悬架系统介绍
悬架系统介绍

工作过程:
主动悬架系统的控制中枢是一个微电脑控制模块,在整车行驶过程中,悬架上 的多种传感器分别收集各种行车信息(车速、制动力、踏板速度、车身垂直方向 的振幅及频率、转向盘角度及转向速度等数据 ),电脑不断接收这些数据并与预 先设定的临界值进行比较,选择相应的悬架状态。 同时,微电脑独立控制每一只车轮上的执行元件,通过动力装置产生的作用 力控制执行单元相应的功能特性,从而能在任何时候、任何车轮上产生符合要求 的悬架运动。 另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起 弹簧变形时,主动悬架会产生一个与惯性力相对抗的力,减少车身位置的变化。 例如当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据 传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多 大的负载加到悬架上,使车身的倾斜减到最小。
4)多连杆式独立悬架 所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的 一套悬挂机构。而连杆数量在3根以上才称为多连杆,目前主流的连杆数量 为5连杆。因此其结构要比双叉和麦弗逊复杂很多。
悬架系统结构原理

悬架系统结构原理悬架系统是指汽车底盘上的一组部件,用于支撑和连接车身与车轮之间的部分。
它的主要功能是减震和支撑车身,提供乘坐舒适性和操控稳定性。
悬架系统结构的原理是通过减震器、弹簧、悬挂臂等部件的协同作用,来实现对车轮的支撑和减震。
悬架系统的结构主要由以下几个部分组成:减震器、弹簧、悬挂臂、悬挂架和悬挂连接件等。
减震器是悬架系统的核心部件之一,它通过消化车轮运动产生的冲击力和振动,使车身得到稳定支撑。
减震器一般由外筒、活塞、活塞杆和工作介质等组成,通过阻尼力来减缓车身的上下运动。
弹簧是悬架系统的另一个重要组成部分,它主要负责支撑车身的重量和吸收路面不平的冲击力。
常见的弹簧类型有螺旋弹簧、扭杆弹簧和气囊弹簧等。
螺旋弹簧是最常见的一种,它通过转动螺旋弹簧将车身重力转化为垂直方向的弹簧力,从而支撑车身。
而扭杆弹簧则是通过在车轮上方安装一根扭杆来实现支撑作用。
悬挂臂是连接车轮和车身的重要部件,它通过悬挂臂与车轮轴连接,使车轮能够上下运动。
悬挂臂的设计和材料选择都会影响到车辆的操控性能和乘坐舒适性。
一般来说,悬挂臂分为上控制臂和下控制臂,它们通过球头和悬挂架连接,形成一个可调节的连接点,使车轮能够在不同路况下保持与车身的相对位置。
悬挂架是悬架系统的主体部分,它由悬挂臂、减震器和弹簧等组成。
悬挂架起到支撑和固定悬架系统其他部件的作用,同时也承担着车身重量和承受路面冲击力的重要任务。
悬挂连接件则是悬架系统的连接部件,它们通过连接悬挂架和车身,保证悬架系统的稳定性和安全性。
悬架系统的工作原理主要是通过减震器、弹簧和悬挂臂等部件的协同作用来实现的。
当车轮受到路面不平的冲击时,减震器会通过阻尼力减缓车身的上下运动,从而减少车身的晃动和颠簸感。
同时,弹簧和悬挂臂会吸收和分散路面冲击力,保证车轮与车身的相对位置稳定。
这样一来,悬架系统能够提供良好的乘坐舒适性和操控稳定性,使驾驶者能够更好地掌控车辆。
总结起来,悬架系统结构的原理是通过减震器、弹簧、悬挂臂等部件的协同作用,来实现对车轮的支撑和减震。
3.2 底盘性能配置-悬架系统

3.2 底盘性能配置-悬架系统
汽车技术学院
