纵联和横联差动保护的原理
同杆双回线路继电保护原理分析

同杆双回线路继电保护原理分析作为同杆双回线路管理的重要环节,继电保护对于提高同杆双回线路运行的安全性和可靠性具有重要作用。
文章首先介绍了同杆双回线路继电保护的关键问题,然后探讨了同杆双回线路继电保护原理,最后通过实例分析阐述了同杆双回线路的继电保护配置,以期为相关技术与研究人员提供参考。
标签:同杆双回线路;继电保护;分析同杆双回线路输电技术具有投资回报率高、输电速度快、单位走廊输电容量大等优势,在现代电能传输中得到广泛应用。
然而因同杆双回线路包含较多的导线数量和运行方式,且双回线之间的距离过近,使得同杆双回线路经常出现复杂的故障类型,其保护性能及效果受到严重影响。
若对双回线保护配置设计不合理或未充分考虑运行方式等的影响,则很容易造成保护设备拒动或误动问题,进而影响电力网络运行安全。
因此,加强有关同杆双回线路继电保护原理的分析,对于改善双回线路继电保护质量具有重要的现实意义。
1 同杆双回线路继电保护关键问题1.1 自动重合闸:当同杆双回线路出现跨线永久性故障问题时,应尽可能防止双回线重合闸不当引起的永久性相间故障问题,否则会导致系统遭受二次冲击。
如在出现IA IIBG永久性故障问题时,当II回线两侧跳B相、I回线两侧跳A相如果两回线在同一时刻重合,则等同于两次重合于ABG相间电路,其形成的较大短路电流会同时将两条线路切除,进而影响电网运行的稳定性。
另外,在采用双回线联系度两侧系统提供支撑时,要全面分析双回线间侧重合闸方式,确保在跨线故障断开后,两侧系统的互联运行不会受到故障影响,由此改善电网运行的安全性与稳定性。
[1]1.2 采用不同的运行方式会表现出不同的灵敏度:同杆双回线路可采用非全相运行、双线组合全相运行、双回线同时运行、单回线运行等不同运行方式。
因双回线间互感问题,使得在对应运行方式下出现故障时,线路会表现出相应的故障电流和故障电压特点,由此造成不同运行方式下双回线的保护灵敏度存在差异。
所以方案设计时应分析在不同运行方式下保护配置定值及其方案的灵敏度和适用性。
线路差动保护

横差方向保护的工作原理,是建立在双回线同时运行的基础上的。
当任一回线断开或两回线接在不同母线而母联断路器断开时,保护装置即变为瞬时动作的方向过流保护,在外部短路时就要误动作。
为此,将保护装置的操作电源经两回线路断路器和母联断路器的辅助常开触点串联引入,这样当任一断路器断开时,立即将保护装置退出(如果两回线接在同一母线上,可将母联断路器位置中间继电器触点短接),使横差方向保护仅在被保护双回线路同时运行且接在同一母线情况下或接在不同母线而母联断路器合闸运行的情况下才投入工作。
题469:线路纵差保护是按什么工作原理实现的?答469:线路纵差保护是按比较被保护线路始端和末端电流大小与相位的原理来实现的。
为此,在线路两端要装设相同型号和变比的电流互感器,并用辅助导线将它们联系起来。
其连接方式是:在正常运行和外部故障时,使测量元件中没有电流;在被保护线路内部短路时,流入测量元件的电流等于流经该侧的故障电流,当故障电流大于测量元件的动作电流时,保护动作,瞬时将故障线路两侧断路器跳开。
题532:单线图来试用说明线路纵差保护在被保护线路外部故障时,保护回路中的电流分布,并标明电流互感器的极性,写出关系式。
答532:零序电流滤过器输入三相零序电流时的相量图如图121所示,输出电流为3Io。
题807:纵联保护在电网中的重要作用是什么?答807:由于纵联保护在电网中可实现全线速动,因此它可保证电力系统并列运行的稳定性和提高输送功率、缩小故障造成的损坏程度、改善与后备保护的配合性能。
题808:纵联保护的信号有哪几种?答808:纵联保护的信号有以下三种。
(1)闭锁信号。
顾名思义,它是阻止保护动作于跳闸的信号。
换言之,无闭锁信号是保护作用于跳闸的必要条件。
只有同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳闸,其逻辑框图如图4-1(a)所示。
(2)允许信号。
顾名思义,它是允许保护动作于跳闸的信号。
换言之,有允许信号是保护动作于跳闸的必要条件。
变压器差动保护原理及调试方法

制动电流I r
+-
