2020届二轮(理科数学) 函数概念 与基本初等函数 专题卷(全国通用)
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
2020高考数学复习(考试说明提点+基本脉络贯通+达标小题)第二章 函数概念与基本初等函数复习 理(pdf)

数与对数函数, 还有三角函数等, 也涉及了函数的所有性质,
本章概念多, 1 . 对本章的概念要特别重视理解和掌握. 具有较高的抽象性和严密性, 只有准确㊁ 深刻地理解它们, 才 的基础上进行概括, 深入理解概念的本质和来龙去脉, 并学 能用于解决问题. 要在结合具体函数㊁ 函数图象和实际应用
江苏卷有 1 道函数 大 题, 2 0 1 3 年 江 苏 卷 有 1 道 函 数 大 题,
会用适当的数学语言和形式加以准确表达.9高源自复习指导数学( 教师用书)
n 2 f( x) ( ) ; ( ) 1 4 . 已知下列三个函数: 2 x)( n为 y= ( ) y = f( gx ; ( ) 正整数) 3 .写出各个函数有意义时 o x) x) g y =l g( f(
系和函数思想方法的训练.
以理解, 因此要加强函数㊁ 不等式㊁ 数列等各章之间的知识联
始终, 代数式㊁ 方程㊁ 不等式㊁ 数列等, 都可以从函数的观点加
加强与其他各章知识的 4 . 深刻理解函数思想的价值, 联系, 才能灵活地加以运用. 函数的思想贯穿于中学代数的
研究函数的性质, 帮助解决问题.
强化思想方法的训练. 如数形结 3 . 以函数知识为依托, 合的思想方法是本章的一条主线, 即利用函数图象的直观性
第二章
函数概念与基本初等函数
第
二
章
函数概念与基本初等函数
其他省的高考试题中函数所 2 0 1 4年江苏卷有1道函数大题, ) , 占的分值也比较大 考查的热点之一是函数的定义域㊁ 值 域㊁ 单调性㊁ 奇偶性以及函数的图象及其变换; 在考查函数内 题, 能否充分理解并运用函数模型. 例如 2 0 0 8 年江苏高考第 容的同时也注重考查能否用函数的思想观察问题㊁ 解决问
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
2020版高考理科数学大二轮专题复习新方略讲义:2.2基本初等函数、函数与方程及函数的应用

(4)log a =log a M -log a N ;N (5)log a M n =n log a M ;(6)a log a N =N ;(7)log a N =.log bNlog ba 注:a >0且a ≠1,b >0且b ≠1,M >0,N >0.2.指数函数与对数函数的图象和性质1.三招破解指数、对数、幂函数值的大小比较(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;『对接训练』1.[2019·山东青岛模拟]若f(x)=(m-1)x2+2mx+3是偶函数,则23f(-1),f(-),f()的大小关系为( )32A.f()>f(-)>f(-1)32B.f()<f(-)<f(-1)23C.f(-)<f()<f(-1)32D.f(-1)<f()<f(-)解析:因为f(x)=(m-1)x2+2mx+3为偶函数,所以m=0,即(x)=-x222(2)利用零点存在性定理;(3)数形结合,利用两个函数图象的交点求解.[例2] (1)[2019·湖北襄阳七校联考]设a是方程2ln x-3=-x的解,则a在下列哪个区间内( )A.(0,1) B.(3,4)C.(2,3) D.(1,2)(2)[2019·广西宜州联考]若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log|x|的零点个数是1.判断函数零点个数的方法(1)直接求零点:令f(x)=0,则方程解的个数即为零点的个数.零点存在性定理:利用该定理不仅要求函数在[a,b]上是连续的曲『对接训练』3.[2019·山东青岛模拟]已知a是函数f(x)=2x-log x的零点,12若0<x0<a,则f(x0)的值满足( )A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)≤0解析:在同一坐标系中作出函数y=2x,y=log x的图象,由图1,+∞)存在零点,得的图象如图所示,则由图象可知,要使函数的图象有交点,则k≥数中与最接近的是(参考数据:lg 3≈0.48)( )MN A .1033 B .1053C .1073D .1093【解析】 由题意,lg =lg =lg 3361-lg 1080=361lg 3-80lg M N 3361108010≈361×0.48-80×1=93.28.解决函数实际应用题的两个关键点认真读题,缜密审题,准确理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题.『对接训练』量为).中午12:00.下午6:00y =k 1x ,4k ,解得k =80故第二次服药最迟应在当日下午4:00.答案:C课时作业4 基本初等函数、函数与方程及函数的应用的大小关系为( ),b =,0<c <,得1212答案:C4.[2019·西藏拉萨第二次模拟]已知a=0.50.8,b=0.80.5,c=0.80.8,则( )A.c<b<a B.c<a<bC.a<b<c D.a<c<b解析:由题意,根据指数函数与幂函数的单调性,可得a=0.50.8<0.50.5,b=0.80.5>0.50.5,所以b>a,又由c=0.80.8>0.50.8,所以c>a,又b=0.80.5>c=0.80.8,所以a<c<b,故选D.)轴对称得到y =-(x -2)]的图象,将得到的图象在下方的部分翻折上来,就可以得到f (x )=|lg(2由图象知,在选项中的区间上,满足f (x )是增函数的显然只有7.[2019·安徽天长联考]生产一定数量商品的全部费用称为生产成本.某企业一个月生产某种商品x 万件时的生产成本(单位:万元)为C (x )=x 2+2x +20.一万件的售价是20万元,为获取更大利润,该12企业一个月应生产该商品的数量为( )A .36万件B .18万件C .22万件D .9万件的解集是( )A.{x|-1<x≤0} B.{x|-1≤x≤1}C.{x|-1<x≤1} D.{x|-1<x≤2}解析:,易知g(x)的定义域为的图象,如图所示.由Error!得Error!x|-1<x≤1}.故选;③a-b+c=0;④根据二次函数的图象,可以确定二次函数解析:因为函数f(x)满足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数f(x)是以4为周期的周期函数.在同一平面直角坐标系内作出函数f(x)的图象与函数g(x)=lg x的图象,如图所示,由图可知两曲线有9个交点.湖北荆门模拟]若函数f(x)=(m-2)x21,0)和区间(1,2)内,则m的取值范围是1)答案:(2)15.[2019·北京十一中月考]已知14C的半衰期为5 730年(是指经过5 730年后,14C的残余量占原始量的一半).设14C的原始量为a,经过x年后的残余量为b,残余量b与原始量a的关系为b=a e-kx,其中x表示经过的时间,k为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约________年.(参考数据:log2 0.767≈-0.4)1设三个交点的横坐标分别为x1,x2,x3,且。
