第二章压力容器基本结构
2、压力容器基本结构

8
第二章
压力容器基本结构
第二节 压力容器的基本构成 二、封头与端盖: 凡与筒体焊接连接而不可 拆的称为封头,与筒体及法兰 等连接而可拆的则称为端盖。 封头按形状可以分为凸形, 锥形和平板封头。 1、凸形封头有半球形,碟形, 椭圆形和无折边球形封头等。 2、锥形封头。 3、平板封头。
5
第二章
压力容器基本结构
第一节 压力容器的基本结构形式 四.锥形容器:单纯的锥形容器在工 程上是很少见的,其连接处因形状突 变,受压力载荷时会产生较大的附加 弯曲应力。一般使用的是由锥形体与 圆筒体组合而成的组合结构。这类容 器通常因生产工艺有特殊要求而采用。
6
第二章
压力容器基本结构
第二节 压力容器的基本构成 容器的结构是由筒体、封 头、法兰、接管、人孔和手孔、 支座等主要部件组成的。此外, 作为一种生产工艺设备,有些 压力容器,如用于化学反应、 传热、分离等工艺过程的压力 容器,其壳体内部还装有工艺 所要求的内件。对此,本讲不 作专门介绍,而只介绍压力容 器的其他部件。
任意式法兰
11
第二章
压力容器基本结构
第二节 压力容器的基本构成 三、法兰: 法兰按其密封面形式又可分为:平面法兰;凹 凸面法兰。在法兰之间,利用不同的密封元件和不 同的连接件相组配,构成了各种不同的密封结构。 1.强制密封。2.自紧密封。3.半自紧密封。
平面法兰 凹凸面法兰
12
第二章
压力容器基本结构
图3-1
圆筒形容器
图3-2
球形容器
2
第二章
压力容器基本结构
第一节 压力容器的基本结构形式 一、球形容器:本体是一个球壳,其 形态特点是中心对称。 1、优点:受力均匀;在相同的壁厚 条件下,承载能力最高,或者可以说 在同样的内压下,球形壳体所需的壁 厚最薄;在相同容积条件下,球形壳 体表面积最小;节约保温或隔热材料, 降低成本。 2、缺点:制造比较困难,工艺复杂, 成本高;不便于在容器内部安装工艺 内件,也不便于内部互相作用的介质 流动;一般只用于中,低压的储装容 器。
压力容器基础知识

多层式
层板包扎式 热套式
缠绕式 绕板式 绕带式
25
封头定义、结构
2. 封头:与筒体一起构成设备的壳体。
结构
椭圆形封头
碟形封头
凸形封头 球冠形封头
封头
锥形封头
球形封头
半球形封头 无折边半球形封头
带折边锥形封头
无折边锥形封头
平板形封头
26
封头形式实例
球形
椭圆形
碟形
锥形 平板形
凸形封头形式
(1)半球形封头 ——有很好的力学性能。 (2)椭圆形封头 ——制造容易。 (3)蝶形封头 ——加工容易、方便,但在
9
压力容器的分类
c、按作用原理 反应容器(R)----主要用于完成介质的化学反应 换热容器(E)----主要用于实现介质的热量交换 分离容器(S)----主要用于对混合物料进行分离 贮运容器(C,其中球罐B)
----主要用于盛装物料
d、按安装方式分类 固定式容器----有相对固定的安装、工作地点,工艺
第二章 压力容器的基本结构
22
压力容器基本部件
基本组成
壳体 封头(端盖) 设备法兰 开孔与接管 支座 安全附件
23
筒体定义及形式 1. 壳体:存储物料或完成物理化学反应或
传质传热所需的主要压力空间。
形式:圆柱筒体、球形筒体。
24
筒体结构
结构:
单层式 筒体
组合式
无缝钢管式
单层卷焊式
整体锻造式
锻焊式
14
钢材的分类方法2
2、按钢的品质分类
(1)普通钢——硫、磷含量较多 S ≤0.055%,P ≤0.040%或S、P均 ≤0.05%
(2)优质钢——硫、磷含量较少 S ≤0.040%,P ≤0.040%
压力容器基本结构