汽车新配置
是否采用拖拽臂悬挂,其实也可以作为判断一台车底盘素质乃至该 车档次的依据,多用在小型车和紧凑型车的后桥上。
3.2 底盘性能配置-悬架系统
空气悬挂系统(主动悬挂)
汽车技术学院
汽车新配置
与大多数轿车目前采用的传统的不可变高度的螺旋弹簧悬挂系统相比,
3.2 底盘性能配置-悬架系统
双叉臂式独立悬挂
双叉臂式悬挂又称双A臂式独立 悬挂,双叉臂悬挂拥有上下两个叉 臂,横向力由两个叉臂同时吸收, 支柱只承载车身重量,因此横向刚 度大。双叉臂式悬挂的上下两个A 字形叉臂可以精确的定位前轮的各 种参数,前轮转弯时,上下两个叉 臂能同时吸收轮胎所受的横向力, 加上两叉臂的横向刚度较大,所以 转弯的侧倾较小。
3.2 底盘性能配置-悬架系统
多连杆悬挂
汽车技术学院
汽车新配置
多连杆悬挂,就是通过各种
连杆配普通的
悬挂要多一些,一般把连杆数为
三或以上的悬挂称为多连杆悬挂。 目前主流的连杆数为4或5根连杆。
前悬挂一般为3连杆或4连杆式独
立悬挂;后悬挂则一般为4连杆 或5连杆式后悬挂。
通过一端与车轮连接、一端与车身连接的“弹簧”来实现;左右方向
的力,由“横梁”来传递,最终作用在“承重铰链”上。 拖拽臂悬挂基本上是一种半独立悬挂,也就是说,一边车轮的跳
动会部分地影响到另一边的车轮,因此舒适性稍差。
3.2 底盘性能配置-悬架系统
汽车技术学院
汽车新配置
根据“横梁”位置的不同,拖拽臂悬挂又可细分为“全拖拽臂”、“半
汽车技术学院
汽车新配置
是一种很先进实用的配置,但是却很容易损坏而且造价很高。系统结构较为 复杂,其出现故障的几率和频率要远远高于螺旋弹簧悬挂系统 。
线控悬架系统的工作原理

线控悬架系统的工作原理一、引言线控悬架系统是一种高级的汽车悬架系统,它可以通过电子控制单元(ECU)精确地调整每个车轮的悬挂高度和硬度,从而提高汽车的稳定性、舒适性和安全性。
本文将详细介绍线控悬架系统的工作原理。
二、线控悬架系统的组成线控悬架系统由以下几个部分组成:1. 气压供应系统:为悬架系统提供气体压力,通常使用气泵或压缩机。
2. 线控阀组:用于调节气体进出每个气囊,从而调整每个车轮的悬挂高度和硬度。
3. 传感器:用于测量汽车的姿态、加速度和路面情况等参数,以便ECU能够根据这些数据做出正确的调整。
4. 电子控制单元(ECU):负责接收传感器数据,并根据预设参数来调整每个车轮的悬挂高度和硬度。
三、线控阀组的工作原理线控阀组是线控悬架系统中最重要的部分之一。
它由多个电磁阀组成,每个电磁阀都控制着一个气囊的进气和排气。
当ECU接收到传感器数据后,它会根据预设参数来控制每个电磁阀的开关,从而调整每个车轮的悬挂高度和硬度。
具体来说,当ECU需要提高悬架高度时,它会打开相应的电磁阀,使气压进入气囊内部。
这样就可以使车轮上升,从而提高汽车的离地高度。
反之,当ECU需要降低悬架高度时,它会关闭相应的电磁阀,使气囊内部的气体排出。
这样就可以使车轮下降,从而降低汽车的离地高度。
同时,在调整悬架硬度方面,线控阀组也起到了重要作用。
当ECU需要增加悬架硬度时,它会打开相应的电磁阀,并将一部分气体排出到外界。
这样就可以减少气囊内部的空间,并增加悬架硬度。
反之,当ECU需要减少悬架硬度时,则会关闭相应的电磁阀,并让更多的气体进入到气囊内部。
四、传感器的工作原理传感器是线控悬架系统中另一个重要的组成部分。
它们负责测量汽车的姿态、加速度和路面情况等参数,以便ECU能够根据这些数据做出正确的调整。
