2.3:一元二次不等式的几点解法
简单的一元二次不等式及其解法

一元二次不等式及其解法
第1课时 简单的一元二次不等式及其解法
学习目标
1.理解一元二次方程、一元二次不等式与二次函数的关系.
2.掌握图象法解一元二次不等式.
3.能从实际问题中抽象出一元二次不等式并解决.
内容索引
问题导学
题型探究
达标检测
问题导学
知识点一
思考
一元二次不等式的概念
我们知道,方程x2=1的一个解是x=1,解集是{1,-1},解集中
称为 一元二次 不等式.
(2)能使不等式成立的未知数x的一个值称为不等式的一个解. (3)不等式所有解的 集合 称为解集.
知识点二
“三个二次”的关系
一元二次不等式与相应的一元二次方程、二次函数的联系,如下表.
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
y=ax2+bx+c (a>0)的图象
ax2+bx+Leabharlann =0√ 1 D.xx<-2或x>1
解析 ∵2x2-x-1=(2x+1)(x-1),
1 ∴由 2x -x-1>0,得(2x+1)(x-1)>0,解得 x>1 或 x<-2,
2
1 ∴不等式的解集为xx<-2或x>1 .
1
2
3
4
解析
答案
2.若不等式ax2+8ax+21<0的解集是{x|-7<x<-1},那么a的值是 A.1 B.2 C.3 √ D.4
由于x>0,从而得x甲>30 km/h,x乙>40 km/h.
经比较知乙车超过限速,应负主要责任.
解答
类型二 “三个二次”间对应关系的应用
2.2.3 一元二次不等式的解法

2.2.3 一元二次不等式的解法 课时作业15 一元二次不等式的解法知识点一 一元二次不等式的解法 1.解下列不等式: (1)2x 2+7x +3>0; (2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.解 (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12 .又二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3. (2)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94. (3)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图像开口向上,所以原不等式的解集为R .(4)原不等式可化为x 2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x 2-6x +10=0无实根,又二次函数y =x 2-6x +10的图像开口向上,所以原不等式的解集为∅.知识点二 根与系数关系的应用2.若一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}答案 D解析 由题意知,-b a =1,ca =-2,∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.3.若不等式2x 2+mx +n >0的解集是{x |x >3或x <-2},则m ,n 的值分别是( ) A .2,12 B .2,-2 C .2,-12D .-2,-12答案 D解析 由题意知-2,3是方程2x 2+mx +n =0的两个根,所以-2+3=-m 2,-2×3=n2,∴m =-2,n =-12.知识点三 一元二次不等式的应用4.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2) B .(-2,2]C .(-∞,-2)∪[2,+∞)D .(-∞,2) 答案 B解析 ∵mx 2+2mx -4<2x 2+4x , ∴(2-m )x 2+(4-2m )x +4>0. 当m =2时,4>0,x ∈R ;当m <2时,Δ=(4-2m )2-16(2-m )<0, 解得-2<m <2.此时x ∈R . 综上所述,-2<m ≤2.5.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是________. 答案 (-∞,2]∪[4,+∞)解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.易错点一 忽略二次项系数的正负6.求一元二次不等式-x 2+5x -4>0的解集.易错分析 本题易不注意二次项系数为负数错解为x <1或x >4. 正解 原不等式等价于x 2-5x +4<0, 因为方程x 2-5x +4=0的根为x 1=1,x 2=4, 所以原不等式的解集为{x |1<x <4}. 易错点二 忽略不等式对应方程根的大小 7.解关于x 的不等式21x 2+4ax -a 2<0.易错分析 当一元二次不等式解集的端点值(即对应方程的根)无法比较大小时,要注意分类讨论.本题易错解为-a 3<x <a 7.正解 原不等式等价于⎝ ⎛⎭⎪⎫x +a 3⎝ ⎛⎭⎪⎫x -a 7<0.①当a >0时,a 7>-a3,原不等式的解集为;②当a <0时,a 7<-a3,原不等式的解集为;③当a =0时,原不等式的解集为∅.