试验型水下滑翔机的动力学分析及实验
水下滑翔机水动力性能分析及滑翔姿态优化研究

Hydrodynamic analysis and optimization on the gliding attitude of the under water glider
¨
¨
式中 x 是沿 X 轴方向的加速度 , z 是沿 Z 轴方向的加
¨
速度 ,θ是旋转加速度 。
因此
马冬梅 ,等 :水下滑翔机水动力性能分析及滑翔姿态优化研究
705
( F - G) ·sinθ = D t gθ = D/ L ( F - G) ·co sθ = L → G = F - L / co sθ (2)
角增大呈现减少趋势外 ,其他来流速度下 ,随攻角增 角增大 ,机翼侧面靠后部分压力逐渐增高而接近外界
大呈现先增大后减小的趋势 。最大阻力在 4°攻角左 环境压力 ,致使机翼压阻力呈现减小趋势 。但当来流
右 ,这与总阻力随攻角变化的趋势大体相同 。说明翼 速度较大时 (0. 8 m/ s) ,尾部涡对在很小攻角时就开
图 5 不同速度下阻力随攻角变化曲线
为了分析阻力变化趋势以及在水下滑翔机各部 分阻力所占的比重 ,将计算结果中的阻力分解为艇体 摩擦阻力 、翼摩擦阻力 、艇体压阻力和翼压阻力 。结 果如图 6 所示 。
由图 6 中可以看出艇体摩擦阻力基本上是随攻
706
水 动 力 学 研 究 与 进 展 2007 年第 6 期
MA Do ng2mei , MA Zheng , ZHAN G Hua , YAO Hui2zhi
(China Ship Scientific Research Center , Wuxi 214082 , China)
水下滑翔机器人水动力研究与运动分析

图2攻角符号定义
1.1主载体外形优化 主载体外形优化主要在满足装配空间的要求下,
增加细长比,日尽量减小尾部外形导致的压阻力,以 减小总阻力因此,在体稍相同的前提r确定了四种载 体方案NHull01~HullIM,它们的外形和阻力计算结果 见表1.计算结果表明,Hull03能捉供最大的装配卒问, 其粘压阻力比Hun04大34%,总阻力比Hull04火 10.3%,但Hull04旨尾尖细,不满足装dd要求,冈此 结台Hull03装配空间大,Hull04压5H力小的特点,研 究的主载体外形为:艏部是直径O.2m的半球形;中部 下行中体是直符o 2m、长1 155m的圆柱;尾部击流 段足长0267m的锥形,由下列fm线绕z辅阻』转而成mJ.
0 2572
-0.7680
-0 6985
-0 7299
.0.1525
—0.1044
.0 0506
0叭75
0.5144
_0.8150
.0 7248
-0 7764
.0.6232
-0.4257
-0.2086
0 0349
02572
.1 6421
.1 5323
.1 5909
.0.2539
-0.1522
-0.0485
(1 ShenyangInstituteofAutomation,theChineseAcademyofScience,Shenyan9110016,China;2 Graduate SchoolofthcChinese AcademyofSciences,B刊ing 100039,china)
Abstract:Autonomous UnderwaterGlider“UG)isanewAUVwithoutexternalac“vepropulsion.butrelying ontheinternal‘19lll(1tortOadjustthecenlefofgravilyandthenetbuqvoncvtOgenerate relativemotion Itcan be used tO explore ocean environmentsfor a long time and covering a lw'ge area which requires its shape wlth the character&tics oflow hydrodynamic drag and high stabili舢Thepaper optimizes如e des(gn ofAUG in the view ofhydrodynamicfeaturea,iswludis’g the shape ofmare body,the lgiing wing and the stable wing.The steady gliding moron andsteady turningmotion ofthe s1172cture ofhydrodynumic optimizeddesign are analyzed,which
尺度水下滑翔机的机翼设计与水动力分析

实验尺度水下滑翔机的机翼设计与水动力分析宫宇龙,马 捷,刘雁集,张 凯(上海交通大学 海洋工程国家重点实验室,上海 200030)摘 要:为获取优化的实验尺度水下滑翔机水平机翼外形,基于CFD 方法建立了滑翔机仿真模型。
分析了平板机翼各参数间的关系,结合滑翔机特性,将机翼的表征量简化为安装位置、后掠角、展长、展弦比和根梢比等5个设计参数。
通过对比分析各参数对升阻比的影响,提出了一种适用于实验尺度滑翔机的高升阻比水平机翼。
仿真研究了设计的机翼对滑翔机运动的影响,结果表明,滑翔机各状态变量快速收敛,保证了滑翔机在水池环境中的稳态滑翔时间。
