纵联差动保护原理

合集下载

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是电力系统中常用的保护方式之一,用于检测和保护多个平行的发电机或变压器组的差动故障。

其原理是根据比较线圈中电流的差值来判断系统是否存在差动故障,并发出保护信号。

在纵联差动保护中,一组比较线圈置于发电机或变压器的两端,同时连接到保护装置中。

当正常运行时,比较线圈中的电流应该是相等的,差动电流为零。

而当系统发生差动故障时,比较线圈中的电流会出现差异,差动电流会产生并流入保护装置。

保护装置对比较线圈中的电流进行比较,并设定一个差动电流阈值。

当差动电流超过阈值时,保护装置会判断为故障发生,并发出保护信号,触发断路器进行故障切除,保护系统的正常运行。

为了提高纵联差动保护的检测能力和可靠性,通常还会采用差动电流的变比校正,以消除发电机或变压器的变比误差对差动保护的干扰。

此外,还可以通过差动电流的零序和负序成分的检测来区分故障类型,提高保护的选择性。

总之,纵联差动保护通过比较发电机或变压器两端的电流差异来检测差动故障,从而保护电力系统的安全运行。

它是一种常用且有效的保护方式,广泛应用于电力系统中。

纵联保护原理

纵联保护原理

纵联保护原理线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。

而普通的反应线路一侧电量的保护不能做到全线速动。

纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。

是属于直接比较两侧电量对纵联保护。

目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。

纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。

包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。

先了解一下纵联差动保护:为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。

输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路.纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。

高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。

安工作原理的不同可分为两大类:方向高频保护和相差高频保护。

光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。

光纤通信广泛采用PCM调制方式。

这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

距离保护:距离保护是通过测量被保护线路始端电压和线路电流比值而动作的一总保护,这个比值被称为测量阻抗Zm,用来完成这一测量任务的元件称为阻抗继电器KI。

因为在短路时的测量阻抗反应了短路点到保护安装点之间距离的长短,所以这总原理的保护为距离保护,有时也称之为阻抗保护。

纵联差动保护原理

纵联差动保护原理

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1 与 I2 反向流入,KD的电流为11TAIn- 22TAIn=1I' - 2I'≈0 ,故KD不会动作。

当在保护区内K2点故障时, I1与 I2 同向流入,KD的电流为:11TAIn+ 22TAIn=1I' +2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I' - (3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。

这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。

通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst ——同型系数,取;Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。

为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop=(Krel 为可靠系数,取)。

越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。

此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。

对于大、中型发电机,即使轻微故障也会造成严重后果。

为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是一种电力系统中常用的保护方式,用于检测和保护主变压器、发电机、母线等重要设备的故障。

其基本原理是比较设备两侧电流的差值,当差值超过设定值时,即认为发生了故障,触发保护动作。

纵联差动保护的工作原理可以分为两个阶段:采样和比较。

首先,在设备两侧分别安装电流互感器,采样得到两侧电流的信号。

这些信号经过放大和调节后,送入差动继电器。

差动继电器进行差动计算,即计算两侧电流的差值。

如果差值低于设定值,差动继电器保持动作,表示系统正常。

但当差值超过设定值,差动继电器即判定为发生故障,触发保护装置的动作。

纵联差动保护的核心是差动继电器,其内部包含了一个差动计算单元和一个保护决策单元。

差动计算单元计算两侧电流的差值,并将结果送入保护决策单元。

保护决策单元根据计算结果,进行故障判定和相应的保护动作。

纵联差动保护的设计要考虑到系统的复杂性和可靠性。

在设计时,需要合理选择互感器的参数、差动计算的方式和设定值。

此外,还需要考虑到与其他保护装置的协调工作,使整个保护系统能够快速、准确地检测和定位故障,并采取适当的措施进行隔离和保护。

综上所述,纵联差动保护通过比较设备两侧电流的差值来检测和保护设备的故障。

它是一种重要的电力系统保护方式,能够有效地提升系统的可靠性和安全性。

第三讲:输电线纵联差动保护

第三讲:输电线纵联差动保护

IM f(• )=0 IN
圆外为动作区
21
一、输电线路的纵联差动保护
7.影响输电线纵差动保护正确工作的因素 7.影响输电线纵差动保护正确工作的因素
电流互感器的误差和不平衡电流; 导引线的阻抗和分布电容; 导引线的故障和感应过电压;
22
一、输电线路的纵联差动保护
CT误差和不平衡电流的影响 CT误差和不平衡电流的影响
35
三、高频保护概述
1.高频保护基本原理
将线路两端的电流相位或功率方向转化为高频信号,然后, 利用输电线路本身构成的高频(载波)电流通道,将此信 号送至对端,以比较两端电流的相位或功率方向的一种保 护。
36
三、高频保护概述
2.高频保护的分类 2.高频保护的分类
按照工作原理的不同,可以分为两大类:
正常运行或外部故障
I J 1 = I1m − I 2 m