一、选择题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个答案 D解析 根据一元二次不等式的定义知①②是一元二次不等式. 2.不等式4x 2-12x +9≤0的解集是( ) A .∅B .RC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32D.⎩⎨⎧⎭⎬⎫32 答案 D解析 原不等式可化为(2x -3)2≤0,故x =32.故选D. 3.不等式x 2-|x |-2<0的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1}答案 A解析 令t =|x |,则原不等式可化为t 2-t -2<0, 即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,解得-2<x <2.4.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知,-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知,a =-1,b =-2,则a +b =-3.5.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2) 答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是(-2,1). 二、填空题6.不等式-1<x 2+2x -1≤2的解集是________. 答案 {x |-3≤x <-2或0<x ≤1} 解析 ∵⎩⎨⎧x 2+2x -3≤0,x 2+2x >0,∴-3≤x <-2或0<x ≤1.7.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,则m 的取值范围为________. 答案 ⎝ ⎛⎦⎥⎤-15,3解析 ①若m 2-2m -3=0,即m =3或-1, m =3时,原式化为-1<0,显然成立, m =-1时,原式不恒成立,故m =3. ②若m 2-2m -3≠0,则⎩⎨⎧m 2-2m -3<0,Δ=(m -3)2+4(m 2-2m -3)<0, 解得-15<m <3, ∴m ∈⎝ ⎛⎦⎥⎤-15,38.关于x 的不等式组⎩⎨⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2},则实数k 的取值范围是________.答案 [-3,2)解析 由x 2-x -2>0,解得x >2或x <-1,又由2x 2+(2k +5)x +5k <0可得,(2x +5)(x +k )<0,如图所示,由已知条件可得⎩⎪⎨⎪⎧-k >-52,-2<-k ≤3,解得-3≤k <2.三、解答题 9.解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解 (1)原不等式可化为2x 2-3x -2<0, 即(2x +1)(x -2)<0.故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2. (2)原不等式可化为2x 2-x -1≥0, 即(2x +1)(x -1)≥0,故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-12或x ≥1. 10.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,求-cx 2+2x -a >0的解集.解 由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,知a <0,且-13和12是方程ax 2+2x +c =0的两个根.由根与系数的关系,得⎩⎪⎨⎪⎧-13×12=c a ,-13+12=-2a ,解得⎩⎨⎧a =-12,c =2.所以-cx 2+2x -a >0,即x 2-x -6<0, 解得-2<x <3.所以-cx 2+2x -a >0的解集为{x |-2<x <3}.课时作业16 含参数的一元二次不等式的解法及一元二次不等式的应用知识点一 含参数的一元二次不等式的解法1.若0<t <1,则不等式x 2-⎝ ⎛⎭⎪⎫t +1t x +1<0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1t <x <tB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1t 或x <tC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1t 或x >tD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪t <x <1t 答案 D解析 原不等式可化为(x -t )⎝ ⎛⎭⎪⎫x -1t <0,∵0<t <1,∴1t >1>t ,∴t <x <1t . 知识点二 一元二次不等式恒成立问题2.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A .(-3,0) B .[-3,0) C .[-3,0] D .(-3,0]答案 D解析 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0.