关键词:水下滑翔机,平板翼型,机翼变量,FLUENT 仿真 中图分类号:U674.941 文献标志码:A 【DOI 】Flat Wing Designing and Hydrodynamic Analysis for theLaboratory Underwater GliderGONG Y u-long, MA Jie, LIU Yan-ji, ZHANG Kai(State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China)Abstract: T o get a better wing designing for the laboratory underwater glider , a simulation model was made based on CFD. After the analysis of different parameters of the wing and the characters of glider , the five parameters as position, angle, length of the wing, aspect ratio, root shoot ratio are selected to be compared for the designing. After the comparison, a plat wing with higher lift-drag ratio for the laboratory underwater glider was designed. The experiment with the new plat wing indicated that the new design worked better and guaranteed the stability of the underwater glider .Key words: underwater glider; plat wing design; wing parameters; FLUENT simulation0 引言实验尺度的滑翔机机体较小,可在常规水池内完成稳态滑翔运动,便于研究滑翔机的参数辨识与控制等。
水下滑翔机外形设计与水动力计算

文章编号 : 1 6 7 2—7 6 1 9 ( 2 0 1 7 ) 0 3 —0 1 0 7 —0 6
Co nf ig ur a t i o n a nd h y dr o dy na mi c pe r f o r ma nc e c a l c u l a t i o n o f a n unde r wa t e r g l i de r Y A NG L e i , C AO J u n - j u n , YA O B a o - h e n g , L I AN L i a n
T h e r e f o r e , a g o o d h y d r o d y n a mi c p e r f o r ma nc e i s e x t r e me l y i mp o r t a n t t o d e s i g n a g l i d e r . Th e c o n i f g u r a t i o n o f a n u n d e w a r t e r g l i d e r d e s i g n e d b y o u r l a b o r a t o y r wa s d e s c ib r e d i n t h i s p a p e r . T h e h y d r o d y n a mi c s o f t h e g l i d e r i n l i n e a r a n d t u r n i n g mo t i o n we r e c a l c u l a t e d b y CF D s o f t wa r e . T h e c a l c u l a t e d r e s u l t s a r e i n g o o d a g r e e me n t wi h t t h e t o wi n g e x p e r i me n t a l r e s u l t s . F u r -
实验尺度无人水下滑翔机设计与试验

实验尺度无人水下滑翔机设计与试验杨海;刘雁集;张凯【期刊名称】《中国舰船研究》【年(卷),期】2016(011)001【摘要】无人水下滑翔机是一种高效的水下机器人。
实尺度滑翔机在一般水池内很难形成稳态的滑翔运动,不便于研究分析其动力学问题,因此设计一种实验尺度的水下滑翔机,详述滑翔机的设计、建模、控制与试验研究。
首先,简述实验尺度滑翔机结构,利用CFD软件计算壳体的水动力参数。
然后,根据机体的内部质量分布,建立滑翔机的动力学模型。
最后,设计垂直剖面运动的线性二次型调节器(LQR)控制器与线性Kalman观测器,并在观察环节加入一定量的白噪声干扰。
仿真结果表明,设计的控制器与观测器可在一定量干扰存在的情况下保证机体的正常运行。
水池试验的结果表明,设计的滑翔机可在3m水深范围完成稳态滑翔运动,并具有良好的稳定性及操纵性。
【总页数】7页(P102-107,120)【作者】杨海;刘雁集;张凯【作者单位】中国舰船研究设计中心,上海201108;上海交通大学海洋工程国家重点实验室,上海200240;上海交通大学海洋工程国家重点实验室,上海200240【正文语种】中文【中图分类】U661.71【相关文献】1.水下滑翔机关键承压系统设计与试验研究 [J], 范双双;杨灿军;彭时林;黎开虎;谢钰;张绍勇2.试验型水下滑翔机的动力学分析及实验 [J], 曹俊亮;曹军军;赵宝强;姚宝恒;连琏3.大尺度高速水下无人艇控制系统设计与试验验证 [J], 王文晋; 王冠学; 李奔; 徐国华4.基于数值运动仿真的水下滑翔机浮力调节设计及试验研究 [J], 张安通;张华;肖冬林;陈鲁愚;徐令令;王健5.微结构湍流测量水下滑翔机设计与试验研究 [J], 马伟;王延辉;徐田雨因版权原因,仅展示原文概要,查看原文内容请购买。
飞翼式混合驱动水下滑翔机水动力与运动特性研究

飞翼式混合驱动水下滑翔机水动力与运动特性研究王金强;王聪;魏英杰;张成举【期刊名称】《兵工学报》【年(卷),期】2018(039)008【摘要】为了提高水下滑翔机的水动力性能和滑翔经济性,提出一种新型飞翼式混合驱动水下滑翔机.为了研究飞翼式混合驱动水下滑翔机的水动力和运动特性,基于计算流体力学Openfoam软件,采用剪切应力传递湍流模型对其在航速为0.5~3.0m/s和攻角、漂角均为0°~21 °工况下流动特性进行分析,并将分析结果与实验结果进行对比;对于运动特性,则基于多体动力学理论,并考虑姿态调节过程中参数变化影响,建立飞翼式混合驱动水下滑翔机运动仿真模型,分别对其推进和滑翔两种典型运动状态进行仿真和外场实验.研究结果表明:仿真结果与外场实验结果具有良好的一致性,验证了仿真方法的准确性,且与传统混合驱动水下滑翔机相比,飞翼式混合驱动水下滑翔机阻力系数随攻角变化速率较大,但随漂角变化速率较小,并具有更优的滑翔经济性和综合水动力性能.【总页数】9页(P1556-1564)【作者】王金强;王聪;魏英杰;张成举【作者单位】哈尔滨工业大学航天学院,黑龙江哈尔滨150001;哈尔滨工业大学航天学院,黑龙江哈尔滨150001;哈尔滨工业大学航天学院,黑龙江哈尔滨150001;哈尔滨工业大学航天学院,黑龙江哈尔滨150001【正文语种】中文【中图分类】P715.5+3【相关文献】1.飞翼式碟形水下滑翔机流动与运动特性分析 [J], 王金强;王聪;魏英杰;张成举2.混合驱动水下滑翔机水动力参数辨识 [J], 牛文栋;王延辉;杨艳鹏;朱亚强;王树新3."海鲟4000"水下滑翔机水动力特性与滑翔性能研究 [J], 刘来连; 闵强利; 张光明4.水下滑翔机高效滑翔水动力性能研究 [J], 李永成;马峥;王小庆5.混合驱动水下滑翔机动力学建模与海试研究 [J], 王树新;刘方;邵帅;王延辉;牛文栋;吴芝亮因版权原因,仅展示原文概要,查看原文内容请购买。