具体来说,传感器通常包括以下几种类型:1. 加速度传感器:用于测量汽车在加速、刹车和转弯时的加速度。
2. 倾角传感器:用于测量汽车在水平面上的倾斜角度。
汽车悬架介绍总结

汽车悬架介绍总结悬架的作用和意义悬架是汽车的一个重要组成部分,其主要作用是连接车身和车轮,承受并减震来自路面的振动和冲击力。
汽车悬架的质量和性能直接影响着车辆的操控性、舒适性和安全性。
一个好的悬架系统可以提供稳定的行驶性能,减少车身的颠簸感,保护乘客的舒适性,同时保持胎面与地面的贴合度,提供良好的牵引力和制动能力。
悬架的类型根据结构和工作原理的不同,汽车悬架可以分为以下几种类型:1. 独立悬架独立悬架是目前大多数汽车所采用的悬架形式。
它有助于保持车轮与地面的接触,提供良好的操控性和舒适性。
独立悬架通常由弹簧和减震器组成,常见的独立悬架类型有麦弗逊悬架、复合臂式悬架和多连杆悬架等。
2. 非独立悬架非独立悬架是一种相对简单和经济的悬架系统,通常用于商用车和低配车型中。
它没有独立的悬架系统,而是通过一个刚性的悬架桥来连接左右车轮。
虽然非独立悬架对于减震效果不如独立悬架那么好,但它能够承受更高的荷载和更严苛的工况。
3. 半独立悬架半独立悬架是介于独立悬架和非独立悬架之间的一种类型。
它采用部分独立的设计,常见的半独立悬架有扭力杆式悬架和螺旋弹簧式悬架等。
半独立悬架可以在某种程度上提供悬架的独立性,同时也能满足一定的承载需求。
悬架的工作原理1. 弹簧悬架系统中的弹簧起到支撑车重和减震的作用。
根据材料和结构的不同,弹簧可以分为螺旋弹簧、气囊弹簧和扭杆弹簧等。
弹簧通过储存和释放能量来吸收和减缓由路面传递上来的冲击力,提供车身的稳定性和乘坐的舒适性。
2. 减震器减震器是悬架系统中的关键部件,其主要作用是控制和减缓弹簧运动时产生的弹性反弹,防止车身过度晃动,保持车轮与地面的接触。
常见的减震器类型有液压减震器、气压减震器和电磁减震器等。
减震器通过消化和吸收弹簧振动的能量,提供平稳的悬架行程和良好的悬架控制。
3. 悬架连接杆悬架连接杆用于连接车轮和车身,承受侧向力和纵向力的传递,同时保持车轮的位置和角度稳定。
在悬架系统中,常见的连接杆包括稳定杆、横拉杆和四连杆等。
双叉臂式独立悬架

双叉臂式独立悬架双叉臂式独立悬架是一种常见于汽车和摩托车等交通工具上的悬挂系统。
它采用了两个「叉臂」来连接车轮与车身,实现了车轮独立运动,并能够同步对路面不平进行响应。
这种悬架系统的设计具有很多优点,可以提高车辆的操控性、乘坐舒适性和行驶稳定性等。
本文将对双叉臂式独立悬架的结构特点、工作原理和应用等方面进行详细介绍。
首先,让我们来了解一下双叉臂式独立悬架的结构特点。
这种悬挂系统由两根独立的叉臂组成,每个叉臂都与车轮连接,并通过球接头与车身相连。
叉臂的形状通常呈现出「叉」字形,一段连接车轮,一段连接车身。
这种结构使车轮能够独立自由地运动,无论是上下振动还是左右转向,车身都不会受到太大的干扰,从而提供了更好的悬挂效果。
双叉臂式独立悬架的工作原理基于减震器和弹簧的作用。
减震器通常位于叉臂的上端,起到减震和改善车辆行驶稳定性的作用。
它通过控制减震阻尼来调节车轮的上下运动,保持车身在不同路面情况下的平稳性。
而弹簧则起到支撑和缓冲的作用,使车轮能够更好地适应路面不平,并吸收和分散来自路面的冲击力。
双叉臂式独立悬架的优点之一是可以提高车辆的操控性。
由于每个车轮都可以独立运动,车辆在转弯时能够更好地适应不同的路面情况,从而提供更好的操控性能和稳定性能。
此外,双叉臂式独立悬架还可以有效地减少车身的侧倾和横向滑移,提高了车辆的稳定性和安全性。