综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].3.不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .[-2,2] C .(-2,2] D .(-∞,-2)答案 C解析 当a -2≠0时,⎩⎨⎧ a -2<0,4(a -2)2-4(a -2)·(-4)<0⇔⎩⎨⎧a <2,a 2<4⇔-2<a <2. 当a -2=0时,-4<0恒成立. 综上所述,-2<a ≤2.故选C. 知识点三 分式不等式的解法 4.解下列不等式: (1)x +43-x <0;(2)x +1x -2≤2. 解 (1)由x +43-x <0,得x +4x -3>0,此不等式等价于(x +4)(x -3)>0, ∴原不等式的解集为{x |x <-4或x >3}. (2)移项得x +1x -2-2≤0,左边通分并化简有-x +5x -2≤0,即x -5x -2≥0,同解不等式组为⎩⎨⎧(x -2)(x -5)≥0,x -2≠0,∴x <2或x ≥5.∴原不等式的解集为{x |x <2或x ≥5}. 知识点四 高次不等式的解法 5.解关于x 的不等式:x 2+2x -3-x 2+x +6<0.解 原不等式⇔(x +3)(x -1)(x +2)(x -3)>0⇔(x +3)(x +2)·(x -1)(x -3)>0.令(x +3)(x +2)(x -1)(x -3)=0,则有x 1=-3,x 2=-2,x 3=1,x 4=3.如图,由图可知,原不等式的解集为{x |x <-3或-2<x <1或x >3}.知识点五 一元二次不等式的实际应用6.某省每年损失耕地20万亩,每亩耕地价值24000元,为了减小耕地损失,决定按耕地价值的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,t %应在什么范围内变动?解 由题意可列不等式如下: ⎝ ⎛⎭⎪⎫20-52t ·24000·t %≥9000, 整理得t 2-8t +15≤0,解得3≤t ≤5. 所以t %应控制在3%到5%范围内.易错点 解含参不等式时忽略分类的完备性 7.解不等式a (x -1)x -2>1(a ∈R ).易错分析 本题易忽略a =0时的情况,另a >1时与a <1时需注意原不等式转化结果不同.在解此类问题时,既要讨论不等式系数的符号,也要讨论相应方程的两个根的大小.正解 移项、通分得a (x -1)-(x -2)x -2>0⇒[(a -1)x -(a -2)](x -2)>0.①当a =1时,①式可以转化为x >2;当a >1时,①式可以转化为⎝ ⎛⎭⎪⎫x -a -2a -1(x -2)>0; 当a <1时,①式可以转化为⎝ ⎛⎭⎪⎫x -a -2a -1(x -2)<0; 又当a ≠1时,2-a -2a -1=aa -1,所以当a >1或a <0时,2>a -2a -1;当a =0时,2=a -2a -1; 当0<a <1时,2<a -2a -1. 故当a =1时,原不等式的解集是{x |x >2};当a >1时,原不等式的解集是⎝ ⎛⎭⎪⎫-∞,a -2a -1∪(2,+∞);当0<a <1时,原不等式的解集是⎝ ⎛⎭⎪⎫2,a -2a -1;当a =0时,原不等式的解集是∅;当a <0时,原不等式的解集是⎝⎛⎭⎪⎫a -2a -1,2.一、选择题1.不等式1+x1-x ≥0的解集为( )A .{x |-1<x ≤1}B .{x |-1≤x <1}C .{x |-1≤x ≤1}D .{x |-1<x <1}答案 B解析 原不等式⇔⎩⎨⎧(x +1)(x -1)≤0,x -1≠0,得-1≤x <1.2.关于x 的不等式ax -1x +1<0(其中a <-1)的解集为( )A.⎝ ⎛⎭⎪⎫1a ,-1B.⎝ ⎛⎭⎪⎫-1,1a C.⎝ ⎛⎭⎪⎫-∞,1a ∪(-1,+∞) D .(-∞,-1)∪⎝ ⎛⎭⎪⎫1a ,+∞答案 D解析 将原不等式变形,得(ax -1)(x +1)<0, 又a <-1,∴⎝ ⎛⎭⎪⎫x -1a (x +1)>0,解得x <-1或x >1a .则原不等式的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫1a ,+∞.3.若不等式x 2+px +q <0的解集是{x |1<x <2},则不等式x 2+px +qx 2-5x -6>0的解集是 ( )A .(1,2)B .(-∞,-1)∪(6,+∞)C .(-1,1)∪(2,6)D .(-∞,-1)∪(1,2)∪(6,+∞) 答案 D解析 由题意知x 2+px +q =(x -1)(x -2),则待解不等式等价于(x -1)(x -2)(x 2-5x -6)>0⇒(x -1)(x -2)(x -6)(x +1)>0⇒x <-1或1<x <2或x >6.4.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( )A .(1,3)B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)答案 A解析 由4x 2+6x +3=⎝⎛⎭⎪⎫2x +322+34>0对一切x ∈R 恒成立,从而原不等式等价于2x 2+2mx +m <4x 2+6x +3,依题意,得2x 2+(6-2m )x +3-m >0对一切实数x 恒成立⇔Δ=(6-2m )2-8(3-m )=4(m -1)(m -3)<0,解得1<m <3.5.