微结构湍流测量水下滑翔机设计与试验研究
水下滑翔机定位导航系统及实验研究
一、水下机器人导航定位技术的 研究现状
1、惯性导航与自主定位
惯性导航是一种常用的水下机器人导航方式,其主要利用陀螺仪和加速度计等 惯性传感器来测量机器人的加速度和角速度,从而计算出机器人的位置和姿态。 然而,由于惯性导航的误差会随着时间的推移而累积,因此需要与其他导航方 式结合使用以实现更精确的定位。
系统组成
水下滑翔机定位导航系统主要由以下几个部分组成: 1、全球定位系统(GPS):用于获取水下滑翔机的绝对位置信息。
2、惯性测量单元(IMU):用于获取水下滑翔机的姿态、速度和加速度信息。
3、水下地形地貌扫描系统(OBS):用于获取水下环境的地形地貌信息,帮助 水下滑翔机进行路径规划和避障。
视觉导航则是利用图像处理和计算机视觉技术来实现水下机器人的导航和定位。 其优点在于可以直接获取环境信息,提供更为精确的定位数据。然而,由于水 下环境的复杂性和不确定性,视觉导航技术仍面临着许多挑战。
二、水下机器人导航定位技术的 发展趋势
1、多传感器融合与智能决策
由于单一导航方式的局限性,多传感器融合成为了水下机器人导航定位技术的重要研究方向。通过将不同类型的传感器(如惯性传感器、水声传感器、视觉 传感器等)进行融合,可以充分利用各种传感器的优点,提高水下机器人的导 航精度和鲁棒性。同时,通过引入人工智能和机器学习等技术,实现智能决策, 可以进一步提高水下机器人的导航性能。
未来,水下定位导航系统的发展方向主要有以下几点:一是加强数据传输速度 和精度,以提高实时导航性能;二是研发更加智能化的水下机器人,提高自主 导航能力;三是结合和机器学习等技术,实现更加精准的定位和导航决策。此 外,随着5G等通信技术的不断发展,水下定位导航系统将有望实现更远距离的 信号传输和更高精度的定位。
水下滑翔机垂直面动力学分析与仿真
水下滑翔机垂直面动力学分析与仿真张华;张进峰;张少伟;倪先胜【摘要】水下滑翔机是一种依靠水动力和净浮力驱动的无外挂推进系统,具有能耗小、作业时间长的优点,主要应用于大范围、长时间、大尺度的海洋观测.本文针对在研的水下滑翔机原理样机,介绍基于CFX水动力计算软件的水动力计算方法,并采用最小二乘法辨识了滑翔机在垂直面作稳定滑翔运动时的水动力参数;分析水下滑翔机垂直面稳态运动时系统状态与控制量之间关系,并基于LQR控制方法设计水下滑翔机在垂直面作稳态滑翔运动时在不同俯仰角下的切换控制策略,仿真表明了这种控制方法的有效性.【期刊名称】《舰船科学技术》【年(卷),期】2015(037)010【总页数】6页(P56-61)【关键词】水下滑翔机;水动力分析;LQR【作者】张华;张进峰;张少伟;倪先胜【作者单位】武汉第二船舶设计研究所,湖北武汉430064;东风德纳车桥有限公司,湖北襄阳441000;武汉第二船舶设计研究所,湖北武汉430064;武汉第二船舶设计研究所,湖北武汉430064【正文语种】中文【中图分类】TP240 引言水下滑翔机是一种依靠机翼水动力和净浮力驱动、将浮标和水下机器人技术结合的新概念水下机器人。
水下滑翔机通过间歇性改变自身净浮力和重心在垂直纵剖面的位置从而改变滑翔运动中机翼受到的水动力,借助机翼的升力实现在垂直纵剖面的锯齿状运动,通过重心位置在机翼面的侧向偏移产生的横滚力矩实现机身的横滚,从而使机翼升力产生回转向心力分量实现滑翔机的转向。
由于净浮力的改变和重心位置改变是间歇性的,因此滑翔机能耗非常小,适用于长期、大范围海洋环境的长期监测。
1995年以来,在美国海军研究局 (ONR)的资助下,美国研制出了 Slocum、Seaglider和 Spray等[1-3]以电池和海洋温差为能源的水下滑翔机系统,其续航时间一般可达200-300 d,航程达2 000~7 000 km,航行速度约为0.25m/s。
水下滑翔机动力系统工作性能的研究
关键 词 : 温 差能 水下 滑翔机 ;感温 工质 ;固液相 变 ; 态分析 ;工作特 性 动
中 图分 类 号 : T 2 P4 文献标 识码 : A
文章 编号 : 17 7 4 ( 0 8 0 0 8 0 DO :0 3 0 /.sn 1 7 7 4 . 0 8 0 . 1 6 2— 6 9 2 0 )3— 0 2— 6 I 1 . 4 4 ji . 6 2— 6 9 2 0 .3 0 5 s
远 高 于 冷水 层 航 程 ; 据 相 变 的过 程 特征 , 力 系 统 在 一 个 锯 齿 形 航 行 轨 迹 中 , 分 为 6个 工 作 过 程 加 以研 究 ; 析感 根 动 可 分 温 工质 液 态 和 固 态 的 保 持 时 间 , 可确 定滑 翔 机 的 航 行 深 度 范 围 , 为 动 力 系 统 的控 制 和 单 向 阀 的 动 作 时 序 控 制 提 供 也
( tt K yL b rt yo ca n i eig S a g a J oo gU iesy S ag a 2 0 3 , hn ) Sae e a oa r f enE g e r ,h n h i i t nvri ,h n h i 0 0 0 C ia o O n n a n t