双叉臂式独立悬架还可以提供良好的乘坐舒适性。
它能够有效地减少来自路面的震动和冲击力传递到车身上,使乘坐者感受到更加平稳和舒适的行驶体验。
这对于长时间行驶或者路况较差的地区尤为重要,可以减少疲劳感,提高驾乘者的舒适度。
双叉臂式独立悬架由于其结构和工作原理的优点,广泛应用于各种类型的交通工具上。
在汽车上,特别是高性能和豪华车型中,双叉臂式独立悬架被广泛采用。
它能够提供更好的操控性和乘坐舒适性,满足车主对于驾驶品质的要求。
同时,在摩托车领域,双叉臂式独立悬架也是常见的悬挂系统之一。
它可以提供稳定的悬挂性能,并提高摩托车的操控性和驾驶舒适度。
空气悬架系统

空气悬架系统1. 介绍空气悬架系统(Air Suspension System)是一种汽车悬挂系统,通过气囊和电磁阀实现对车辆悬挂高度的调节。
相比传统弹簧悬挂系统,空气悬架系统可以实现可调节的车身高度,提供更好的舒适性和稳定性。
本文将介绍空气悬架系统的工作原理、优势和应用等内容。
2. 工作原理空气悬架系统通过气囊和电磁阀来实现对车辆悬挂高度的调节。
系统中的电磁阀可根据车身高度的变化对气囊中的气体进行充放控制,从而实现悬挂高度的调节。
2.1 气囊空气悬架系统中的气囊是系统的核心组件之一。
气囊通常由柔性橡胶材料制成,具有良好的弹性和耐用性。
气囊内部充满了压缩空气,通过调节气囊内气体的压力可以实现对车身高度的调节。
2.2 电磁阀电磁阀是控制气囊中气体的充放的装置。
它通过与车辆悬挂控制系统相连,根据车身高度的变化来控制气囊中的气体充放。
当车身高度需要增加时,电磁阀打开,允许气体从气囊外部进入气囊内部,从而提高车身的高度。
反之,当车身高度需要减少时,电磁阀关闭,阻止气体进入气囊,从而使车身降低。
3. 优势3.1 舒适性空气悬架系统的一个显著优势是提供更好的舒适性。
由于可以调节悬挂高度,车辆在行驶过程中可以根据路面情况自动调整悬挂高度,从而减少对驾乘人员的冲击和颠簸感。
尤其在通过凹凸不平的路面或者高速行驶时,空气悬架系统可以保持车身稳定,提供更平稳的行驶体验。
3.2 稳定性空气悬架系统可以提高车辆的稳定性。
通过调整悬挂高度,可以减少车辆重心的变化,从而降低车辆在转弯或急刹车时的侧倾和倾覆风险。
此外,空气悬架系统还可以根据行驶速度自动调整悬挂高度,提供更好的操控性能。
3.3 载重调节空气悬架系统还可以实现对载重的调节。
通过调整气囊中的气体压力,可以使车辆的悬挂高度适应不同的载重情况。
当车辆载重较重时,增加气囊中的气体压力可以提高悬挂高度,从而保持车身水平。
反之,当载重较轻时,减少气囊中的气体压力可以降低悬挂高度,提供更好的悬挂性能。
主动悬架系统的工作原理

主动悬架系统的工作原理主动悬架系统是一种高级的汽车悬架系统,它可以根据路面情况和驾驶员的需求自动调整车辆的悬架硬度和高度,从而提高车辆的稳定性、舒适性和操控性。
主动悬架系统的工作原理是通过传感器和控制器来监测车辆的运动状态和路面情况,然后根据这些信息来调整悬架的工作方式。
主动悬架系统的传感器通常包括加速度计、陀螺仪、压力传感器、高度传感器等。
这些传感器可以测量车辆的加速度、角速度、车身姿态、路面高度等参数,从而提供给控制器一个全面的车辆运动状态的信息。
控制器是主动悬架系统的核心部件,它根据传感器提供的信息来计算出车辆的运动状态和路面情况,并根据预设的悬架工作模式来控制悬架的工作方式。
主动悬架系统的工作模式通常包括舒适模式、运动模式、高度调节模式等。
