电炉变压器容量及参数的确定.doc

合集下载

变压器容量计算方法如何选择变压器容量

变压器容量计算方法如何选择变压器容量

变压器容量计算方法如何选择变压器容量1.负载功率计算:首先需要计算负载的功率需求。

功率通常以千瓦(kW)为单位来表示。

可以通过以下公式计算负载功率:P=V×I×PF,其中P表示功率,V表示电压,I表示电流,PF表示功率因数。

2.负载功率因数:功率因数是衡量电力系统的有效功率的指标。

功率因数的范围从0到1,对于纯阻性负载,功率因数等于1;对于纯电感性负载,功率因数等于0。

大多数实际负载的功率因数介于这两个值之间。

需要确保变压器容量能够满足负载功率以及所需的功率因数。

3.容量裕度:变压器的容量裕度是指其额定容量与所需负载容量之间的差异。

通常为了避免过载和延长变压器的寿命,建议选择具有适当容量裕度的变压器。

通常建议容量裕度为20%-30%。

4.变频器负载:对于有频率可变的变频器负载,需要考虑变频器带来的附加功率损耗。

变频器负载一般比传统负载具有更高的谐波成分,因此需要选择具有更高容量的变压器。

5.过载能力:需要确保选取的变压器具有足够的过载能力以处理短时期的负载过载情况。

过载能力是变压器运行过载情况下能够持续运行的时间。

6.峰值负载:峰值负载是指负载在短时间内超过额定负载容量的情况,例如起动电动机时的峰值电流。

需要确保变压器能够处理峰值负载而不会超过其额定容量。

7.升压与降压:需要确定所需的变压器是升压还是降压变压器。

升压变压器是将输入电压升高到所需的输出电压,而降压变压器是将输入电压降低到所需的输出电压。

综上所述,选择适合的变压器容量需要明确负载功率需求、功率因数、容量裕度和附加负载等因素。

确保选取的变压器能够满足正常运行、负载波动以及峰值负载的要求,从而提高系统的可靠性和效益。

电炉变压器技术参数

电炉变压器技术参数

电炉变压器技术参数1. 引言电炉变压器是电力系统中的重要设备,用于将高电压转换为适合电炉使用的低电压。

它在工业领域中广泛应用,特别是在冶金和化工行业中。

本文将详细介绍电炉变压器的技术参数,包括额定容量、额定电压、相数、绝缘等级等。

2. 技术参数2.1 额定容量额定容量是指电炉变压器能够持续输出的功率。

它通常以千伏安(kVA)为单位表示。

额定容量的选择应根据电炉的功率需求来确定,一般情况下,电炉变压器的额定容量应略大于电炉的额定功率,以确保变压器能够正常运行。

2.2 额定电压额定电压是指电炉变压器的输入和输出电压。

输入电压是指电炉变压器的输入侧电压,通常为高电压,以满足输送电能的要求。

输出电压是指电炉变压器的输出侧电压,通常为低电压,以适应电炉的工作需求。

额定电压的选择应根据电炉的电压需求来确定,同时还要考虑电网的电压水平和变压器的设计要求。

2.3 相数相数是指电炉变压器的输入和输出侧的相数。

一般情况下,电炉变压器的输入和输出侧的相数应保持一致,以确保变压器能够正常工作。

常见的相数有单相、三相等。

2.4 绝缘等级绝缘等级是指电炉变压器绝缘系统的耐压能力。

它通常以千伏(kV)为单位表示。

绝缘等级的选择应根据电炉变压器的额定电压、运行环境和安全要求来确定。

常见的绝缘等级有6kV、10kV、35kV等。

2.5 效率效率是指电炉变压器的输出功率与输入功率之比。

它通常以百分比表示。

高效率的电炉变压器可以减少能源损耗,提高能源利用率。

因此,在选择电炉变压器时,应尽量选择高效率的产品。