对任意a ∈[-1,1],函数y =x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2答案 B解析 y >0,∴x 2+(a -4)x +4-2a >0, 即(x -2)a +(x 2+4-4x )>0, 设z =(x -2)a +(x 2-4x +4),由题意知,⎩⎨⎧x -2+x 2-4x +4=x 2-3x +2>0,-x +2+x 2+4-4x =x 2-5x +6>0, ∴x <1或x >3. 二、填空题6.不等式x 2-2x -3x -5≤0的解集为__________________.答案 {x |x ≤-1或3≤x <5}解析 原不等式化为⎩⎨⎧(x -5)(x -3)(x +1)≤0,x -5≠0, 由数轴穿根法得x ≤-1或3≤x <5.7.若不等式x 2+mx +m 2>0恒成立,则实数m 的取值范围是________.答案 0<m <2解析 x 2+mx +m 2>0恒成立,等价于Δ<0,即m 2-4×m 2<0.解得0<m <2.8.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是________. 答案 {m |m ≥25}解析 令y =8x 2-(m -1)x +m -7.∵方程8x 2-(m -1)x +m -7=0的两根均大于1, ∴由二次函数图像得⎩⎪⎨⎪⎧ Δ=(m -1)2-32(m -7)≥0,m -116>1,y >0,x =1,解得⎩⎨⎧ m ≥25或m ≤9,m >17,m ∈R ,∴m 的取值范围是{m |m ≥25}.三、解答题9.已知y =ax 2+x -a . (1)若函数y 有最大值178,求实数a 的值;(2)若不等式y >-2x 2-3x +1-2a 对一切实数x 恒成立,求实数a 的取值范围.解 (1)显然a <0,且-4a 2-14a =178,解得a =-2或a =-18.(2)由y >-2x 2-3x +1-2a ,得(a +2)x 2+4x +a -1>0.当a =-2时,不符合题意;当a ≠-2时,得⎩⎨⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2. 综上,a 的取值范围为(2,+∞).10.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?解设每盏台灯售价x元,则x≥15,并且日销售收入为x[30-2(x-15)],由题意知,当x≥15时,有x[30-2(x-15)]>400,解得15≤x<20.所以为了使这批台灯每天获得400元以上的销售收入,应当制定这批台灯的销售价格为x∈[15,20).。
2.3+二次函数与一元二次方程、不等式

先求方程的根
解:原不等式变形为(x+3)(x-5) ≥ 0
方程(x+3)(x-5)=0的 两根为: x=-3,或x=5
∴ 不等式的解集 为:{x│ x ≤-3 或x ≥5}。
y
。。
-3 0
5
x
写出解集
画函数的图象
典例解析 例2:解不等式- x2 + 2x – 3 >0
解:整理,得 x2 - 2x + 3 < 0 因为△= 4 - 12 = - 8 < 0 方程 2 x2 - 3x – 2 = 0无实数根 所以原不等式的解集为ф
(1)求函数 y=f(x)的解析式. (2)当关于 x 的不等式 ax2+bx+c≤0 的解集为 R 时,求 c 的取 值范围.
解析:(1)因为 f(x)>0 的解集为{x|-3<x<2}, 所以-3,2 是方程 ax2+(b-8)x-a-ab=0 的两根,
所以- -33+ ×22= =- -baa--a 8a,b,
当a-2=0,即a=2时,原不等式为-4<0, 所当以a-a=2≠2时0 解时集,为由R题. 意得aΔ-<02,<0, 即4a<a2-,22-4a-2-4<0, 解得-2<a<2. 综上所述,a的取值范围为(-2,2].
1234
课堂小结
一、知识上我收获了什么?
二次函数
二、方法上我收获了什么?
图象
1.“三个二次”的关系 一元二次方程的根
ax2+bx+c<0 (a>0)的解集
x x x1或x x2
x1 x2 x
x x1 x x2
x1 x2 x
一元二次不等式的解法 教案

课题:一元二次不等式的解法(1)教材: 人民教育出版社全日制普通高中教科书(必修)第一册(上) 教学目标知识目标:熟练掌握一元二次不等式的两种解法;理解一元二次方程、一元二次不等式和二次函数之间的关系.能力目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.德育目标:通过等与不等的对立统一关系的认识,对学生进行辨证唯物主义教育.情感目标: 在自主探究与讨论交流过程中,培养学生的合作意识和创新精神.教学重点:一元二次不等式的解法.教学难点:一元二次方程、一元二次不等式和二次函数的关系.教学过程:(一)引入新课.问题1:(幻灯片1)画出一次函数y=2x-7的图象,填空:2x-7=0的解是 .不等式 2x-7>0的解集是 .不等式 2x-7<0的解集是 .请同学们注意,一元一次方程、一元一次不等式和一元一次函数有什么关系?