在舒适模式下,主动悬架系统会自动调整悬架的硬度和高度,使车辆在行驶过程中尽可能地平稳舒适。
在运动模式下,主动悬架系统会自动调整悬架的硬度和高度,使车辆在高速行驶和急转弯时更加稳定和灵活。
在高度调节模式下,主动悬架系统可以根据驾驶员的需求来调整车辆的高度,以适应不同的路面情况和驾驶场景。
主动悬架系统的工作原理可以通过以下步骤来简单描述:1. 传感器测量车辆的运动状态和路面情况,将数据传输给控制器。
2. 控制器根据传感器提供的数据计算出车辆的运动状态和路面情况,并根据预设的悬架工作模式来控制悬架的工作方式。
3. 控制器向悬架执行器发送指令,调整悬架的硬度和高度,以适应当前的路面情况和驾驶场景。
4. 悬架执行器根据控制器的指令调整悬架的工作方式,使车辆在行驶过程中保持平稳、舒适和稳定。
总之,主动悬架系统是一种高级的汽车悬架系统,它可以根据路面情况和驾驶员的需求自动调整车辆的悬架硬度和高度,从而提高车辆的稳定性、舒适性和操控性。
主动悬架系统的工作原理是通过传感器和控制器来监测车辆的运动状态和路面情况,然后根据这些信息来调整悬架的工作方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢按作用原理分:被动悬架,半被动悬架,主 动悬架,半主动悬架
一.定义
非独立悬架是指两侧的车轮安装在一根整体式的 车桥上,车桥通过弹性元件与车架相连的悬架。该悬架 当一侧车轮跳动时,将要影响另一侧车轮的工作。优 点是结构简单,制造方便。
(车轮在汽车横向平面内运动 ) 1) 单横臂式:应用较少 2) 双横臂式:摆臂等长的独立悬架 、摆臂不等 长的独立悬架
横臂式独立悬挂
一.定义 横臂式悬架是指车轮在汽车横向平面内摆动的
独立悬架,按横臂数量的多少又分为双横臂式和单 横臂式悬架。
单横臂式具有结构简单,侧倾中心高,有较强 的抗侧倾能力的优点。但随着现代汽车速度的提 高,侧倾中心过高会引起车轮跳动时轮距变化大, 轮胎磨损加剧,目前应用不多。
纵臂式悬挂
双纵臂式悬架的两个摆臂一般做成等 长的,形成一个平行四杆结构,这样,当车 轮上下跳动时主销的后倾角保持不变。双 纵臂式悬架多应用在转向轮上。
烛式悬挂
一.定义 烛式悬架的
结构特点是车轮 沿着刚性地固定 在车架上的主销
轴线上下移动。
烛式悬挂
➢ 烛式悬架的优点是:当悬架变形时,主销的定 位角不会发生变化,仅是轮距、轴距稍有变化, 因此特别有利于汽车的转向操纵稳定和行驶稳 定。 ➢ 烛式悬架有一个大缺点:就是汽车行驶时的 侧向力会全部由套在主销套筒的主销承受,致 使套筒与主销间的摩擦阻力加大,磨损也较严 重。烛式悬架现已应用不多
杆配置,使悬挂在收缩时能自动调整外倾角,前束角以及 使后轮获得一定的转向角度。 工作原理
其原理就是通过对连接运动点的约束角度设计使得悬 挂在压缩时能主动调整车轮定位,而且这个设计自由度非 常大,能完全针对车型做匹配和调校。 结论
因此多连杆悬挂能最大限度的发挥轮胎抓地力从而 提高整车的操控极限。但由于结构复杂,成本也非常高, 无论是研发实验成本还是制造成本都是最高的,但性能是 所有悬挂设计中最好的。
双横臂式独立悬架按上下横臂是否等长,又分 为等长双横臂式和不等长双横臂式两种悬架。等 长双横臂式悬架在车轮上下跳动时,能保持主销 倾角不变,但轮距变化大(与单横臂式相类似),
横臂式独立悬挂
多连杆式悬挂
一.定义 所谓多连杆悬挂,顾名思义就是通过各种连杆
配置把车轮与车身相连的一套悬挂机构。而连杆 数量在3根以上才称为多连杆,目前主流的连杆数 量为5连杆。因此其结构要比双叉和麦弗逊复杂很 多。