2.6 短路阻抗短路阻抗是指电炉变压器在短路状态下电流通过的阻抗。

它通常以百分比或欧姆(Ω)为单位表示。

短路阻抗的大小直接影响到电炉变压器的短路电流和故障电流,因此,在选择电炉变压器时,应考虑电炉的短路容量和系统的故障能力。

2.7 温升温升是指电炉变压器在额定负载下产生的温度升高。

它通常以摄氏度(℃)为单位表示。

温升的大小直接影响到电炉变压器的运行可靠性和寿命。

变压器功率和电参数的确定

变压器功率和电参数的确定

变压器功率和电参数的确定变压器功率的确定电炉的生产率决定于炉子的容量,变压器的功率,电炉全年的工作天数,冶炼周期,电效率和热效率。

影响炉子工作的因素很多,目前,电炉利用系数以1000千伏安变压器功率昼夜的合格钢产量定为炉子生产率的标准。

确定变压器功率的目的是为了选择与电炉容量相匹配的变压器。

变压器功率的确定是一个比较复杂的问题,它受炉子的容量,冶炼时间,炉衬材质、电效率、热效率等许多因素的影响、为了简化计算,把变压器功率与炉壳直径D 壳联系起来,抛开其它影响因素。

研究发现变压器功率与炉壳直径D 壳存在如下关系。

当炉壳直径D 壳已知时,可用下面的经验公式选择变压器的额定功率。

P 视=τ32.3110壳D (6-5)式中:P 视—变压器视在功率(KV A );D 壳外—炉壳外径(m );τ—额定装量时的熔化时间(h )。

电压级数为了满足冶炼工艺的要求,在各冶炼期采用不同的功率供电,如熔化期采用最高功率及最高二次电压供电,在精炼期使用较小功率及低电压供电。

在功率要求一定时,工作电压提高,可以减小电流,因而可提高功率因数Cosφ和电效率η电,为此变压器要设置若干级二次电压。

首先选最高一级的二次电压,其经验公式为:315视P U =电压级数取决于最高二次电压和各冶炼期对供电的要求。

一般:最高级二次电压(V) 200~250 250~300 320~400 >400电压级数 2~4 4~6 6~8 8~18改变二次电压通过改变变压器高压侧线圈匝数及其接线法来实现。

二分之一用高压绕组三角形联接获得,另一半用星形联接获得。

中国冶金行业网电极直径(d 电级)电极是将电流引入熔炼室的导体,当电流通过电极时,电极会发热,此时会有8%左右的电能损失。

当功率一定时:电极直径减小,电极上的电流密度I/S 增大,电能损失增大。

电极直径增大,电极上的电流密度I/S 减小,电能损失减小,因此希望电极直径大点。

但是电极直径太大,电极表面热量损失增加,所以电极直径不能太大,应有一个合适的值,以保证电极上的电流密度在一定范围内,根据经验,电极直径可按下式确定:=电极d )(406.032cm K I ρ (6-6)式中:ρ—石墨电极500o C 时电阻系数,比电阻 Ω·m ;m /mm 102Ω=石墨ρ;K —系数,对石墨电极K=2.1 W/cm 2I —电极上的电流强度 A ;U P I 31000视(6-7)式中:U —最高二次电压; 表6-4 不同尺寸电极的I/S 值d 电极(mm )100 200 300 400 500 600 I/S (A/cm 2) 28 20 17 15 14 12为了减少电极消耗,露出炉顶外的那部分电极温度:石墨电极≯500℃,为此电极上的电流密度也不应超过该尺寸电极的I/S 允许值,以免电极温度过高。

变压器容量的选择与计算Word版

变压器容量的选择与计算Word版

变压器容量的选择与计算【摘要】电力变压器是供配电系统中必不可少且应用极广的设备,正确合理地选择变压器,是电力系统经济、安全、可靠地运行的保证,在节能降耗方面也有重要意义。