【(2020-2022)三年真题分项汇编】第2讲 函数的概念与基本初等函数Ⅰ(新高考)(原卷版)

【(2020-2022)三年真题分项汇编】第2讲函数的概念与基本初等函数Ⅰ1.【2022年新高考2卷】已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f(k)22k=1=( )A .−3B .−2C .0D .12.【2021年新高考2卷】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c << 3.【2021年新高考2卷】已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f = 4.【2020年新高考1卷(山东卷)】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天5.【2020年新高考1卷(山东卷)】若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃6.【2020年新高考2卷(海南卷)】已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a的取值范围是( )A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞ 7.【2022年新高考1卷】已知函数f(x)及其导函数f ′(x)的定义域均为R ,记g(x)=f ′(x),若f (32−2x),g(2+x)均为偶函数,则( )A .f(0)=0B .g (−12)=0C .f(−1)=f(4)D .g(−1)=g(2)8.【2021年新高考2卷】设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅,其中{}0,1i a ∈,记()01k n a a a ω=+++.则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21n n ω-= 9.【2021年新高考1卷】已知函数()()322x x x a f x -=⋅-是偶函数,则=a ______.10.【2021年新高考1卷】函数()212ln f x x x =--的最小值为______.11.【2021年新高考2卷】写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数。
浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第2节二次函数习题(含解析)

第2节 二次函数考试要求 1.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题;2.能解决一元二次方程根的分布问题;3.能解决二次函数的最值问题.知 识 梳 理1.二次函数表达式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x +h )2+k (其中a ≠0,顶点坐标为(-h ,k )).(3)零点式:y =a (x -x 1)(x -x 2)(其中a ≠0,x 1,x 2是二次函数的图象与x 轴的两个交点的横坐标).2.二次函数y =ax 2+bx +c 的图象和性质3.二次函数的最值问题二次函数的最值问题主要有三种类型:“轴定区间定”“轴动区间定”“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:4.一元二次方程根的分布设方程ax2+bx+c=0(a≠0)的不等两根为x1,x2且x1<x2,相应的二次函数为f(x)=ax2+bx+c(a≠0),方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是等价条件)表一:(两根与k的大小比较)表二:(根在区间上的分布)若两根有且仅有一根在(m ,n )内,则需分三种情况讨论:①当Δ=0时,由Δ=0可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去;②当f (m )=0或f (n )=0,方程有一根为m 或n ,可以求出另外一根,从而检验另一根是否在区间(m ,n )内;③当f (m )·f (n )<0时,则两根有且仅有一根在(m ,n )内. [常用结论与易错提醒]不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0. (2)不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果二次函数f (x )的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为f (x )=(x -1)2-1.( )(2)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是⎝ ⎛⎭⎪⎫120,+∞.( )(3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )答案 (1)√ (2)√ (3)× (4)×2.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A.5 B.-5 C.6D.-6解析 由f (1)=f (2)=0知方程x 2+px +q =0的两根分别为1,2,则p =-3,q =2,∴f (x )=x 2-3x +2,∴f (-1)=6.答案 C3.若方程x 2+(m +2)x +m +5=0只有负根,则m 的取值范围是( ) A.[4,+∞) B.(-5,-4] C.[-5,-4]D.(-5,-2)解析 由题意得⎩⎪⎨⎪⎧Δ=(m +2)2-4×(m +5)≥0,x 1+x 2=-(m +2)<0,x 1x 2=m +5>0,解得m ≥4.答案 A4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为( ) A.[0,1] B.[1,2] C.(1,2]D.