p o e o dii e t e wo k n r c s ft e d ie s se i t i rsd rngo e zg a l ng p t c o d— r p rt v d h r i g p o e so h rv y t m n o sx pa t u i n i z g g i di ah a c r i g t h bti e p a e r n f r ai n c a a t r Th o g h i n o t e o an d h s ta so m to h r ce . r u h t e smult n, h c u ae l n t fpe id ai o t e a c r t e gh o ro
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20卷第12期 2016年12月船舶力学Journal of Ship MechanicsVol.20 No.12Dec. 2016Article ID:1007-7294(2016)12-1523-12Dynamics and Experiments of a Laboratorial Underwater GliderCAO Jun-liang1, CAO Jun-jun1, ZHAO Bao-qiang2, YAO Bao-heng1,3, LIAN Lian1,3(1. State Key Laboratory of Ocean Engineering; Institute of Oceanology, Shanghai Jiao Tong University,Shanghai 200240; 2. Qingdao Collaborative Innovation Center of Marine Science and Technology,Qingdao 266000, China; 3. China Ship Development and Design Center, Wuhan 430064, China)Abstract: In this paper, the design, implementation, and experiments of a weight-varied underwater are presented. The realization of the buoyancy engine is mainly accomplished by a unidirectional water pump and a three position five-way solenoid valve. The glider is designed to operate within 30 meters deep down to the water surface, and the detailed design process is introduced. The glider's equation of motion and dynamic features are presented and the steady-state solution is analyzed. The hydrodynamic coefficients are also calculated by using Computational Fluid Dynamics (CFD) method. Simulation and experimental results show the reliability and utility of the underwater glider.Key words: underwater glider; buoyancy engine; w eight-varied; dynamic; CFDC LC number: U674.941 Document code: A doi: 10.3969/j.issn.1007-7294.2016.12.0030 IntroductionThe interest in monitoring underwater environments by using conventional autonomous underwater vehicles (AUVs) and underwater gliders is growing in recent years. The practical applications include patrolling seaports, tracking oil spills, and monitoring harmful algal blooms111. The vehicle needs to be capable of high efficiency to maintain sustainable operating time duration, and meanwhile high maneuverability to negotiate with versatile environments. Underwater glider is a new dynamic underwater observation platform, known for its great energy-ef- ficie ncyand long-durationoperationinoceanographicapplications[21, w h ic h u tiliz e s its n e t buoyancy to achieve motion without any additional propulsion system and alters its center of gravity to adjust attitude.Legacy underwater glider is driven by the change of net buoyancy which is mostly achieved by adjusting its volume of displacement and meanwhile its weight is remain unchanged such asSeaglider丨31,Spray丨41,andS locum丨51.T hehyb rid-d rive n u n d e rw a te rg lid e risa n o ve lre se a rch area in