(“三个一次”关系).从上面的特殊情形引导学生发现一般的结论.(幻灯片2): 一般地,设直线y=ax+b与x轴的交点是(x,0),就有如下结果.}一元一次方程ax+b=0的解集是{x|x=x一元一次不等式ax+b>0(<0)解集};(1)当a>0时, 一元一次不等式ax+b>0的解集是{x|x>x一元一次不等式ax+b<0解集是{x|x<x};};(2)当a<0时,一元一次不等式ax+b>0解集是{x|x<x}.一元一次不等式ax+b<0解集是{x|x>x(学生看图总结,教师在幻灯片中给出结果).问题2:(幻灯片3)(2004年江苏省高考试题)二次函数y=ax2+bx+c(x∈R)的部分则ax2解集是 .引导学生运用解决问题1的方法,画出二次函数y=ax2+bx+c的图象求解.并请学生说出不等式ax2+bx+c<0的解集和方程ax2+bx+c=0的解集,同时注意一元二次方程、一元二次不等式和二次函数有什么关系?(“三个二次”关系).(二)讲授新课.1.问题2的解决表明,一元二次不等式的解集可以画出对应二次函数的图象写出. 请同学们解下面两组题:题组1(课本19页例1、例2)(1)解不等式2x2-3x-2>0(2)解不等式-3x2+6x>2学生根据问题2的方法画图求解,教师巡回指导,提醒学生注意掌握画二次函数图象的要领和方法.2.题组2(课本19页例3、例4)(1)解不等式4x2-4x+1>0(2)解不等式-x2+2x-2>0学生不难想到,这两题的方法和上面完全相同,教师在巡回指导中及时提醒学生注意和上面两题的不同,由图象写出解集是难点,必要时教师在黑板上画出图象给予一定的提示或讲解.3.至此我们掌握了用图象法来解一元二次不等式.当然我们可以仿照前面探讨“三个一次”关系的做法来探讨这里“三个二次”的关系.引导学生分三种情况(△>0,△<0,△=0)讨论一元二次不等式ax2+bx+c>0(a>0 )与ax2+bx+c<0(a>0)的解集.何?课后仿上表给出.4.由上面的例题和总结我们发现,一元二次不等式的解集其实就和二次项系数、二次方程的根以及不等号有关,进一步引导学生总结解一元二次不等式的一般步骤:先把二次项系数化成正数,再解对应二次方程,最后根据方程的根的情况,结合不等号的方向写出解集(可称为“三步曲”法).(四)课堂练习.1.课本P 19~20练习1~3.2.(幻灯片5)题组3:(1)x 2+x+k>0恒成立,求k 的取值范围.(2)ax 2+bx+c>0(a ≠0)恒成立的条件为 .ax 2+bx+c ≤0(a ≠0)恒成立的条件为 .(3)(x-a )(x-a 2)<0(0<a<1)的解集是 .课本P 19练习1的四个小题由4位同学板演,教师通过学生板演发现问题,纠正错误,规范书写过程.课堂练习1、2是两组有梯度的练习题,练习1面向全体学生,练习2供程度较好的学生进一步发展提高.(五)课时小结.1.“三个二次”关系.2.一元二次不等式的两种解法----图象法和“三步曲”法.(六)课后作业.1.课本P 20习题1,3,5,6.2.补充练习:1.若不等式 2282001x x mx mx -+<--对一切x 恒成立,求实数m 的范围. 解析:∵x 2-8x+20=(x-4)2+4>0, ∴ 只须mx 2-mx-1<0恒成立,即可:①当m=0时,-1<0,不等式成立;②当m ≠0时,则须2040m m m <⎧⎨∆=+<⎩ 解之:-4<m<0.由(1)、(2)得:-4<m ≤0.2.设不等式ax 2+bx+c>0的解集是{x|α<x<β}(0<α<β),求不等式cx 2+bx+a<0的解集. 分析:由题001111a c b b a c c a a cαβαβαβαβ⎧⎧⎪⎪<<⎪⎪⎪⎪+=-⇒+=-⎨⎨⎪⎪⎪⎪=⋅=⎪⎪⎩⎩∴cx 2+bx+a<0的解集是{x|x< 1β或x>1α}. 课后预案课堂中学生可能提出的意外问题设想:1.学生可能提出的问题:不等式(x+2)(x-3)<0能不能转化为不等式组{0203>x<x +-或{0203<x>x +-求解?2.学生在解题中可能出现的问题:把不等式(x-1)(x+2)>1转化为{1112>x>x -+去解.课后反思(略)板书设计(略)教学设计说明本节课的所有内容以题组的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而教师时刻关注学生的活动过程,不时给予引导,及时纠偏.复习引入的问题1是学生已经熟知的一元一次不等式、一元一次方程及一次函数既“三个一次”的关系问题,旨在为后面探讨“三个二次”的关系提供方法和思路.问题2是课本中的材料,以高考题的形式出现可以引起学生更大的关注和兴趣.教材中的四个例题让学生完全按照解决问题2的方法自己去解,教师只在必要的时候提醒学生应该注意的问题,或学生遇到困难时给予引导.完成四道例题后,学生对一般一元二次不等式的解法和“三个二次”的关系已经有一定的理解,然后由特殊到一般,引导学生总结规律,形成一般结论.最后学生再利用自己的总结去完成课堂练习,刚刚形成的方法与结论可以进一步巩固和深化.例题、练习和作业的设置由浅入深,并且补充部分题目照顾各个层次的学生.一元二次不等式的求解过程,也是函数与方程、数形结合、分类讨论及类比等数学思想方法的综合应用过程,在教学中提醒学生注意深刻体会,也在补充题目中逐步加以渗透.一元二次不等式的解法(第一课时)说课稿各位评委、各位老师:大家好!今天我说课的课题是《一元二次不等式的解法》(第一课时)。