(1,2)解析 画出函数y =x 2-2x +3的图象(如图),由题意知1≤m ≤2.答案 B5.已知方程x 2+(m -2)x +2m -1=0的较小的实根在0和1之间,则实数m 的取值范围是 .解析 令f (x )=x 2+(m -2)x +2m -1.由题意得 ⎩⎪⎨⎪⎧f (0)>0,f (1)<0,即⎩⎪⎨⎪⎧2m -1>0,1+(m -2)+2m -1<0, 解得12<m <23.答案 ⎝ ⎛⎭⎪⎫12,23 6.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是 ,且函数f (x )恒过点 .解析 二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2.由函数的解析式易得,函数f (x )恒过定点(0,2). 答案 (-∞,-2] (0,2)考点一 二次函数的解析式 【例1】 求下列函数的解析式:(1)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8;(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ). 解 (1)法一(利用一般式解题): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二(利用顶点式解题): 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴二次函数图象的对称轴为x =2+(-1)2=12,∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式解题):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7. (2)∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象在x 轴上截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又∵f (x )的图象过点(4,3),∴3a =3,∴a =1. ∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.规律方法 用待定系数法求二次函数的解析式,关键是灵活选取二次函数解析式的形式,选法如下:【训练1】 若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )= .解析 由f (x )是偶函数知f (x )的图象关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],∴2a 2=4,故f (x )=-2x 2+4.答案 -2x 2+4考点二 二次函数的图象与性质【例2】 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =-1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4, 故a 的取值范围是(-∞,-6]∪[4,+∞).(3)由-4≤|x |≤6,得-6≤x ≤6,当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0, 其图象如图所示,∴f (|x |)在[-6,6]上的单调区间有[-6,-1),[-1,0),[0,1),[1,6]. 规律方法 解决二次函数图象与性质问题时要注意:(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论; (2)要注意数形结合思想的应用.【训练2】 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )(2)若函数f (x )=ax 2+2x +3在区间[-4,6]上是单调递增函数,则实数a 的取值范围是W.解析 (1)由A ,C ,D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A ,C 错误,D 满足要求;由B 知f (0)=c >0, 所以ab >0,所以对称轴x =-b2a<0,B 错误.(2)由题意可知f ′(x )=2ax +2≥0在[-4,6]上恒成立, 所以⎩⎪⎨⎪⎧f ′(-4)=-8a +2≥0,f ′(6)=12a +2≥0,所以-16≤a ≤14.答案 (1)D (2)⎣⎢⎡⎦⎥⎤-16,14考点三 二次函数的最值【例3-1】 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.【例3-2】 将例3-1改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a , (1)当-a <12,即a >-12时,f (x )max =f (2)=4a +5;(2)当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.规律方法 研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.【训练3】 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.考点四 一元二次方程根的分布 多维探究角度1 两根在同一区间【例4-1】 若二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求实数m 的取值范围. 解 线段AB 的方程为x 3+y3=1(x ∈[0,3]), 即y =3-x (x ∈[0,3]),由题意得方程组:⎩⎪⎨⎪⎧y =3-x ,y =-x 2+mx -1, 消去y 得x 2-(m +1)x +4=0,①由题意可得,方程①在x ∈[0,3]内有两个不同的实根,令f (x )=x 2-(m +1)x +4,则⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0≤m +12≤3,f (0)=4≥0,f (3)=10-3m ≥0,解得⎩⎪⎨⎪⎧m <-5或m >3,-1≤m ≤5,m ≤103,所以3<m ≤103.故实数m 的取值范围是⎝⎛⎦⎥⎤3,103.角度2 两根在不同区间【例4-2】 求实数m 的取值范围,使关于x 的方程x 2+2(m -1)x +2m +6=0. (1)一根大于1,另一根小于1; (2)两根α,β满足0<a <1<β<4; (3)至少有一个正根.解 令f (x )=x 2+2(m -1)x +2m +6, (1)由题意得f (1)=4m +5<0,解得m <-54.