多连杆式悬挂
二.应用 主要应用于大中型车
我们常见的中型和大型车上才会使用这种设 计,但通常都只用于后轮。原因是多连杆机 构非常复杂而且占用空间大,使其不便于布 置。因此只能用于拥有较大空间的后桥上。 但这里也有一个例外,那就是奥迪系列车型。
多连杆式悬挂
解决可变前束以及随动转向的局限性 多连杆悬挂就完全解决了这个问题,它通过不同的连
多连杆式悬挂
纵臂式悬挂
(车轮在汽车纵向平面内运动 ) 1) 单纵臂式独立悬架
纵臂式悬挂 2) 双纵臂式独立悬架
纵臂式悬挂
一.定义 纵臂式独立悬架是指车轮在汽车纵向
平面内摆动的悬架结构,又分为单纵臂式和 双纵臂式两种形式。 二.应用
单纵臂式悬架当车轮上下跳动时会使 主销后倾角产生较大的变化,单纵臂式悬 架具有占用的横向和纵向空间小、轮距不 随车轮跳动而变化、结构简单、成本低等 优点,主要应用于后悬架。
1. 定义 悬架是车架(或承载式车身)
与车桥(或车轮)之间的一切传力 连接装置的总称。
2. 作用 ① 连接车身与车轮,以适当的刚性支承 车轮。 ② 吸收来自路面的冲击,改善乘坐舒 适性。 ③ 稳定行驶中的车身姿势,改善操纵性。
3. 组成
悬架由弹性元件、减振装置和导向机 构等三部分组成。
4. 悬架的分类
螺旋弹簧非独立悬架
1)一般只用作轿车的后悬架,具有纵向布置方便, 便于维护和保养的特点。
2)由于螺旋弹簧只能承受较小侧向力。因此需 要加装横向推力杆和纵向推力杆 。
3)旋弹簧套在减震器的外面,必须加装导向机 构。
一.定义
独立悬架的车轴分成两段,每只车轮用螺旋弹簧独 立地安装在车架(或车身)下面,当一边车轮发生 跳动时,另一边车轮不受波及,汽车的平稳性和 舒适性好。但这种悬架构造较复杂,承载力小。 现代轿车前后悬架大都采用了独立悬架,并已成 为一种发展趋势。
二.应用
非独立悬架因其结构简单,工作可靠,而被广泛 应用于货车的前、后悬架。在轿车中,非独立悬架仅 用于后桥。
三. 非独立悬架类型 平行钢板弹簧式悬架 连杆式螺旋弹簧式悬架
钢板弹簧式非独立悬架
1) 采用钢板弹簧的非独立悬架中,省却了导向结 构,方便布置。 因此广泛引用于货车的前后悬架, 轿车的后悬架。 2)优点:结构简单,工作可靠。
是由螺旋弹簧加上减震器组成,减震器可以 避免螺旋弹簧受力时向前、后、左、右偏移 的现象,限制弹簧只能作上下方向的振动, 并可以用减震器的行程长短及松紧,来设定 悬挂的软硬及性能。
一般用于轿车的前轮。
麦弗逊式悬挂
一.定义 空气悬架系统(AIRMATIC)是流行于
当今发达国家汽车行业的先进产品。在发达 国家,100%的中型以上客车都用了空气悬 架系统,40%以上的卡车、挂车和牵引车 用了空气悬架系统。其最大的优点是:不仅 可以提高乘员的乘坐舒适性,而且可以对道 路起到保护作用。
麦弗rsan)式悬挂是独立悬挂的 一种,是当今最为流行的独立悬挂之一。虽然麦 弗逊式悬挂在行车舒适性好,其结构体积不大, 可有效扩大车内乘坐空间,但也由于其构造为 直筒式,对左右方向的冲击缺乏阻挡力,抗刹 车点头作用较差。
麦弗逊式悬挂
二.结构与应用 简单地说,麦弗逊式悬挂的主要结构即
二.应用
这种悬架构造较复杂,承载力小。现代轿车前后 悬架大都采用了独立悬架
优点
1.左右车轮的运动相互独立,减少了车身的 振动;
2.非簧载质量小,悬架所受到的冲击小,平 顺性好;
3.与断开式车桥配用,可降低汽车重心。
三. 独立悬架类型 横臂式悬挂 多连杆式悬挂 纵臂式悬挂 烛式悬挂 麦弗逊式悬挂
横臂式独立悬挂