recent years, for instance, Folaga丨61hasadivingactuationm echanism asanoceano- graphic glider and autonomous surface navigation capabilities as self-propelled AUVs; PETRAL[71Received date: 2016-06-25Foundation item: The Research Fund for Science and Technology Commission of Shanghai Municipality(STCSM) (No.13dz1204600)Biography:CAO Jun-liang(1989-), male, Ph.D. candidate ofShanghai Jiao Tong University, E-mail:xavier.cao@; LIAN Lian(1962-), female, professor/tutor of Shanghai Jiao TongUniversity, E-mail: llian@.1524船舶力学第20卷第12期and Sterne[8] are designed with both ballast control and a thruster. Other driven solutions have been used: the ALBAC design uses a drop weight to drive the glider in a single dive cycle between deployment and recovery from ship[9]; SML glider[1] is a miniaturized underwater combines the desirable features of both an underwater glider and robotic fish; Wave glider[10] is an unmanned maritime vehicle (UMV) unique in its ability to harness ocean wave energy for platform propulsion.In this paper, the change of net buoyancy is achieved by adjusting the body weight while the volume of displacement is remain unchanged. For conventional bidirectional water pumps, either the volume is oversized for underwater glider or the flow rate is dilatory for the buoyancy adjustment process. The mechanism in this paper has overcome these problems and verified through experiments. This kind of underwater glider is easier to operate than conventional gliders, suitable for fundamental studies and laboratorial experiments. Also, the hydrodynamic model and mathematic model have been analyzed to obtain the necessary parameters which w ill be used in the simulating process. The experimental results have demonstrated the reliability and utility of the glider.This paper is organized as follow: the glider description and the design process are introduced in Chap.1; the establishments and analysis of mathematic model as well as the hydrodynamic model of the underwater glider is given in Chap.2; the experiment results comparing with simulation results are shown in Chap.3; finally the conclusions and future works are drawn in Chap.4.1 Glider descriptionAs a demonstrated underwater glider in this study, it is designed to work 30 meters deep under the water surface. Some of the main design parameters are listed in Tab.1. The pressure Tab.1 M ain parameters o f the gliderhull of the underwater glider consists of the front pod, cylindrical hull and the rear pod. The material we choose is polymethylmethacrylate (PMMA), which is a transparent organic compound capable of considerable compression strength and appropriate for the experimental underwater glider. The front