• 1 • = (I1M − I 2 M ) = 0 n
I J 2 = I1n − I 2 n



• 1 • = (I1N − I 2 N ) = 0 n
32
二、平行双回线路的横联保护
2.横联方向差动保护原理分析 2.横联方向差动保护原理分析 线路1 线路1内部故障
29
一、输电线路的纵联差动保护
导引线的故障及感应过电压对保护的影响
对于环流法接线,导引线断线将造成保护误动作,导引线 短路将造成输电线内部短路时保护拒动; 对于均压法接线,导引线断线将造成保护拒动,导引线短 路将造成输电线内部短路时保护误动; 短路电流、雷电可在导引线中感应产生过电压,应采取过 电压保护措施。
正常运行或外部故障
继电器端电压较小,不动作

纵联差动保护

纵联差动保护

6.2 纵联差动保护6.2.1 基本原理6.2.1.1 定义差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

6.2.1.2 基本原理变压器纵差保护是按照循环电流原理构成的变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2•''I =0,保证纵差保护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

(a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布(图6.4 变压器纵差保护原理接线图)在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2•''I ,即 2•'I =2•''I =11i n I •'=21i n I •'' (6.1) 即 12i i n n =11••'''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。

若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为K I •=2•'I -2•''I =0 (6.3)当区内故障时,2•''I 反向流出,则流入差动继电器的电流为K I •=2•'I +2•''I > 0 (6.4) 当K I > 0时,差动继电器动作,驱动变压器两侧断路器分闸,对变压器起到保护作用。

纵联差动保护

纵联差动保护

(2)带制动特性的差动继电器
Ir
带制动特性的差动继电器动作方程为: m I n K res I res I
I 其中:K res为制动系数,res 为制动电流。
I set
• • m


动作区
非动作区
I res
I res 取值又可分为两种形式:
I res | I
I res | I
• m
- I
r
I

m
I

K2故障(或正常运行)时: K1故障(内部短路)时:

Im In

Ir 0
I m , I n 接近同相 I r 0
具有很大量值
因此利用差动电流的幅值大小可以区分区外和区内短路。 考虑实际在正常运行或外部故障时,由于两端TA不可能完全相同,以及两端 TA饱和情况不一致等因数,流入KD的电流通常不为零(不平衡电流),因而在设 计差动继电器的动作判据时需考虑其影响。
2.电流纵差保护的动作方程及特性
(1)不带制动特性的差动继电器
不带制动特性的差动继电器动作方程为: m I n I set I

Ir
动作区
I set
I set 的整定有两个方面 : 1)躲过外部短路时的最大不平衡电流 2)躲过最大负荷电流 取以上两者的最大值作为整定值。
非动作区
I res
n

|
n| | I|来自(3)差动继电器典型动作方程及特性

I

m
I
n
K res I
I op 0
m
I
n
I
m
I
n

纵联保护的基本原理介绍

纵联保护的基本原理介绍

纵联保护的基本原理有三种:
- 以基尔霍夫电流定律为基础的电流差动测量:该原理用于线路纵联差动保护、线路光纤分相差动保护以及变压器、发电机、母线等元件保护上。

- 比较线路两侧电流相位关系的相位差动测量:相位差动保护以线路两侧电流相位差小于整定值作为内部故障的判据,主要用于相差高频保护,由于该保护对通道、收发信机等设备要求较高,技术相对复杂,微机型线路保护已不采用相差高频保护原理。

- 比较两侧线路保护故障方向判别结果,确定故障点的位置:主要用于距离保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纵联差动保护原理
纵联差动保护是一种常用的电力系统保护方式,它主要用于保护输电线路和变电站设备,对于电力系统的安全稳定运行起着至关重要的作用。

纵联差动保护原理是基于电流的比较和判断,通过对电流进行差动比较,实现对设备内部故障的快速检测和定位,从而保护电力系统的安全运行。

首先,我们来了解一下纵联差动保护的基本原理。

在电力系统中,设备的正常运行需要保证电流的平衡和稳定。

当设备发生故障时,会导致电流不平衡,纵联差动保护就是利用这一点来实现对故障的检测和保护。

纵联差动保护装置会对设备的电流进行采样,并将采样值进行差动比较,当检测到电流不平衡时,就会发出保护动作信号,从而实现对设备的保护。

其次,纵联差动保护的实现需要考虑一些关键因素。

首先是采样精度和速度,高精度和快速的采样对于准确判断电流是否不平衡至关重要。

其次是保护装置的可靠性和稳定性,保护装置需要能够在各种复杂的工作环境下可靠地工作,确保对设备故障的快速响应。

另外,对于纵联差动保护的设计和参数设置也需要进行合理的考虑,以确保其在实际运行中能够有效地保护设备。

最后,纵联差动保护在实际应用中需要与其他保护装置配合工作。

在电力系统中,除了纵联差动保护外,还需要考虑过流保护、接地保护等其他保护方式,这些保护装置需要协同工作,共同保护电力系统的安全稳定运行。

因此,在设计和应用纵联差动保护时,需要考虑其与其他保护装置的配合,并进行合理的设置和调试,以实现对电力系统全面的保护。

综上所述,纵联差动保护原理是基于电流的差动比较,通过对电流的差异进行判断,实现对设备故障的快速检测和保护。

在实际应用中,需要考虑采样精度、保护装置可靠性、与其他保护装置的配合等关键因素,以确保纵联差动保护能够有效地保护电力系统的安全稳定运行。

相关文档
最新文档