即实数m 的取值范围是⎝⎛⎭⎪⎫-∞,-54. (2)⎩⎪⎨⎪⎧f (0)=2m +6>0,f (1)=4m +5<0,f (4)=10m +14>0,解得⎩⎪⎨⎪⎧m >-3,m <-54,m >-75,所以-75<m <-54.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-75,-54.(3)当方程有两个正根时,⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)>0,f (0)=2m +6>0,-2(m -1)>0, 解得-3<m <-1.当方程有一个正根一个负根时,f (0)=2m +6<0,解得m <-3. 当方程有一个根为零时,f (0)=2m +6=0,解得m =-3, 此时f (x )=x 2-8x ,另一根为8,满足题意. 综上可得,实数m 的取值范围是(-∞,-1). 角度3 在区间(m ,n )内有且只有一个实根【例4-3】 已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 依题意,得(1)⎩⎪⎨⎪⎧m >0,Δ=(-2)2-4m >0,无解.f (0)<0, (2)⎩⎪⎨⎪⎧m <0,Δ=(-2)2-4m >0,解得m <0.f (0)>0,(3)⎩⎪⎨⎪⎧m ≠0,Δ=(-2)2-4m =0. 解得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点. 综上所述,m 的取值范围是(-∞,0]∪{1}.规律方法 利用二次函数图象解决方程根的分布的一般步骤: (1)设出对应的二次函数;(2)利用二次函数的图象和性质列出等价不等式(组); (3)解不等式(组)求得参数的范围.【训练4】 (1)已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.(2)若关于x 的方程x 2+2(m -1)x +2m +6=0有且只有一根在区间(0,3)内,求实数m 的取值范围.解 (1)令f (x )=(m +2)x 2-(2m +4)x +(3m +3).由题意可知(m +2)·f (1)<0, 即(m +2)(2m +1)<0,所以-2<m <-12.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. (2)令f (x )=x 2+2(m -1)x +2m +6,①⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)=0,0<-(m -1)<3, 解得⎩⎪⎨⎪⎧m =-1或m =5,-2<m <1,所以m =-1.②f (0)·f (3)=(2m +6)(8m +9)<0, 解得-3<m <-98.③f (0)=2m +6=0,即m =-3时,f (x )=x 2-8x ,另一根为8∉(0,3),所以舍去; ④f (3)=8m +9=0,即m =-98时,f (x )=x 2-174x +154,另一根为54∈(0,3),满足条件.综上可得,-3<m ≤-98或m =-1.所以实数m 的取值范围是⎝⎛⎦⎥⎤-3,-98∪{-1}.基础巩固题组一、选择题1.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A.a >0,4a +b =0 B.a <0,4a +b =0 C.a >0,2a +b =0D.a <0,2a +b =0解析 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0.答案 A2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]解析 f (x )的对称轴为x =1,由f (x )在[0,1]上递减知a >0,且f (x )在[1,2]上递增,f (0)=f (2),∵f (m )≤f (0),结合对称性,∴0≤m ≤2. 答案 D3.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2D.-2解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 答案 B4.已知函数f (x )=x 2-2ax +b (a ,b ∈R ),记f (x )在[a -b ,a +b ]上的最大值为M ,最小值为m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 无关,且与b 无关 C.与a 有关,但与b 无关D.与a 无关,但与b 有关解析 函数f (x )=x 2-2ax +b =(x -a )2-a 2+b ,所以f (x )的对称轴为x =a 且开口向上,因为区间[a -b ,a +b ]也关于x =a 对称,所以m =f (a )=b -a 2,M =f (a -b )=f (a +b )=b 2-a 2+b ,所以M -m =b 2,故选D. 答案 D5.(2019·嘉兴检测)若f (x )=x 2+bx +c 在(m -1,m +1)内有两个不同的零点,则f (m -1)和f (m +1)( ) A.都大于1 B.都小于1 C.至少有一个大于1D.至少有一个小于1解析 设函数f (x )=x 2+bx +c 的两个零点为x 1,x 2,则f (x )=(x -x 1)(x -x 2),因为函数f (x )=x 2+bx +c 的两个零点在(m -1,m +1)内,所以f (m -1)>0,f (m +1)>0,又因为f (m-1)f (m +1)=(m -1-x 1)(m -1-x 2)·(m +1-x 1)(m +1-x 2)=[-(m -1-x 1)(m +1-x 1)]·[-(m -1-x 2)(m +1-x 2)]<[-(m -1-x 1)+(m +1-x 1)]24·[-(m -1-x 2)+(m +1-x 2)]24=1,所以f (m-1)和f (m +1)至少有一个小于1,故选D. 答案 D6.若函数f (x )=x 2+kx +m 在[a ,b ]上的值域为[n ,n +1],则b -a ( ) A.既有最大值,也有最小值 B.有最大值但无最小值 C.无最大值但有最小值D.既无最大值,也无最小值解析 取k =m =n =0,f (x )=x 2,由图象可知,显然b -a 不存在最小值.∵f (a )=a 2+ka +m ,f (b )=b 2+kb +m ,f ⎝ ⎛⎭⎪⎫a +b 2=⎝ ⎛⎭⎪⎫a +b 22+k ⎝ ⎛⎭⎪⎫a +b 2+m ,∴(b -a )22=f (a )+f (b )-2f ⎝ ⎛⎭⎪⎫a +b 2≤n +1+n +1-2n =2,∴b -a ≤2,当b =2-k 2,a =-2+k2时,b -a 取得最大值为2,故选B. 答案 B7.