《2.2.3 一元二次不等式的解法》教学设计

《2.2.3 一元二次不等式的解法》教学设计2.2.3一元二次不等式的解法教学设计一、教材分析1、地位与作用一元二次不等式的解法在高中数学中具有重要地位。
它是在学习了一元一次不等式、一元二次方程和二次函数的基础上进行的,是对前面知识的深化和综合运用。
同时,一元二次不等式在解决实际生活中的优化问题、函数定义域、值域等问题中有着广泛的应用,是进一步学习数学和其他学科的重要工具。
在高考中,一元二次不等式的解法常常与函数、数列、解析几何等知识相结合进行考查,是考生必须掌握的基础知识。
2、教材内容教材首先通过实例引出一元二次不等式的概念,然后利用二次函数的图象来探究一元二次不等式与二次函数、一元二次方程之间的关系,从而得出一元二次不等式的解法。
二、学情分析1、已有知识基础学生已经学习了一元一次不等式的解法,对于不等式的基本性质和求解不等式的基本步骤有了一定的了解。
学生也已经掌握了一元二次方程的解法,包括求根公式、因式分解法等,并且对二次函数的图象和性质有了初步的认识,如二次函数的开口方向、对称轴、顶点坐标等。
2、学习能力大部分学生具备一定的逻辑推理能力和运算能力,但在将知识进行综合运用方面可能存在不足。
例如,将二次函数的图象特征与一元二次不等式的解集联系起来,对于一些学生来说可能是一个难点。
3、兴趣爱好和学习风格学生对于与实际生活相关的数学问题比较感兴趣,如在生活中如何通过一元二次不等式来解决利润最大化、资源最优化等问题。
在学习风格上,有些学生更倾向于直观的图象学习,而有些学生则擅长通过公式和计算来理解知识。
三、教学目标1、知识与技能学生能够理解一元二次不等式的概念,会将一元二次不等式转化为标准形式。
掌握一元二次不等式的解法,能够熟练运用二次函数的图象求解一元二次不等式。
能将一元二次不等式的解法应用于解决简单的实际问题。
2、过程与方法通过探究一元二次不等式与二次函数、一元二次方程之间的关系,培养学生的观察能力、分析能力和逻辑思维能力。
【数学课件】一元二次不等式及其解法

对一切 x R 恒成立,则a的取值范围。
1.若函数 f ( x) kx 6kx (k 8) 的定义 域为R,求实数k的取值范围.
2
解:要使函数f(x)有意义,则必有
kx 6kx (k 8) 0
2
因为函数f(x)的定义域为R,所以 2 kx 6kx (k 8) 0 对一切 x R 恒成立. ①当k=0,不等式8>0对一切 x R 恒成立.
易错题
1.函数 f ( x) log 1 ( x2 kx 2) 的定义域为R,
2
求实数k的取值范围.
2
(2 2, 2 2)
2.函数 f ( x) log 1 ( x kx 2) 的值域为R,
2
求实数k的取值范围.
(, 2 2] [2 2, )
例题选讲
例2.当m取什么实数时,方程 4x2 (m 2) x (m 5) 0
C {x | x 4ax 3a 0}, 若 A
2 2
B C ,求实数a
的取值范围.
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
一元二次不等式及其解法
2021年新高考数学总复习第七章《不等式》一元二次不等式及其解法一元二次不等式的解集判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a{x|x∈R} ax2+bx+c<0(a>0)的解集{x|x1< x<x2} ∅∅概念方法微思考1.一元二次不等式ax2+bx+c>0(a>0)的解集与其对应的函数y=ax2+bx+c的图象有什么关系?提示ax2+bx+c>0(a>0)的解集就是其对应函数y=ax2+bx+c的图象在x轴上方的部分所对应的x的取值范围.2.一元二次不等式ax2+bx+c>0(<0)恒成立的条件是什么?提示显然a≠0.ax2+bx+c>0恒成立的条件是⎩⎪⎨⎪⎧a>0,Δ<0;ax2+bx+c<0恒成立的条件是⎩⎪⎨⎪⎧a<0,Δ<0.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ )题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( )A .{x |-2<x <3}B .{x |-2≤x ≤3}C .{x |x <-2}∪{x |x >3}D .{x |x ≤-2}∪{x |x ≥3}答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}.故选B.3. y =log 2(3x 2-2x -2)的定义域是________________.答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73, ∴3x 2-2x -2>0的解集为⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示)答案 (-4,1)。
二次函数与一元二次方程、不等式
第1课时 二次函数与一元二次方程、 不等式
1.一元二次不等式的概念 只含有一个未知数,并且未知数的最高次数是2的不等 式,称为一元二次不等式. 一元二次不等式的一般形式是: ax2+bx+c>0(a≠0)或ax2+bx+c<0(a≠0).