本文详细地阐述了根据系统负荷选择变压器的方法和步骤。

【关键词】变压器计算负荷无功补偿电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。

所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。

一、台数选择变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。

当符合下列条件之一时,宜装设两台及以上变压器:1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。

当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。

2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。

3.集中负荷容量较大 虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。

当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负荷分别由不同的变压器供电,以方便备用电源的切换。

二、容量选择变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。

首先要准确求计算负荷,计算负荷是供电设计计算的基本依据。

确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为:有功计算负荷(kw ) c m d e P P K P == 无功计算负荷(kvar ) tan c c Q P ϕ= 视在计算负荷(kvA ) cos cc P S ϕ=计算电流(A )c I =式中 N U ——用电设备所在电网的额定电压(kv );d K ——需要系数;例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为(1)水泵电动机组 查表得d K =0.7~0.8(取d K =0.8),cos 0.8ϕ=,tan 0.75ϕ=,因此.1.1.10.8200160c d e P K P kw kw ==⨯= .1.11tan 1600.75120var c c Q P kw k ϕ==⨯=(2)通风机组 查表得d K =0.7~0.8(取d K =0.8),cos 0.8ϕ=,tan 0.75ϕ=,因此.2.2.20.85544c d e P K P kw kw ==⨯= .2.22tan 440.7533var c c Q P kw k ϕ==⨯=考虑各组用电设备的同时系数,取有功负荷的为0.95P K =∑,无功负荷的为0.97q K =∑,总计算负荷为.1.1.2.2()0.95(16044)193.8c d e d e p P K K P K P kw kw =+=⨯+=∑.1.2()0.97(12033)148.41var c c c qQ KQ Q k =+=⨯+=∑244c S kvA ===370.7c I A === 计算出设备的计算负荷后,就可选择变压器了。

电气百科:电力变压器型号及参数

电气百科:电力变压器型号及参数

电气百科:电力变压器型号及参数随着各种现代工业的不断发展,变压器适用于不同的生活环境,因此各种类型的产品不断出现在市场上。

此时,我们应该如何选择?让我们看一下电源变压器的型号和参数。

1.根据阶段数:(1)单相变压器:用于单相负载和三相变压器组。

(2)三相变压器:用于三相系统的上升和下降电压。

2,按冷却方式:(1)干式变压器:依靠空气对流自然冷却或增加风扇冷却,它主要用于小容量变压器,例如高层建筑,高速收费站,局部照明和电子电路。

(2)油浸式变压器:以油为冷却介质,如油浸自冷却,油浸风冷,油浸水冷,强制油循环等。

3.根据目的:(1)电力变压器:用于输配电系统的上升和下降电压。

(2)仪表变压器:如电压互感器,电流互感器,测量仪表和继电保护装置。

(3)测试变压器:它可以产生高压并在电气设备上进行高压测试。

(4)特种变压器:电炉变压器,整流变压器,调节变压器,三相隔离变压器隔之差器存间压在相离移相变压器等。

4,按绕组形式:(1)双绕组变压器:用于连接电力系统中的两个电压电平。

(2)三绕组变压器:一般用于电力系统区域变电站,连接三个电压等级。

(3)自耦变压器:用于连接不同电压的电源系统。

也可以用作普通的升压或后置降压变压器。

5,按铁芯形式:(1)铁芯变压器:高压变压器。

(2)非晶合金变压器:非晶合金芯变压器是一种新型的导磁材料,空载电流降低了80左右,是一种理想的节能配电变压器,特别适用于农村电网和发展中地区。

较低的地方。

(3)壳式变压器:电炉变压器,电焊变压器等大电流专用变压器;或用于电子设备以及电视,收音机等的电源变压器。

6,根据电压等级:1000KV,750KV,500KV,330KV,220KV,110KV,66KV,35KV,20KV,10KV,6KV等。

7,按设计节能顺序分:SJ,S7,S9,S11S13,S15o每种都有自己的优势,根据自己的需要,面对不同的使用环境,选择不同类型的电力变压器来使用,不仅在功率方面有所改善,我们还可以在以后的使用中提高效率。

变压器容量计算方法

变压器容量计算方法

变压器容量计算方法
变压器的容量计算方法是根据所需的负荷电流和所需的电压来确定的。

这里给出两种常用的计算方法:
方法一:根据负荷电流计算
1. 确定负荷电流:根据需要供电的设备的额定电流和数量,计算总的负荷电流。

2. 选择变压器的额定电流:选择一个接近或稍大于负荷电流的变压器额定电流。

3. 计算变压器容量:根据变压器额定电流和所需的电压,使用下式计算变压器容量:
容量(kVA)= 变压器额定电流(A) ×所需电压(V) / 1000
方法二:根据负荷功率计算
1. 确定负荷功率:根据需要供电的设备的额定功率和数量,计算总的负荷功率。