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b24,当x =-b 2时,f (x )min =-b 24.又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件. 答案 A8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集不可能是( ) A.{1,2} B.{1,4} C.{1,2,3,4}D.{1,4,16,64}解析 ∵f (x )=ax 2+bx +c (a ≠0)的对称轴为x =-b2a .设方程m [f (x )]2+nf (x )+p =0的解为f 1(x ),f 2(x ),则必有f 1(x )=y 1=ax 2+bx +c ,f 2(x )=y 2=ax 2+bx +c ,那么从图象上看y =y 1,y =y 2是平行x 轴的两条直线,它们与f (x )有交点, 由对称性,方程y 1=ax 2+bx +c =0的两个解x 1,x 2应关于对称轴x =-b2a 对称,即x 1+x 2=-ba ,同理方程y 2=ax 2+bx +c =0的两个解x 3,x 4也关于对称轴x =-b2a对称, 即x 3+x 4=-b a,在C 中,可以找到对称轴直线x =2.5,也就是1,4为一个方程的根,2,3为一个方程的根,而在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎样分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能. 答案 D9.(2019·衢州二中二模)已知函数f (x )=x 2+ax +b (a ,b ∈R ),若存在非零实数t ,使得f (t )+f ⎝ ⎛⎭⎪⎫1t =-2成立,则a 2+4b 2的最小值为( )A.165B.145C.16D.4 解析 由f (t )+f ⎝ ⎛⎭⎪⎫1t =-2知,存在实数t ≠0,使⎝ ⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0成立,又a 2+4b 2的几何意义为坐标原点与点(a ,2b )的距离的平方,记2b =m ,u =t +1t,则u 2≥4.故⎝ ⎛⎭⎪⎫t +1t 2+a ⎝⎛⎭⎪⎫t +1t +2b =0,即ua +m +u 2=0,其表示动点(a ,m )的轨迹,设为直线l ,则原点与点(a ,m )的距离的最小值为原点到直线l 的距离,故a 2+4b 2≥⎝ ⎛⎭⎪⎫u 2u 2+12=⎝⎛⎭⎪⎫u 2+1-1u 2+12≥165,故选A. 答案 A 二、填空题10.已知b ,c ∈R ,函数y =x 2+2bx +c 在区间(1,5)上有两个不同的零点,则f (1)+f (5)的取值范围是 .解析 设f (x )的两个零点为x 1,x 2,不妨设1<x 1<x 2<5,则f (1)>f (x 1)=0,f (5)>f (x 2)=0,所以f (1)+f (5)>0.另一方面f (x )=(x -x 1)·(x -x 2),所以f (1)+f (5)=(1-x 1)·(1-x 2)+(5-x 1)(5-x 2)=2x 1x 2-6(x 1+x 2)+26<2x 1x 2-12x 1x 2+26=2(x 1x 2-3)2+8<2(25-3)2+8=16,所以f (1)+f (5)的取值范围是(0,16).答案 (0,16)11.已知f (x )=⎩⎪⎨⎪⎧x 2(x ≥t ),x (x <t ),若存在实数t ,使函数y =f (x )-a 有两个零点,则t 的取值范围是 .解析 由题意知函数f (x )在定义域上不单调,如图,当t =0或t ≥1时,f (x )在R 上均单调递增,当t <0时,在(-∞,t )上f (x )单调递增,且f (x )<0,在(t ,0)上f (x )单调递减,且f (x )>0,在(0,+∞)上f (x )单调递增,且f (x )>0.故要使得函数y =f (x )-a 有两个零点,则t 的取值范围为(-∞,0)∪(0,1).答案 (-∞,0)∪(0,1)12.(2019·诸暨统考)已知a ,b 都是正数,a 2b +ab 2+ab +a +b =3,则2ab +a +b 的最小值等于 .解析 设2ab +a +b =t ,则t >0,且3=ab (a +b )+ab +a +b =ab (t -2ab )+t -ab ,故关于ab 的二次方程2(ab )2+(1-t )ab +3-t =0的解为正数,所以⎩⎪⎨⎪⎧Δ=(1-t )2-8(3-t )≥0,t -12>0,3-t 2>0,解得42-3≤t <3,即2ab +a +b 的最小值等于42-3.答案 42-313.已知f (x +1)=x 2-5x +4. (1)f (x )的解析式为 ;(2)当x ∈[0,5]时,f (x )的最大值和最小值分别是 . 解析 (1)f (x +1)=x 2-5x +4,令x +1=t ,则x =t -1, ∴f (t )=(t -1)2-5(t -1)+4=t 2-7t +10,∴f (x )=x 2-7x +10.(2)∵f (x )=x 2-7x +10,其图象开口向上,对称轴为x =72,72∈[0,5],∴f (x )min =f ⎝ ⎛⎭⎪⎫72=-94, 又f (0)=10,f (5)=0.∴f (x )的最大值为10,最小值为-94.答案 (1)x 2-7x +10 (2)10,-9414.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .解析 若λ=2,则当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,得1<x <2.综上可知1<x <4,所以不等式f (x )<0的解集为(1,4).令x -4=0,解得x =4;令x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.答案 (1,4) (1,3]∪(4,+∞)能力提升题组15.(2019·杭州质检)设函数f (x )=x 2+ax +b (a ,b ∈R ),记M 为函数y =|f (x )|在[-1,1]上的最大值,N 为|a |+|b |的最大值( ) A.若M =13,则N =3B.若M =12,则N =3C.若M =2,则N =3D.若M =3,则N =3解析 由题意得|f (1)|=|1+a +b |≤M ⇒|a +b |≤M +1,|f (-1)|=|1-a +b |≤M ⇒|a -b |≤M +1.|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,则易知N ≤M +1,则选项A ,B 不符合题意;当a =2,b =-1时,M =2,N =3,则选项C 符合题意;当a =2,b =-2时,M =3,N =4,则选项D不符合题意,故选C. 