i i
1
2
=2i1
++
差动电流I cd
i 1
i 2
≈2i1
制动电流I
++
i i
≈0
r
1
2
Icd
Icd
I set
(Ir<Ie区) 外故障特点区Icd内故I障set 特点
差动电流小 差动电流大
I cd
K
I r
(Ir≥I制e) 动电流大
I制动 电K流 I小
cd
r
变量
恒量
动作区
Iset
➢ 涌流波形偏于时间轴一侧,波形含有非周期 分量。
22:02
22
二、 差动保护的几个特殊问题(1)
如何识别涌流(1)
当变压器合闸于电源时,灵敏的差动保护可能误动。 为使差动保护躲过涌流,必须采取措施使保护能区分 涌流状况与故障状况。这就必须要提供某种形式来识 别涌流从而限制此时的差动保护动作。
可以从涌流的特点出发来找到识别的方法!
部流入差动回路
22:02
18
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(1)
22:02
19
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(2)
22:02
20
二、 差动保护的几个特殊问题(1)
空投变压器励磁涌流产生的原因(3)
➢涌流的波形、大小和持续时间主要取决于下列因素:
Ir
22:02
17
二、 差动保护的几个特殊问题(1)
励磁涌流对差动保护的影响
空充变压器时,将产生励磁涌流,励磁涌流的 幅值可以达到8-10倍主变额定电流,而励磁涌流 是以单边的差流出现的,如此大的电流全部流 入差动回路,若不采取措施势必造成差动保护 误动。
发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。
(1)纵联差动保护:为定子绕组及其引出线的相间短路保护。
(2)横联差动保护:为定子绕组一相匝间短路保护。
只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。
(3)单相接地保护:为发电机定子绕组的单相接地保护。
(4)励磁回路接地保护:为励磁回路的接地故障保护。
(5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。
(6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。
中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。
(7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。
(8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。
(9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。
(10)失步保护:反应大型发电机与系统振荡过程的失步保护。
(11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。
发电机保护简介1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
第7章 输电线路的差动保护

纵联保护信号传输方式: 7.2.4 纵联保护信号传输方式:图7-1 (1)辅助导引线 (2)电力线载波:高频保护 (3)微波:微波保护 (4)光纤:光纤保护
线路电压(KV) 10KV及以上 35KV及以上 110~220KV
泸州职业技术学院
辅助导线长度(KM) ≤1~2 ≤3~4 ≤5~7
泸州职业技术学院 继电保护 3
输电线路差动保护:(全线速动保护) :(全线速动保护 7.1.2 输电线路差动保护:(全线速动保护)
1.定义:比较被保护元件两端电流大小和相 位的保护。 2.种类:(1)输电线路的纵联差动保护 (2)输电线路的横联差动保护 (3)平行线路的电流平衡保护 3.接线原理:用导引线传送电流(大小或方 向),根据电流在导引线中的流动情况,可 分为环流式和均压式两种。
泸州职业技术学院
继电保护Βιβλιοθήκη 18§7-4 平行线路的电流平衡保护