【思考】 (1)不等式x2+ 2 >0是一元二次不等式吗?
【解析】原不等式转化为(x-2a)(x+a)<0. 对应的一元二次方程的根为x1=2a,x2=-a. ①当a>0时,x1>x2, 不等式的解集为{x|-a<x<2a}; ②当a=0时,原不等式化为x2<0,无解;
③当a<0时,x1<x2,不等式的解集为{x|2a<x<-a}. 综上,当a>0时,原不等式的解集为{x|-a<x<2a}; 当a=0时,原不等式的解集为∅; 当a<0时,原不等式的解集为{x|2a<x<-a}.
(2)当Δ =0时,不等式ax2+bx+c≥0(a>0)与ax2+bx+c≤0 (a>0)的解集分别是什么? 提示:R,{x|x=x1}
【素养小测】
1.思维辨析(对的打“√”,错的打“×”) (1)mx2-5x<0是一元二次不等式. ( ) (2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+ bx+c>0的解集为R. ( )
(3)设二次方程f(x)=0的两解为x1,x2,则一元二次不等 式f(x)>0的解集不可能为{x|x1<x<x2}. ( ) (4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的 解集为空集,则函数f(x)=ax2+bx+c无零点. ( )
初中数学一元二次不等式解法
2.3.2 一元二次不等式解法二次函数y=x2-x-6的对应值表与图象如下:x -3 -2 -1 0 1 2 3 4y 6 0 -4 -6 -6 -4 0 6由对应值表及函数图象(如图2.3-1)可知当x=-2,或x=3时,y=0,即x2-x=6=0;当x<-2,或x>3时,y>0,即x2-x-6>0;当-2<x<3时,y<0,即x2-x-6<0.这就是说,如果抛物线y= x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程x2-x-6=0的解就是x1=-2,x2=3;同样,结合抛物线与x轴的相关位置,可以得到一元二次不等式x2-x-6>0的解是x<-2,或x>3;一元二次不等式x2-x-6<0的解是-2<x<3.上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢?我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0).为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解.(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图 2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-b2a,由图 2.3-2②可知不等式ax2+bx+c>0的解为x≠-b2a;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c=0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.例3解不等式:(1)x2+2x-3≤0;(2)x-x2+6<0;(3)4x2+4x+1≥0;(4)x2-6x+9≤0;(5)-4+x-x2<0.解:(1)∵Δ>0,方程x2+2x-3=0的解是x1=-3,x2=1.∴不等式的解为-3≤x≤1.(2)整理,得x2-x-6>0.∵Δ>0,方程x2-x-6=0的解为x1=-2,x2=3.∴所以,原不等式的解为x<-2,或x<3.(3)整理,得(2x+1)2≥0.由于上式对任意实数x都成立,∴原不等式的解为一切实数.(4)整理,得(x-3)2≤0.由于当x=3时,(x-3)2=0成立;而对任意的实数x,(x-3)2<0都不成立,∴原不等式的解为x=3.(5)整理,得x2-x+4>0.Δ<0,所以,原不等式的解为一切实数.。
艺术生高考数学专题讲义:考点22 一元二次不等式与简单的分式不等式的解法
A. ( -∞,32 ) ∪ (2,+∞)
B. R
C.
(
3 2
,2)
D. ∅
【题型练1-2】(2015 江苏 ) 不等式 2x2 - x < 4 的解集为 ________.
【题型练1-3】不等式 -3 < 4x - 4x2 ≤ 0 的解集为 ________.
(
)
【题型练1-4】(2015 广东文 ) 不等式 -x2 - 3x + 4 > 0 的解集为 ________( 用区间表示 ).
【题型练3-6】若不等式 ax2 + bx + c > 0 的解集是 ( -4,1),则不等式 b(x2 - 1) + a(x + 3) + c > 0 的解集为 .
题型四 一元二次不等式恒成立问题 角度 1 形如 f(x) ≥ 0( f(x) ≤ 0),x ∈ R 确定参数的范围 例4. 若不等式 mx2 - 2x - 1 < 0 恒成立,则 m 的取值范围是 ________.