答案 C16.(2019·丽水测试)已知函数f (x )=x 2+ax +b ,集合A ={x |f (x )≤0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪f (f (x ))≤54,若A =B ≠∅,则实数a 的取值范围是( )A.[5,5]B.[-1,5]C.[5,3]D.[-1,3]解析 设集合B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n },其中m ,n 为方程f (x )=54的两个根,因为A =B ≠∅,所以n =0且m ≤f (x )min ,Δ=a 2-4b ≥0,于是f (n )=f (0)=b =54,则由a 2-4b =a 2-5≥0得a ≤-5或a ≥5,令t =f (x )≤0,则由f (f (x ))≤54得f (t )≤54,即t 2+at +54≤54,解得-a ≤t ≤0,所以B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n }={x |-a ≤f (x )≤0},解得m =-a ,所以-a ≤f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=⎝ ⎛⎭⎪⎫-a 22+a ·⎝ ⎛⎭⎪⎫-a 2+54,解得-1≤a ≤5.综上所述,实数a 的取值范围为[5,5],故选A. 答案 A17.已知二次函数f (x )=ax 2+bx (|b |≤2|a |),定义f 1(x )=max{f (t )|-1≤t ≤x ≤1},f 2(x )=min{f (t )|-1≤t ≤x ≤1},其中max{a ,b }表示a ,b 中的较大者,min{a ,b }表示a ,b 中的较小者,下列命题正确的是( ) A.若f 1(-1)=f 1(1),则f (-1)>f (1) B.若f 2(-1)=f 2(1),则f (-1)>f (1) C.若f 2(1)=f 1(-1),则f 1(-1)<f 1(1) D.若f 2(1)=f 1(-1),则f 2(-1)>f 2(1)解析 对于A ,若f 1(-1)=f 1(1),则f (-1)为f (x )在[-1,1]上的最大值,∴f (-1)>f (1)或f (-1)=f (1),故A 错误;对于B ,若f 2(-1)=f 2(1),则f (-1)为f (x )在[-1,1]上的最小值,∴f (-1)<f (1)或f (-1)=f (1),故B 错误;对于C ,若f 2(1)=f 1(-1),则f (-1)为f (x )在[-1,1]上的最小值,而f 1(-1)=f (-1),f 1(1)表示f (x )在[-1,1]上的最大值,∴f 1(-1)<f 1(1),故C 正确;对于D ,若f 2(1)=f 1(-1),由新定义可得f 1(-1)=f 2(-1),则f 2(1)=f 2(-1),故D 错误,综上所述,故选C. 答案 C18.(2019·绍兴适应性考试)已知a >0,函数f (x )=|x 2+|x -a |-3|在[-1,1]上的最大值是2,则a = .解析 由题意知f (0)≤2,即有||a |-3|≤2,又∵a >0,∴||a |-3|≤2⇒|a -3|≤2⇒1≤a≤5.又∵x ∈[-1,1],∴f (x )=|x 2-x -3+a |≤2,设t =x 2-x -3,则t ∈⎣⎢⎡⎦⎥⎤-134,-1,则原问题等价于t ∈⎣⎢⎡⎦⎥⎤-134,-1时,|t +a |=|t -(-a )|的最大值为2,∴a =3或a =54. 答案 3或5419.已知方程x 2+bx +c =0在(0,2)上有两个不同的解,则c 2+2(b +2)c 的取值范围是 .解析 设方程x 2+bx +c =0在(0,2)上的两个根为α,β,α≠β,则f (x )=x 2+bx +c =(x -α)(x -β),0<α<2且0<β<2,所以c 2+2(b +2)c =f (0)·f (2)=αβ(2-α)(2-β)≤⎣⎢⎡⎦⎥⎤α+(2-α)22⎣⎢⎡⎦⎥⎤β+(2-β)22=1,又0<α<2且0<β<2,所以αβ(2-α)(2-β)>0,所以c 2+2(b +2)c 的取值范围是(0,1]. 答案 (0,1]20.已知函数f (x )=ax +3+|2x 2+(4-a )x -1|的最小值为2,则a = .解析 令g (x )=2x 2+(4-a )x -1=0,Δ=(4-a )2+8>0,则g (x )=0有两个不相等的实数根,不妨设为x 1,x 2(x 1<x 2),则x 1=a -4-(4-a )2+84,x 2=a -4+(4-a )2+84,当x ∈[x 1,x 2]时,f (x )=ax +3-[2x 2+(4-a )x -1]=-2x 2+(2a -4)x +4,当x ∈(-∞,x 1)∪(x 2,+∞)时,f (x )=ax +3+[2x 2+(4-a )x -1]=2(x +1)2≥0,因为f (x )的最小值为2,则f (x )min =min{f (x 1),f (x 2)},即ax 1+3=2或ax 2+3=2,解得a =12.答案 12。
-高考数学双向细目表(精)

平面向量
平面向量的实际背景及基本概念
向量的实际背景
√
平面向量的概念
√
两个向量相等
√
向量的几何表示
√
向量的线性运算
加法、减法、几何意义
√
数乘的运算、几何意义
√
两个向量共线的含义
√
线性运算的性质和几何意义
√
平面向量基本定理和坐标表示
平面向量基本定理及意义
√
正交分解及坐标表示
√
加法、减法、数乘坐标运算
√
√
分步乘法
√
排列与组合
排列概念与公式
√
组合概念与公式
√
二项式定理
证明二项式定理
√
展开式有关问题
√
概率与统计
概率
离散型随机变量与分布列
√
超几何分布
√
条件概率
√
两个事件相互独立
√
N次独立重复试验与二项分布
√
均值、方差
√
正态分布曲线特点及意义
√
统计案例
独立性检验
√
回归分析
√
坐标系与参数方程
坐标系
用极坐标表示点的位置
合情推理与演绎推理
归纳和类比推理
√演绎推理的基本模式√ Nhomakorabea联系和差异
√
直接证明与间接证明
分析法与综合法
√
反证法
√
数学归纳法
数学归纳法
√
数系的扩充与复数的引入
复数的概念
复数的概念
√
复数相等的充要条件
√
复数代数表示法与几何意义
√
复数的四则运算
四则运算
√
-高考数学双向细目表(精)