2. 计算负荷电流:根据负荷功率和所需电压,使用下式计算负荷电流:
电流(A)= 功率(W) / 电压(V)
3. 选择变压器的额定电流:选择一个接近或稍大于负荷电流的
变压器额定电流。

4. 计算变压器容量:根据变压器额定电流和所需的电压,使用下式计算变压器容量:
容量(kVA)= 变压器额定电流(A) ×所需电压(V) / 1000
以上两种方法可以根据实际情况选择其中一种来计算变压器的容量。

变压器容量的选择word资料5页

变压器容量的选择word资料5页

变压器容量的选择近年来,随着人民生活水平不断提高,住宅建设高速增长,出现了大量成片的住宅小区,加之大量私营企业的增加,变压器容量的选择不能仅仅是所有负荷的百分之几,负荷预测就显得更为重要。

1 住宅用电负荷预测需用系数法依据人们的生活习惯,可能使用的电气设备有灯具300W、音响600W、电视机400W、冰箱200W、微波炉或电饭煲1800W、饮水机100W、抽油烟机200W、洗衣机200W、热水器1500W、空调2500W、其它未知设备600W,合计8400W。

有些大型住宅的居民还增加空调、电视机、或双卫生间,用电容量将大幅增加,约为16 000W。

据统计,居民用电的最大负荷出现在夏季19~22 时间段,这时用电负荷约为3800W,是用电设备容量的45%,所以需用系数为0.45。

一般住宅的计算负荷取3800W,大一些住宅取9500W。

Pjs=KxPs Pjs---计算负荷Ps---设备容量单位面积法:按《中华人民共和国电力法》、《电力供应与使用条例》有关规定,一户一表工程应满足居民用电在30-50年内增长达到中等电气化的目标。

住宅用电中等电气化水平是在普及电视机、洗衣机、电冰箱、电饭煲等家用电器的基础上,考虑空调或电热器进入居民家庭,炊事用具初步电气化,每户住宅日均用电水平达到7~20kwh。

根据经济发展水平和居民用电消费结构的不同,一户一表进户线及户内配线的改造应能保障今后30~50 年内不再改造,其供电能力达到4~10KW的水平、最低不低于50W/m2 的居民小区用电设计标准。

Pjs=ρ×S ρ---建筑面积的负荷密度,即50W/m22 变压器的选择同时系数法:Pjs=KΣKxPs KΣ---同时系数住宅小区内居民由于作息时间不同,同时系数偏小,取同时系数一般为50 户以下0.55、50~100 户为0.45、100~200 户0.40、200 户以上取0.35。

由于居民用电基本没有无功补偿,取负荷功率因数0.7。

变压器技术参数

变压器技术参数
1.整个厂区用电额定负荷25000KVA,需要安装变压器8台。
2.本产品减少多次谐波,提高变压器用电质量。
3.严格按国家JB/T8636-1997标准制造。
4.该产品一年内实行“三包”,终身服务。
以上数据有什么疑问,再行落实。
S11-2000/15-0.4
(1台)
2000KVA
高压15KV±5%低压0.4KV
高压77.0A低压:2886.8A
5.5%
Dyn11
空载损耗2.84KW负载损耗17.1KW
ZSSP-2500/15-0.66*3(2台用于轧机)
2500KVA
高压15KV±5%低压0.66KV
高压96.2A低压d接729.0A
变压器技术参数
该产品是目前国家推广的技术上最成熟、性能最佳的优异产品。
技术参数如下:
型号
额定容量
额பைடு நூலகம்电压
额定电流
阻抗电压
连接组别
损耗
S11-1600/15-6.0
(4台用于4套电炉)
1600KVA
高压15KV±5%低压6.0KV
高压61.6A低压:154.0A
5.0%
Dyn11
空载损耗2.40KW负载损耗14.50KW
yn接729.0A
yn接729.0A
6.5%
DdO,yn11 yn11
空载损耗3.35KW负载损耗20.3KW
ZSSP-3500/15-1*2
(1台用于匝动)
3500KVA
高压15KV±5%低压1.0KV
高压134.7A低压d接1010.4A
yn接1010.4A
7.0%
DdO,yn11
空载损耗4.15KW负载损耗26.55KW
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电炉变压器容量及参数的确定超高功率电炉变压器容量及其技术参数确定阎立懿 肖玉光 王立志 李延智 刘一心(东北大学,沈阳 110004) (长春电炉有限责任公司,长春 130031)摘 要 本文分析影响变压器额定容量因素与提出提高变压器利用率的措施,以变压器功率利用率为研究对象,给出以废钢作原料的超高功率电炉变压器额定容量确定的表达式,以及变压器二次电压确定方法。