电流平衡保护是横差方向保护的另一种形式, 其工作原理是比较平行线路上的电流大小,从而 有选择性的切除故障线路。 注意问题: 在电源侧才能采用电流平衡保护。如图所示的 网络,在L1线路上K点发生短路故障时,由于负荷 侧的短路电流大小相等,无法实现比较,因此不 能采用电流平衡保护。
第7章 输电线路差动保护
第7章 输电线路差动保护
教学要求:掌握输电线路纵联差动保护的工作 原理;熟悉反映故障分量电流相位差动保护工作原 理;熟悉横联差动保护工作原理;了解平衡保护工 作原理。 §7-1 §7-2 §7-3 §7-4 输电线路差动保护基本原理 输电线路纵差动保护 平行线路横差动保护 平行线路的电流平衡保护
泸州职业技术学院
继电保护
19
泸州职业技术学院
电力系统继电保护

、继电保护装置的作用:能反应电力系统中各电气设备发生故障或不正常工作状态,并作用于断路器跳闸或发出信号。
2、继电保护装置的基本要求:选择性、快速性、灵敏性、可靠性。
选择性:系统发生故障时,要求保护装置只将故障设备切除,保证无故障设备继续运行,从而尽量缩小停电围,保护装置这样动作就叫做有选择性。
快速性:目前,断路器的最小动作时间约为0.05~0.06秒。
110KV 的网络短路故障切除时间约为0.1~0.7秒;配电网络故障切除的最小时间还可更长一些,其主要取决于不允许长时间电压降低的用户,一般约为0.5~1.0秒。
对于远处的故障允许以较长的时间切除。
灵敏性:保护装置对它在保护围发生故障和不正常工作状态的反应能力称为保护装置的灵敏度。
可靠性:保护装置的可靠性是指在其保护围发生故障时,不因其本身的缺陷而拒绝动作,在任何不属于它动作的情况下,又不应误动作。
保护装置的选择性、快速性、灵敏性、可靠性这四大基本要相互联系而有时又相互矛盾的。
在具体考虑保护的四大基本要求时,必须从全局着眼。
一般说来,选择性是首要满足的,非选择性动作是绝对不允许的。
但是,为了保证选择性,有时可能使故障切除的时间延长从而要影响到整个系统,这时就必须保证快速性而暂时牺牲部分选择性,因为此时快速性是照顾全局的措施。
3、继电保护的基本原理继电保护装置的三大组成部分:一是测量部分、二是逻辑部分、三是执行部分。
继电保护的原理结构图如下:第一章电网相间短路的电流电压保护一、定时限过流保护的工作原理及时限特性1、继电保护装置阶梯形时限特性:各保护装置的时限大小是从用户到电源逐级增长的,越靠近电源的保护,其动作时限越长,用t1、t2、t3分别表示保护1、2、3的动作时限则有t1>t2>t3,它好比一个阶梯,故称为阶梯形时限特性。
定时限过流保护的阶梯形时限特性如下图:二、电流电压保护的常用继电器1、继电器的动作电流:使继电器刚好能够动作的最小电流叫继电器的动作电流Id.j。
继电保护原理复习总结

1、继电保护的基本任务是什么?答:(1)自动、迅速、有选择地将故障元件从电力系统中切除,使故障元件免于继续遭到损坏,保证其他无故障部分迅速恢复正常运行; ● 对继电保护的基本要求? 答:(1)选择性:仅将故障元件从电力系统中切除,使停电范围尽量缩小,保证系统中非故障部分的正常工作。
(2)速动性:保护装置能迅速动作切除故障。
(3)灵敏性:指对于其保护范围内发生故障或不正常运行状态的反应能力。
(4)可靠性:指对于该保护装置规定的保护范围内发生了它应该动作的故障时它不拒动,而在任何其它该保护不应动作的情况下,则不应误动。
● 什么是纵联电流相位保护的闭锁角?那些因素决定闭锁角的大小?答:为了保证在任何外部短路条件下保护都不误动,需要分析区外短路时两侧收到的高频电流之间不连续的最大时间间隔,并加以闭锁。
这一时间间隔所对应的工频相角差就为闭锁角。
影响因素:电流互感器的角误差、保护装置中滤序器及受发信操作回路的角度误差、高频信号在线路上传输所引起的延迟等。
● 在继电保护中对方向继电器的基本要求是什么,对于相间短路的功率方向继电器,写出其动作方程,画出其动作特性? 答:(1)具有明确的方向性;(2)故障时继电器的动作有足够的灵敏度。