2020届理科数学双向细目表模块知识点考查内容知识要求2015 分值2016 分值2017 分值备注了解理解掌握集合集合的含义与表示集合的含义、元素与集合的属于关系√列举法、描述法√集合间的基本关系包含与相等的含义√识别给定集合子集√全集与空集√集合的基本运算并集与交集含义与运算√补集含义与运算√韦恩图表达集合的关系与运算√函数概念与基本初等函数I 函数简单定义域值域,了解映射√图像法、列表法、解析法表示函数√分段函数√函数单调性、最值及几何意义√函数奇偶性√函数图像研究函数性质√指数函数指数函数模型背景√有理、实数指数幂、幂的运算√指数函数概念、单调性√指数函数图像过定点√对数函数对数的概念及其运算√换底公式、自然对数、常用对数√对数函数的概念、单调性√对数函数图像过定点√指数函数与对数函数互为反函数√幂函数幂函数概念√幂函数图像√函数与方程二次函数、零点与方程根√一元二次方程根的存在性及根的个数√结合图像,用二分法求近似解√函数模型及应用指、对、幂的增长特征√函数模型的应用√立体几何初步空间几何体柱锥台的结构特征√三视图√斜二测画出直观图√平行、中心投影√会画视图和直观图√球柱锥台的表面积和体积公式√点线面位置关系线面位置关系定义√线面平行判定√面面平行判定√线面垂直判定√面面垂直判定√线面平行性质√面面平行性质√线面垂直性质√面面垂直性质√用已获结论证明空间图形的位置关系√平面解析几何初步直线与方程结合图形,确定直线位置的几何要素√直线倾斜角和斜率√过两点的直线斜率计算公式√判定直线平行或垂直√点斜式、两点式、一般式√斜截式与一次函数的关系√两条相交直线的交点坐标√两点间距离公式√点到直线距离公式√两条平行直线间距离√圆与方程圆的几何要素,标准方程和一般方程√判断直线与圆的位置关系√判断两圆的位置关系√应用直线与圆的方程√代数方法处理几何问题的思想√空间直角坐标系空间直角坐标表示点的位置√空间两点间距离公式√算法初步算法的含义、程序框图算法的含义和思想√顺序、条件分支、循环逻辑结构√基本算法语句输入、输出、赋值、条件、循环语句√统计随机抽样会用简单随机抽样从总体中抽取样本√分层抽样和系统抽样√用样本估计总体频率分布表、频率分布直方图、折线图√茎叶图√数据标准差意义和作用√平均数和标准差√用样本估计总体思想√变量的相关性会画散点图,并认识变量间的相关关系√最小二乘法,线性回归方程√概率事件与概率频率与概率的意义√互斥事件的概率加法公式√古典概型古典概型计算公式√随机事件所含的基本事件数及发生概率√几何概型随机数的意义,运用模拟方法估计概率√几何概型的意义√基本初等函数II 任意角的概念、弧度制任意角的概念√弧度制的概念、弧度与角度的互化√三角函数理解正弦、余弦、正切的定义√单位圆的三角函数线√诱导公式√会画三角函数图像√三角函数周期性√正余弦单调性、最值与X轴交点等性质√正切函数性质√同角三角函数的基本关系式√正弦型函数参数对图像变化的影响√平面向量平面向量的实际背景及基本概念向量的实际背景√平面向量的概念√两个向量相等√向量的几何表示√向量的线性运算加法、减法、几何意义√数乘的运算、几何意义√两个向量共线的含义√线性运算的性质和几何意义√平面向量基本定理和坐标表示平面向量基本定理及意义√正交分解及坐标表示√加法、减法、数乘坐标运算√用坐标表示平面向量共线的条件√平面向量的数量积平面向量的数量积含义与物理意义√平面向量的数量积与向量投影关系√数量积坐标表达式与运算√用数量积表示夹角√用数量积判断两个向量的垂直关系√向量的应用解决平面几何问题√解决实际问题√三角恒等变换和与差的三角函数公式两角和与差的余弦、正弦、正切公式√二倍角公式√三角恒等变换积化和差、和差化积√半角公式√解三角形正弦定理余弦定理正弦定理√余弦定理√应用三角形度量问题√数列数列的概念与简单表示法数列的概念√列表、图像、通项公式表示方法√数列是自变量为正整数的函数√等差数列、等比数列等差数列概念√等差数列通项公式和求和公式√等比数列概念√等比数列通项公式和求和公式√等差数列与一次函数√等比数列与指数函数√不等式不等关系实际背景√一元二次不等式实际情景中抽象√与二次函数、一元二次方程联系√会解一元二次不等式,设计程序框图√二元一次不等式组与简单的线性规划问题实际情景抽象出二元一次不等式组√二元一次不等式组表示平面区域√二元线性规划问题√基本不等式了解证明过程√解决最值问题√常用基本逻辑用语命题及其关系命题的概念√四种命题及其关系√充分、必要、充要条件√简单的逻辑联结词或、且、非√全称量词与存在量词全称量词√存在量词√含有量词命题的否定√圆锥曲线与方程圆锥曲线实际背景√椭圆定义几何图形标准方程、简单性质√抛物线定义几何图形标准方程简单性质√双曲线定义几何图形标准方程简单性质√简单应用、数形结合思想√曲线与方程方程的曲线与曲线的方程√空间向量与立体几何空间向量及其运算空间向量概念、基本定理、坐标√空间向量线性运算√空间向量数量积√用空间向量数量积表示共线与垂直√空间向量的应用直线方向向量与平面的法向量√线线、线面、面面平行关系√线线、线面、面面垂直关系√三垂线定理√线线、线面、面面夹角计算√导数及其应用导数概念及几何意义导数概念实际背景√导数的几何意义√导数的运算求导运算法则√基本初等函数导数公式√在研究函数中应用单调性与导数关系√函数取极值的必要条件和充分条件√会求函数的极值√会求闭区间上的最值√生活中的优化问题实际问题√定积分与微积分定积分概念、实际背景、思想√微积分基本定理√推理与证明合情推理与演绎推理归纳和类比推理√演绎推理的基本模式√联系和差异√直接证明与间接证明分析法与综合法√反证法√数学归纳法数学归纳法√数系的扩充与复数的引入复数的概念复数的概念√复数相等的充要条件√复数代数表示法与几何意义√复数的四则运算四则运算√加减法运算的几何意义√计数原理分类加法、分步乘法分类加法√分步乘法√排列与组合排列概念与公式√组合概念与公式√二项式定理证明二项式定理√展开式有关问题√概率与统计概率离散型随机变量与分布列√超几何分布√条件概率√两个事件相互独立√N次独立重复试验与二项分布√均值、方差√正态分布曲线特点及意义√统计案例独立性检验√回归分析√坐标系与参数方程坐标系用极坐标表示点的位置√极坐标与直角坐标互化√简单图形的方程√柱坐标系、球坐标系表示空间中点位置√参数方程参数方程和参数的意义√直线、圆、圆锥曲线的参数方程√平摆线与渐开线√不等式选讲含绝对值不等式几何意义√绝对值三角不等式√柯西不等式不同形式√几何意义√柯西不等式一般情参数配方法√排序不等式向量递归法√伯努利不等式数学归纳法√均值不等式求极值√证明不等式方法比较、综合、分析、反证、放缩√。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届二轮(理科数学)函数概念与基本初等函数专题卷(全国通用)
1.(2019·高考天津卷)已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()
A.c<b<a B.a<b<c
C.b<c<a D.c<a<b
解析:选A.因为a=log27>log24=2,b=log38<log39=2,b=log38>1,c=0.30.2<1,所以c<b<a.故选A.