结合高阻抗技术,给出超高功率高阻抗电炉电抗容量与变压器技术参数的确定方法,以及确定石墨电极等二次导体截面的思路。

并以50吨超高功率高阻抗电炉的设计为例进行说明。

关键词 超高功率 电炉 变压器 高阻抗 冶炼周期当电炉容量确定后,变压器的容量可参考国内外的电炉样本加以确定。

但往往由于用户的条件不同,如原料条件、辅助能源、冶炼品种、冶炼方法、冶炼工艺及工艺流程等不同,使得同容量电炉变压器的容量不尽相同。

另外,以废钢作原料的电炉,尤其是超高功率电炉,其变压器必须设恒功率段以满足熔化与快速提温期间不同阶段均能满足大功率供电,即主熔化期或完全埋弧期采用高电压、低电流,又满足快速升温期埋弧不完全或电弧暴露期的低电压、大电流供电。

1 电炉变压器额定容量的确定1.1 影响变压器容量因素分析超高功率电炉技术要求不仅变压器额定容量要高,实际投入的功率水平要高,而且变压器利用率要高,工艺及工艺流程要优化,电炉产生的公害要得到有效的抑制[1]。

超高功率电炉的功率水平为>700kV A/t ,有的已超过1000 kV A/t 。

超高功率电炉要求变压器时间利用率Tu 与功率利用率C 2均大于0.75,把电炉真正作为高速熔器。

时间利用率Tu 与功率利用率C 2分别表示如下[1]:tt t t t t t t Tu on =++++=432132 (1) )(3233222t t P t P t P C n +⋅+⋅=(2)式中 t ——冶炼周期,h ;t 2、t 3——熔化与精炼通电时间,总通电时间为on t ,h ;t 1、t 4——出钢间隔与热停工时间,非通电时间为off t ,h ;32P P 、——熔化期与精炼期变压器输出的功率,kV A ;n P ——变压器额定容量,kV A 。

分析上式,提高变压器利用率的措施:减少非通电时间,如缩短补炉、装料、出钢以及过程热停工时间,均能提高时间利用率,缩短冶炼时间,提高生产率;减少低功率的精炼期时间,如缩短或取消还原期,采取炉外精炼,缩短冶炼时间,提高功率利用率,充分发挥变压器的能力;减少通电时间,提高功率水平,提高功率利用率以及降低电耗,均能够缩短冶炼时间,提高生产率。

对于“三位一体”短流程中的超高功率电炉,由于实现全程泡沫渣埋弧操作,极短的精炼期时间(几分钟),以及氧化性钢水出钢。

所以允许在冶炼过程的大部分时间采用大功率供电,并且32P P 、相同或近似。

将(2)式右边的分子分母同乘以ϕcos ,并加以整理,便得到变压器额定容量表达式:2cos 60C t G W P on n ⋅⋅⋅⋅=ϕ ,kV A (3) 式中 on t ——总通电时间,min ;ϕcos ——功率因数,一般为0.8~0.85;C 2——变压器功率利用率;W——电能单耗,kWh/t ;G ——出钢量,t 。