︒0接线时动作方程为90arg 90-≥≥-Jj J I e Um l ϕ,动作特性如图(a )所示;︒90接线时动作方程为 90arg 90)90(-≥≥-Jj J I eU d ϕ,动作特性如图(b )所示;●(a)按(2-34)式构成; (b)按(2-37)式构成1+j+01+j+0动作区不动作 区m l ϕml ϕ(a)(b)动作区简述高频闭锁方向保护的工作原理。
答:高频闭锁方向保护是通过高频通道间接比较被保护线路两侧的功率方向,以判别是被保护范围内部故障还是外部故障。
● 相继动作:由于信号的间断,间断角接近180度,因此,M 端的保护即可立即动作跳闸。
保护装置的这种工作情况—————即必须一端的保护先动作跳闸以后,另一端的保护才能动作跳闸,称之为“相继动作”● 简述相差高频保护的工作原理。
差动保护

差动保护变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.从能量的角度考虑,电力故障就是电能释放转化为热和光等其它能量的过程,从而在故障点两端测得的(相同电压下或变换为同一电压)电流大小和相位必然是不一样的,测得有电流差即有电能释放,即表明有故障,保护就应动作。
“差动”就是有差即动!变压器的主保护是差动保护还是瓦斯保护?差动保护和瓦斯保护共同组成变压器的主保护。
差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。
瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。
由上可以看出,差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。
而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保变压器差动保护是变压器的主保护,一般较大型变压器都装有差动保护.差动保护主要保护变压器内部线圈匝间短路,它的动作原理是利用变压器高低压两侧的两组差动保护专用电流互干器完成.差动保护的保护范围就是两组互感器之间的部分.变压器的差动保护分为纵联差动和横联差动两种形式.纵联差动保护用于单回路,横联差动保护用于双回路.主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,其保护区在变压器一,二侧所装电流互感器之间.它是利用保护区内发生短路故障时变压器两侧电流在差动回路中引起的不平衡电力而动作的一种保护.主变差动保护跳闸的处理;查看开关位置显示及其电流表,确认主变跳闸,报调度,汇报初步现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵联和横联差动保护的原理~!
电网的纵联差动保护电流、电压和距离保护属于单端保护,不能瞬时切除保护范围内任何地点的故障。
这就不能满足高压输电线路系统稳定的要求。
如何保证瞬时切除高压输电线路故障?解决办法:采用线路纵差动保护线路纵差动保护是利用比较被保护元件始末端电流的大小和相位的原理来构成输电线路保护的。
当在被保护范围内任一点发生故障时,它都能瞬时切除故障。
-、纵联差动保护的工作原理电网的纵联差动保护反应被保护线路首末两端电流的大小和相位,保护整条线路,全线速动。
纵联差动保护原理接线如下图所示。
,即为电流互感器二次电流的差。
差回路:继电器回路。
正常'流入继电器的电流为I2—I2运行:流入差回路的电流外部短路:流入差回路中的电流为指出:被保护线路在正常运行及区外故障时,在理想状态下,流入差动保护差回路中的电流为零。
实际上,差回路中还有一个不平衡电流Ibp。
差动继电器KD的起动电流是按大于不平衡电流整定的,所以,在被保护线路正常及外部故障时差动保护不会动作。
内部短路:流入差动保护回路的电流为被保护线路内部故障时,流入差回路的电流远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。
结论: 1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动 4、不能作相邻元件的后备保护二、纵联差动保护的不平衡电流 1.稳态情况下的不平衡电流该不平衡电流为两侧电流互感器励磁电流的差。