题型三 一元二次不等式与一元二次方程根之间关系问题 例3. 关于 x 的不等式 x2 + (a + 1)x + ab > 0 的解集是 {x|x <-1 或 x > 4},则 a + b = ________.
方法总结 解决这类习题关键是理解三个二次之间的关系,一元二次函数与 x 轴交点的横坐标即为对应一 元二次方程的根,利用一元二次方程的根,结合函数图象就可以求出对应一元二次不等式.因此反过
f (x) g(x)
≥
0⇔
fg((xx))·≠g(x0),≥ 0,,
f (x) g(x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次不等式及其解法
任意的一元二次不等式,总可以化为一般形式:或
.
设一元二次方程的两根为且,,则相
应的不等式的解集的各种情况如下表:
二次函数
()的
图象
有两相异实根 有两相等实根
无实根
知识点三:解一元二次不等式的步骤
(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;
(2)写出相应的方程,计算判别式:
①时,求出两根,且(注意灵活运用因式分解和配方法);
②时,求根;
③时,方程无解
(3)根据不等式,写出解集.
规律方法指导
1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;
2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;
3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;
4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等
式的解集与其系数之间的关系;
5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数
经典例题透析
类型一:解一元二次不等式
1.解下列一元二次不等式
(1); (2); (3)
【变式1】解下列不等式
(1) ; (2)
(3) ; (4) .
【答案】
类型二:已知一元二次不等式的解集求待定系数
2.不等式的解集为,求关于的不等式
的解集。
【变式2】已知的解为,试求、,并解不等式
.
【类型三:二次项系数含有字母的不等式恒成立恒不成立问题
3.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,求实数
m的取值范围。
【变式1】 若关于的不等式的解集为空集,求的
取值范围.
【变式2】若关于的不等式的解为一切实数,求的取
值范围.
【变式3】若关于的不等式的解集为非空集,求的取
值范围.
类型四:含字母系数的一元二次不等式的解法
4.解下列关于x的不等式
(1)x2-2ax≤-a2+1; (2)x2-ax+1>0; (3)x2-(a+1)x+a<0;
总结升华:对含字母的二元一次不等式,一般有这样几步:
①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;
②求根:求相应方程的根。当无法判断判别式与0的关系时,要引入讨论,分类求解;
③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论。
举一反三:
【变式1】解关于x的不等式:
【变式2】解关于的不等式:()
【
5.解关于x的不等式:ax2-(a+1)x+1<0。
总结升华:熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有字母
系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”。
基础达标:
1.不等式x2-ax-12a2<0(其中a<0)的解集为( )
A.(-3a,4a) B.(4a,-3a) C.(-3,-4) D.(2a,6a)
2.使有意义的x的取值范围是( )
A. B.
C. D.
3.不等式ax2+5x+c>0的解集为,则a,c的值为( )
A.a=6,c=1 B.a=-6,c=-1 C.a=1,c=1 D.a=-1,c=-6
4.解不等式得到解集,那么的值等于( )
A.10 B.-10 C.14 D.-14
5.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是( )
A. B. C. D.
6.抛物线y=-x2+5x-5上的点位于直线y=1的上方,则自变量x的取值范围是
________。
7.如果关于x的方程x2-(m-1)x+2-m=0的两根为正实数,则m的取值范围是
________。
8.解下列不等式
(1) 14-4x2≥x; (2) x2+x+1>0; (3) 2x2+3x+4<0;
(4) ;(5) ; (6) ;
(7)
9.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}。
(1)求a,b; (2)解不等式ax2-(ac+b)x+bc<0。
10. 不等式mx2+1>mx 的解集为实数集R,求实数m的取值范围.
11.不等式的解集是全体实数,则a的取值范围是( )
A. B. C. D.
12.对于满足0≤p≤4的实数p,使恒成立的x的取值范围是
_____________.
13.已知的解集为,则不等式的
解集是________.
14.若函数的定义域为R,则a的取值范围为________________.
15.若使不等式和同时成立的x的值使关于x的不等式
也成立,则a的取值范围是________________.
16.若不等式ax2+bx+c>0 的解集为{x|2<x<3},则不等式ax2-bx+c<0 的解集是
___________;不等式cx2+bx+a>0的解集是_____________.
17.已知,
(1)如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围;
(2)如果对x∈[-3,1],f(x)>0恒成立,求实数a的取值范围.
18.解下列关于x的不等式 ;
19.解关于x的不等式:.
20. 设集合A={x|x2-2x-8<0}, B={x|x2+2x-3>0}, C={x|x2-3ax+2a2<0},
若C(A∩B), 求实数a的取值范围.