由(3式)看出当电炉的出钢量与平均功率因数确定后,变压器额定容量仅受电能单耗与通电时间影响。

1.2 电炉的冶炼周期年产钢量即钢厂每年的产钢能力,是高层决策者根据市场的需求、本企业的能力等确定的。

冶炼周期的长短反映生产率的高低,一般来说冶炼周期越短,年产钢量越高,吨钢成本越低。

冶炼周期长短取决于冶炼品种、采取的工艺、装备水平及操作人员素质等。

对于“三位一体”短流程来说,冶炼周期的长短应满足连铸的要求,以连铸节奏来定,车间应以连铸为中心,努力实现多炉连浇。

目前,限于浇铸系统耐火材料质量(软化点等),热损失导致钢水的温降等,使得单炉钢水合理的浇注时间在≤50~70min 。

由于超高功率电炉技术的进步,电炉平均冶炼周期达到50~80min 。

当需要采用下限时,这不但要求提高变压器功率,而且要求上辅助能源等缩短冶炼周期的措施。

当连铸周期确定之后,电炉的冶炼周期可以用下式近似求出:T 电炉=T 连铸—T 准备/n (4)式中 T 连铸——单炉连铸周期,min ;T 准备——连铸准备时间,一般为40~50min ;n——连浇炉数。

例如:n 设计成10炉,T 准备为50min ,T 连铸为60 min ,电炉的冶炼周期T 电炉则为65min ;n 为20炉,T 准备为40min ,T 连铸为60 min ,电炉的冶炼周期T 电炉则为62min 。

实际上常用LF 炉调整电炉与连铸节奏上的偏差。

1.3 吨钢电耗的确定对于全废钢、无任何废钢预热的电炉,冶炼周期定为65min 的话,必须考虑采用超高功率加强化用氧。

经计算,变压器时间利用率Tu 按0.8,冶炼周期达到65min 的条件是,装料、出钢、维护及调电极等时间控制在13min 内,使通电时间为52min ,那么吨钢电耗多少?变压器容量选多大合适?氧化法冶炼低合金钢,采用100%废钢铁,配碳量1.5%与3%炉渣,在电炉中熔化并加热精炼至出钢温度(1630℃)所需要的实际总能耗为615 kWh (按68%的效率计算)。

考虑到该炉炉壁烧咀、炉门碳-氧枪强化供氧,计总吹氧量为45 Nm 3,加之石墨电极氧化,合计代替电能为215 kWh 。

计算得吨钢实际电耗为400 kWh 。

1.4 变压器额定容量将(3)式除以出钢量G ,得到功率水平式(5):2cos 60C t W G P on n ⋅⋅⋅=ϕ ,kV A /t (5) 当C 2取0.75,并将其他已知数代入(5)式中,得到功率水平为724 kV A/t 。

如公称容量50吨超高功率电炉,平均出钢量G 为55吨,需要变压器额定容量为40000kV A 。

由于变压器额定容量较大,大容量交变电流对电网将造成强大的冲击,为了减少电压闪烁或减少无功动态补偿装置(SVC )的补偿容量,以及降低电耗及电极消耗等,需要考虑采用高阻抗技术。

2 电炉变压器二次电压的确定2.1 变压器最高二次电压的确定电炉变压器最高二次电压与变压器容量成正比,对于普通阻抗电炉变压器最高二次电压的确定见下式:100%2⋅⋅=X X P U n(6) 式中 2U ——二次侧线电压,V ; n P ——变压器额定容量,kV A ; X ——电炉回路电抗,m Ω;I ——电弧电流,kA ;X %——电炉回路电抗百分数,对于普通阻抗电炉,为了保证三相电弧的稳定连续燃烧,X %≈45%~50%。

对于本例,容量为40MV A 变压器,回路电抗取3.6 m Ω,计算普通阻抗电炉变压器的最高二次电压约为537~565V 。

另外,还有一估算变压器的最高二次电压的方法:32nP K U(7)式中 K ——系数,K=13~15;15~17,为适应埋弧期操作常采用后者,也是近年发展趋势。

当K 取16时,最高二次电压约为547V 。

参考JB/T9640-1999标准,40000kV A 变压器的最高二次电压为547V 。

高阻抗电炉变压器最高二次电压的确定,应以高阻抗计算来确定最高二次电压。

2.2 二次电压及其档位的确定最低二次电压的确定主要是满足电炉冶炼工艺要求,因现代UHP 电炉冶炼工艺已经取消还原期,为氧化性钢水出钢,故最低二次电压没有必要过低。