pod and rear pod are designed in streamlined shape to optimize the lift-drag ratio. The aspect ratio of the wing is 4.0, while the taper of the wing is 3.0, andit has a sweepback of 18 degrees so that the glider is in best working condition.Be distinguished from other underwater gliders in the world, the glider in this study adjusts its net buoyancy by absorbing and draining ambient water. Compared with other volume- varied underwater gliders, this buoyancy engine (Fig.1) is much simple in processing and easyParametersSymbol Value Hull lengthLh 1.7 m Length (antenna included)L 2.0 m Wing span W 1.1m Weight of glider m 36 kg Weight of moving mass m p6 kg Displacement m v35.7 kg Outer diameter d 17 cm Wing areaS 0.21 m2Max. operating depthD30 m第12期CAO Jun-liang et al: Dynamics and Experiments o fa 噎1525to control. Besides, other underwater gliders usually must be capable of the ability to monitor the flow rate precisely, while mechanism in this paper is simplified by controlling the working time of the pump.The greatest difficulty in the design process is to control the size of water pump and guarantee the pumping rate at the meantime. For conventional bidirectional water pump, either the volume is oversized for underwater glider or the flow rate is dilatoryfor the buoyancy adjustment process. To deal with these problems, a unidirectional water pump and a three position five-way solenoid valve is used. The function of the three position five-way solenoid valve is to change both the water inlet and outlet simultaneously. A small capsule is set in the mechanism as an accumulator since the switch of the valve needs a start-up pressure.The same as most underwater gliders, changing the center of gravity is achieved by translating an internal moving mass (including the battery), which is usually weighted 15%-20% of the whole glider. More translating distance w ill be needed if the moving mass is lighter, which w ill extend the length of the glider. Otherwise, if the weight of moving mass is too heavy, the attitude adjustment w ill be sensitive excessively, causing the underwater glider be difficult to control. The movement of the mass is accomplished by a high efficiency and high accuracy linear actuator for the pitch system, the position of the moving mass is measured by the rotation of the stepper motor, which is convenient to control and operate precisely.The roll actuator is utilized another single mass for the sake of convenient, which is designed in a half-cylinder shape so that the center of gravity is slightly below the centerline of the glider. It is also driven by high efficiency and high accuracy stepper motor connected with worm gears to achieve