旋转中心,将这个三角形旋转180°,点落在点处,则的长度为________.三、解答题 (共5题;共45分)21. (10分) (2017八下·蚌埠期中) 解下列方程(1)x2+2x﹣1=0(2)3(x﹣1)2=x(x﹣1)22. (5分)(2017·宁夏) 在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).①把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2 .23. (10分)(2018·秦淮模拟) 已知关于x的一元二次方程 (m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.24. (5分)如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?25. (15分) (2017九下·启东开学考) 如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、细心填一填,你一定是最优秀的 (共10题;共13分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共45分) 21-1、21-2、22-1、23-1、23-2、24-1、25-1、25-2、25-3、第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共4页)
2012-2013学年湖北省黄冈市红安二中九年级(上)期中数学模
拟试卷

一、选择题(3分×10=30分)
1.(3分)下列方程,是一元二次方程的是( )

①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.
A.①② B.①②④⑤ C.①③④ D.①④⑤
2.(3分)若,则x的取值范围是( )
A.x<3 B.x≤3 C.0≤x<3 D.x≥0
3.(3分)若,则x的取值范围是( )
A.x≥7 B.x≤7 C.x>7 D.x<7
4.(3分)当x取某一范围的实数时,代数式的值是一个常数,
该常数是( )
A.29 B.16 C.13 D.3
5.(3分)方程(x﹣3)2=(x﹣3)的根为( )
A.3 B.4 C.4或3 D.﹣4或3
6.(3分)该试题已被管理员删除
7.(3分)若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为( )
A.1 B.﹣1 C.2 D.﹣2
8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,
则∠AOB′的度数是( )

A.25° B.30° C.35° D.40°
9.(3分)方程x2+3x﹣6=0与x2﹣6x+3=0所有根的乘积等于( )
A.﹣18 B.18 C.﹣3 D.3
10.(3分)三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一
个实数根,则该三角形的面积是
( )
A.24 B.24或8 C.48 D.8
第2页(共4页)

二、填空题(3分×8=24分)
11.(3分)若=3,=2,且ab<0,则a﹣b= .

12.(3分)化简:= .
13.(3分)关于x的一元二次方程(m+3)x2+5x+m2+2m﹣3=0有一个根为0,则m= .
14.(3分)已知方程x2﹣7x+12=0的两根恰好是Rt△ABC的两条边的长,则Rt△ABC的
第三边长为 .
15.(3分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点
B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边
上,则∠C= 度.

16.(3分)某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千
克,每千克y元,如果把这两种糖果混合后销售,保本价是 元/千克.
17.(3分)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,
在旋转过程中,当BE=DF时,∠BAE的大小可以是 .

18.(3分)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,
每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵
坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两
个交点的纵坐标之差的绝对值为 (用含n的代数式表示)

三、解答题(共66分)
19.(10分)计算:

(1)(+)﹣()﹣;
第3页(共4页)

(2)(+)÷.
20.(12分)用适当的方法解下列方程:
(1)(3x﹣1)2=(x+1)2;

(2)2x2+x﹣=0;
(3)用配方法解方程:x2﹣4x+1=0;
(4)用换元法解方程:(x2+x)2+(x2+x)=6.
21.(6分)已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.
(1)方程有两个相等的实数根;
(2)方程有两个相反的实数根;
(3)方程的一个根为0.
22.(8分)已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.
(1)求实数m的取值范围;
(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.

23.(8分)已知x=,求代数式x3+2x2﹣1的值.
24.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均
每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加
20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的
几折出售?
25.(12分)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=

∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,
得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=

∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2.
第4页(共4页)

2012-2013学年湖北省黄冈市红安二中九年级(上)期中
数学模拟试卷
参考答案
一、选择题(3分×10=30分)
1.D;2.C;3.B;4.D;5.C;6.;7.B;8.B;9.A;10.B;

二、填空题(3分×8=24分)
11.-7;12.;13.1;14.5或;15.105;16.;17.15°或165°;18.

或;

三、解答题(共66分)
19. ;20. ;21. ;22. ;23. ;24. ;25. ;

相关文档
最新文档