最低二次电压的大小应以其电弧长度小于氧化末期炉渣厚度为准。

如本例炉渣厚约110mm ,设弧长为90mm (弧长<渣厚),那么最低电弧电压130V ,即可以此来确定最低二次电压。

另外,适当低的二次电压有利于短路实验(因短路电流与二次电压成正比),以确定短网电参数、研究电气特性。

二次电压级差国外大多采用恒压差,恒压差有利于计算分析与操作显示等,其范围为15~30V ,一般对于<50t/35MV A ,15~20V ;≥50t/35 MV A ,25~30V 。

恒功率段与恒电流段电压范围应根据冶炼工艺要求、操作水平加以确定。

①恒功率段是满足熔化与快速提温期间不同阶段均能满足大功率供电,即主熔化期或完全埋弧期采用高电压、低电流,又满足快速升温期埋弧不完全或电弧暴露期的低电压、大电流供电。

②恒电流段是满足精炼期的调温、保温的需要,即满足低电压、小电流供电。

③段间电压 即恒电流段的最高电压,其确定主要考虑两点:a )为满足非泡沫渣时的供电,不能太高;b )限制设备的最大载流量,而不能太低。

高阻抗电炉设计准则为低于或等于普通阻抗电炉最高二次电压值,最好低1个档位。

现代电弧炉炼钢“三位一体”流程,电炉仅作为高速熔化金属的容器,没有还原期,氧化期也很短,可以说二次电压级数太多没有用,当然级数多一些也不多花钱,而且多一些,即压差小些,有利于保证有载开关的使用性能。

3 高阻抗电炉电抗器容量的确定以普通阻抗电炉的阻抗为基础,进行高阻抗计算[2],确定该50吨高阻抗电炉电抗器容量及抽头参数,见表1。

表1 电抗器容量及抽头参数 抽头 1# 2#3# 4# 5#电抗器容量8300kVar 8300 7000 5500 4000 0 该电抗器为一外附电抗器,串联在变压器一次侧,为无载调节,具有连续过载20%的能力,应装有隔离开关与接地开关。

对于本例,增加电抗后电弧功率不变,阻抗提高了,电压上去了、电流下来了,使得电耗降低、电极消耗降低,电流波动减小了45%,可降低电压闪烁20%以上,降低对电网的要求,减少无功动态补偿的容量。

4 高阻抗电炉变压器主要参数的确定根据表1,确定变压器操作参数如表2,即以某电压与电抗器容量为依据,即电压/电抗为675V/8300kVar,并考虑增加一富裕电压700V。

该变压器为有载调节,共15级电压,变压器主要技术性能参数如表3。

表2 变压器与电抗器的操作参数参数恒功率段(6级)恒电流段(9级)二次电压/V 70675 650 …5755552550…35二次电流/kA 33.0334.2135.52…40.1642.04视在功率/MV A 4040.38.236.4…25.5电抗器容量/kVar8300/7000/5500/4000/00 操作情况高阻抗甩抗表2中恒功率段电压为6+1级,即700~550V ;恒电流段为9级,及550~350V ;其中550V 叫分档电压,对应的电流42.04kA 为该设备的额定电流。

二次侧电流、二次侧电压(线电压)与功率关系为: 32103-⨯⨯⨯=U I P n ,MV A表3 电炉变压器的主要技术性能参数 参数名称要求 参数名称 要求 变压器型号HSSPZ-40000/35 阻抗压降 ~7.5% 额定容量40MVA(长期+20%) 冷却方式 OFWF 二次电压恒功率段:700~550V 恒电流段:550~350V 调压方式 15级有载调压 二次额定电流42kA 联结组标号 yd 11 频率50Hz 相数 35 石墨电极等二次导体导电截面的确定由表2的二次额定电流,并参考样本及标准可以确定石墨电极等二次导体导电截面。

相关文档
最新文档