2.(2019·河南平顶山模拟)函数f(x)=log a|x+1|(a>0,a≠1),当x∈(-1,0)时,恒有f(x)>0,则()
A.f(x)在(-∞,0)上是减函数
B.f(x)在(-∞,-1)上是减函数
C.f(x)在(0,+∞)上是增函数
D.f(x)在(-∞,-1)上是增函数
解析:选D.由题意,函数f(x)=log a|x+1|(a>0且a≠1),则说明函数f(x)关于直线x=-1对称,当x∈(-1,0)时,恒有f(x)>0,即|x+1|∈(0,1),f(x)>0,则0<a<1.又u=|x+1|在(-∞,-1)上是减函数,在(-1,+∞)上是增函数,结合复合函数的单调性可知,f(x)在(-∞,-1)上是增函数,选D.
3.已知函数y=log a(x-1)(a>0,a≠1)的图象过定点A,若点A也在函数f(x)=2x+b的图象上,则f(log23)=________.
解析:由题意得A(2,0),因此f(2)=4+b=0,b=-4,从而f(log23)=3-4=-1.
答案:-1
4.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为____________.
解析:因为0<a<1,所以函数f(x)是定义域上的减函数,所以f(x)max=log a a=1,f(x)min
=log a2a,所以1=3log a2a⇒a=(2a)3⇒8a2=1⇒a=
2 4.
答案:
2 4
5.已知函数f(x-3)=log a
x
6-x
(a>0,a≠1).
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性,并说明理由.
解:(1)令x -3=u ,则x =u +3,于是f (u )=log a 3+u
3-u (a >0,a ≠1,-3<u <3),
所以f (x )=log a 3+x
3-x
(a >0,a ≠1,-3<x <3).
(2)因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x
3-x =log a 1=0,
所以f (-x )=-f (x ),又定义域(-3,3)关于原点对称. 所以f (x )是奇函数.
6.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间; (2)若f (x )的最小值为0,求出a 的值.
解:(1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).
由-x 2+2x +3>0得-1<x <3,即函数的定义域为(-1,3). 令g (x )=-x 2+2x +1.
则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,
所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)因f (x )的最小值为0,
则h (x )=ax 2+2x +3应有最小值1,
因此应有⎩⎨⎧a >0,
3a -1a =1,
解得a =1
2.
故实数a 的值为1
2
.
[综合题组练]
1.(2019·广东汕头金山中学期中)已知当0<x ≤1
2
时,不等式log a x <-2恒成立,则实数
a 的取值范围是( )
A .(2,2)
B .(1,2) C.⎝⎛⎭
⎫
22,1
D .(0,2)
解析:选B.当0<x ≤12时,不等式log a x <-2恒成立,所以log a x <0.又0<x ≤1
2,所以a >1,
因此y =log a x 是增函数,故x <a -2恒成立,所以1
2
<a -2,得1<a <2,
故选B.
2.已知函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C.⎝⎛⎭
⎫0,13 D .(3,+∞)
解析:选D.由于a >0,且a ≠1, 所以u =ax -3为增函数,
所以若函数f (x )为增函数,则f (x )=log a u 必为增函数, 所以a >1.
又u =ax -3在[1,3]上恒为正, 所以a -3>0,即a >1.
1.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间⎝⎛⎭⎫0,1
2上恒有f (x )>0,则f (x )的单调递增区间是____________.
解析:函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间⎝⎛⎭⎫0,1
2上恒有f (x )>0, 由x ∈⎝⎛⎭⎫0,1
2,得2x 2+x ∈(0,1), 故有a ∈(0,1).
又f (x )的定义域为⎝⎛⎭⎫-∞,-1
2∪(0,+∞), 根据复合函数的单调性的判断规则知, 函数的单调递增区间为⎝⎛⎭⎫-∞,-1
2. 答案:⎝
⎛⎭⎫-∞,-1
2
2.函数f (x )=log 2 x ·log 2(2x )的最小值为________.
解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14≥-14,
当且仅当log 2x =-12,即x =2
2时等号成立,
所以函数f (x )的最小值为-1
4.
答案:-1
4
3.已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.
解:(1)由a x -1>0,得a x >1,当a >1时,x >0; 当0<a <1时,x <0.
所以当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2, 故0<a x 1-1<a x 2-1,
所以log a (a x 1-1)<log a (a x 2-1).所以f (x 1)<f (x 2). 故当a >1时,f (x )在(0,+∞)上是增函数.
类似地,当0<a <1时,f (x )在(-∞,0)上为增函数. 综上知,函数f (x )在定义域上单调递增.
4.(应用型)已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12
x .
(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.
解:(1)当x <0时,-x >0,则f (-x )=log 12
(-x ).
因为函数f (x )是偶函数, 所以f (-x )=f (x )=log 12
(-x ),
所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,
0,x =0,
log 1
2
(-x ),x <0.
(2)因为f (4)=log 12
4=-2,f (x )是偶函数,
所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).。