差动回路中产生不平衡电流最大值为式中 KTA一电流互感器 10%误差; max—被保护线路外部短路时,流过保护线路的最大短路电流。
∙Ktx—电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l; Id 2.暂态不平衡电流纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流,其最大值为 2。
三、纵联差动保护的整定计算~式中Kfz——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5 差动保护的动作电流按躲开外部故障时的最大不平衡电流整定为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定灵敏度校验:四、纵联差动保护的评价优点:全线速动,不受过负荷及系统振荡的影响,灵敏度较高。
缺点:需敷设与被保护线路等长的辅助导线,且要求电流互感器的二次负载阻抗满足电流互感器10%的误差。
这在经济上,技术上都难以实现。
需装设辅助导线断线与短路的监视装置,辅助导线断线应将纵联差动保护闭锁。
在输电线路中,只有用其它保护不能满足要求的短线路(一般不超过5~7km 线路)才采用。
应用:第二节平行线路横联差动方向保护一、横联差动方向保护的工作原理横差方向保护:是用于平行线路的保护装置,它装设于平行线路的两侧。
其保护范围为双回线的全长。
横差方向保护的动作原理是反应双回线路的电流及功率方向,有选择性地瞬时切除故障线路。
正常运行及外部发生短路:两线路中的电流相等。
两电流互感器差回路中的电流仅为很小的不平衡电流,小于继电器的起动电流,电流继电器不会起动。
内部故障时:如在线路XL-l的d点发生短路,M侧电流继电器中的电流当Ij>Idz时,电流继电器1动作。
功率方向继电器2承受正方向功率动作,功率方向继电器3承受负功率不动作,因而跳开1QF。
线路N侧:流过差回路中的电流当Ij>Idz
时,电流继电器动作。
承受正功率,接点闭合,跳开 3QF瞬时切除故障线路XL一1横差保护退出工作,非故障线路XL一2继续'功率方向继电器 2运行。
二、横联差动方向保护的相继动作区和死区 1、相继动作区相继动作:线路两侧保护装置先后动作切除故障的方式。
相继动作区:产生相继动作的范围。
2、相继动作区长度的计算假设相继动作区的临界点d的短路电流与N侧母线上的短路时的短路电流相等 M侧保护中起动元件的一次动作电流为依据电压平衡方程式 50%. 3、死区≤相继动作区的长度百分数接线,但当出口发生三相短路时,母线残压为零,功率方向继电器不动作,这种不动作的范围称为死区。
死区在本保护出口,在对侧保护的相继动作区内。
在死区内发生三相短路,两侧横差保护都不能动作。
死区的长度不允许大于被保护线路全长的10%。
︒功率方向继电器采用90 三、横联差动方向保护的整定计算 1.电流继电器的动作电流(l)为保证横差保护范围外故障保护不动作,横差保护的动作电流应按躲开外部短路最大不平衡电流整定 max ;
∙max=KTA· Kfz· Ktx·Id∙bp'max—电流互感器 10%误差引起的最大不平衡电流I∙bp'式中I max—两回输电线路参数不同引起的最大不平衡电流;电流继电器的起动电流(2)躲开单回线∙I"bp运行时的最大负荷电流 2.灵敏度校验在平行的双回线路上,两侧的断路器都处在合闸位置。
当区内发生故障时,应能保证至少有一侧保护有足够的灵敏度。
为此,应在两侧保护灵敏度相等的那一点发生故障时,两侧都有足够的灵敏度。
这样,当故障点向一侧移动时,靠近故障点的一侧保护的灵敏系数增大,而远离故障点的一侧保护的灵敏度必然下降。
在相同灵敏系数点发生故障时,要求保护的灵敏度为2,即当在相继动作区内短路时,一侧断路器已经断开的情况下.要求另一侧保护的灵敏度系数大于1.5。
四、横联差动方向保护的优缺点及应用范围优点:能够迅速而有选择性地切除平行线路上的故障,实现起来简单、经济,不受系统振荡的影响。
缺点:存在相继动作区,当故障发生在相继动作区时,切除故障的时间增加1倍。
保护装置还存在死区。
需加装单回线运行时线路的主保护和后备保护。
适用于66kV及以下的平行线路上。