the rotation.Several sensors are equipped on the underwater glider to collect data and monitor the operating status. A pressure sensor and a temperature sensor are installed at the front cover to record the operating depth and ambient temperature; an attitude sensor is set in the electronic bay to monitor and provide the attitude angles and angular accelerations for the control algorithm; a flowmeter is concatenated with the water bladder monitoring the working status of the buoyancy engine.2 Modeling2.1 M athem atic modelIn this paper, the underwater glider is modeled as a rigid-body system, with an externalFig.1 Buoyancyengine1526船舶力学第20卷第12期force and moment exerted by an internalmovable mass. The sketch map of the glider in the body-fixed reference frame denoted as Oxb y b zb is shown in Fig.2; theorigin O is located at the geometric center, which w ill be the point of applicationfor the buoyancy force. The Oxb axis is along with the body’s longitudinal axis pointing to the head; the Oyb axis is perpendicular to the O xb axis and pointing to the right wing; the Ozb axis is perpendicula r to the other axes and pointing downwards. The pitch angle 兹is defined as the angle between Oxb and horizontal plane; while the angle of attack 琢is defined as the angle between the velocity and Oxb. v = [ v1f 0, v3 ]stands for the translational velocity of the glider, expressed in the body-fixed reference frame.The longitudinal equations of motion a re a d o p te d fro m th e re fe re n ce[111, which are restrict in the vertical plane. The definitions of all variables appearing in equations of motion are listed in Tab.2.Fig.2 The glider’s reference framesTab.2 Definitions o f all variables appearing in longitudinal equations o f m otion ofthe underw ater gliderTitle Physical significance琢angle of attackD drag force componentg acceleration due to gravityL lift force componentm〇vehicle heavinessm"m3added mass along body-1/ body-3 directionm internal moving massm b ballast massM d l2pitching momentJ2added moment of inertia along the body-2 direction赘2pitch rate(rp 1, rp3) position of m with respect to CB in body coordinates 兹pitch angle(v 1, v3) velocity components in body coordinates兹=赘2赘2= 士(m j m) (m3+m j Y_m|m3+m)r P3X1-m1m|m3+m jr P3w1+ m (m j m) rn X3-1 m jm) mm3 ^ r p1 赘2v1=—^ (X1-m rP3 i赘2-mw1)m1+mv3=—(X3-m rP1 i i2+m rP1 赘2)m3+mr P1 =r P1r P1 =w1mb=W4(1)⑵⑶⑷(5)(6)(7)第12期CAO Jun-liang et al: Dynamics and Experiments o fa 噎1527wherea=J 2 (m 1+m) (m 3+m ) +mm 1 (m 3+m ) rP 3 +mm 3 (m 1+m ) rP 1(8)¥,3_,,3-1^2(卜1+^赘2^)^+(^弋1赘2)^)-m g(rn cos 兹+rp 3sin 兹)+MD L 2(9)X 1=-m (v 3-r P 1 赘2)赘2 -m 3赘2v 3-m 0 gsin 兹+Lsina-Dcosa (10)X 3=m (v 】+rP 3 赘 2 + r P 1)赘 2 +m 1 赘 2 V 1+m 。