压力容器开孔接管
(1)开孔目的:1)满足工艺要求
2)满足结构要求
(2)开孔类型:
人孔、手孔、视镜孔、物料进出口接管,以及安装 压力表、液面计、安全阀、测温仪表等接管开孔。
法兰
法兰是接管与接管之间相互连接的零件,简 称管法兰;也有用在设备进出口上的法兰,用于 两个设备之间的连接,简称设备法兰。
接管和法兰之间一般采用焊接结构。
1、平焊法兰
2、承插焊法兰
3、对焊法兰
4、螺纹法兰
支座
23
容器靠支座支承在基础设备上,随着容器的 安装位置不同。
1、悬挂式支座
2、立式支座
3、裙式支座
4、卧式支座
1、凸形封头
球形
蝶形
椭圆形 球冠
2、锥形封头艺所需的承压空间,是 压力容器最主要的受压元件之一,其内直径和容 积往往需要由工艺计算确定。圆柱形筒体(即圆 筒)和球形筒体是工程中最常用的筒体结构。
压力容器筒体形式
1、圆柱筒体
压力容器筒体形式
2、球形筒体
开孔
压力容器是指盛装气体或者液体,承载一定压力的 密闭设备。
压力容器一般是由封头、筒体、接管、法兰、 支座、密封元件、安全附件等组成, 这些零部件 大都有国家或行业标准。
法兰 接管 开孔
封头 支座 筒体
压力容器封头一般是在压力容器的两端使用的、再 有就是在管道的末端做封堵之用的一种焊接管件产品。它 与筒体等部件形成封闭空间,常采用焊接结构。
2章教案容器基本知识.

2.3.容器机械设计的基本要求
2.3.1 容器机械设计条件及程序: 1.容器机械设计条件: (1)工艺结构要求及基本工艺尺寸; (2)工作压力、工作温度及工作介质; (3)容器的工作环境、重要程度;
14
开始
2.机械设计程序
确定设计依据及相关标准
选择材料 确定容器类别
不合格
校核
合格 不 合 格
6
2.考虑安全性 —按承压(表压)高低分类
低压容器 …0.1≤P<1.6 中压容器 … 1.6 ≤ P<10 高压容器 … 10 ≤ P<100 超高压容器 P≥100 MPa MPa MPa MPa
7
——按容器壁温分:
-20<壁温≤2000C; (2)高温容器 壁温~蠕变温度 碳钢,低合金钢 ----- >4200C, 奥氏体不锈钢-------- >5500C。 (3)低温容器 壁温≤-200C -200C~-400C为浅冷容器, 壁温≤-400C为深冷容器。
16
4.耐久性——保证使用寿命。一般化工设备设计使 用寿命为10~15年。大多取决于腐蚀情况,有些 取决于疲劳、蠕变或振动。
5.密封性——包括内漏和外漏。
17
6. 标准化设计
法兰、螺栓、封头、筒体、支座、接管、人孔? 7.方便制造、操作与检修,便于运输 ※操作阀门位于操作台面2米高,可否? ※储罐内介质脏,设计结构如何考虑?
12
2.3.2 相关法规及常用标准
1.基本法规: 《压力容器安全技术监察规程》 —国家质量技术监督局 1999 2. 压力容器常用标准: GB150-98 《钢制压力容器》国家标准 GB151-99 《管壳式换热器 》国家标准 JB4709-2000 《钢制压力容器焊接规程》 JB4730-2005 《压力容器无损检测》 HG20592~20635-97 《钢制管法兰、垫片、紧固件》 JB/T4700~4707-2000《压力容器法兰》
压力容器的结构及其分类课件

旋转对称压力容器
旋转对称压力容器是指具有旋转对称性的容器,例如圆柱形容器和球形容器,在工业领域中广泛应用。
非旋转对称压力容器
非旋转对称压力容器是指形状不具备旋转对称性的容器,例如椭圆形容器, 在一些特殊的工程场景中使用。
上下异形封头压力容器
上下异形封头压力容器是指顶部和底部封头形状不一致的容器,常用于特殊 工艺要求或容器本身功能的需要。
核电压力容器用于核电站中承受核反应的高压和高温,具备严格的安全标准 和防护措施。
医用压力容器
医用压力容器用于医疗行业,例如医用氧气瓶、氮气瓶等,确保医疗设备供 气的可靠性和安全性。
压力容器的安全性要求
压力容器的设计和制造必须符合一定的安全标准和规范,确保操作人员和设 备的安全。
压力容器的维护保养
低温压力容器
低温压力容器主要用于存储液态气体或制冷工质,要求具备良好的保温性能 和耐低温的材质。
高温高压压力容器
高温高压压力容器主要用于承受高温和高压工况,要求具备较高的强度和耐 热性。
工业气瓶
工业气瓶是一种用于储存和输送气体的压力容器,广泛应用于气体工业领域, 提供安全可靠的气体供应。
核电压力容器
压力容器的结构及其分类 课件
本课件将详细介绍压力容器的结构和分类,包括定义、主要部件、应力分析 以及根据用途、结构和工作介质的不同分类。
压力容器的定义
压力容器是一种专门用于承受内外压力的设备,广泛应用于工业领域,例如 化工、石油、制药等。
压力容器的结构
压力容器的常见结构包括圆柱形、球形和椭圆形等,根据不同的应用需求选择适当的结构。
压力容器的主要部件
压力容器由壳体、封头、衬里、支撑和附件等多个部件组成,各部件在承受 压力时起到不同的作用。
2压力容器的主要零部件

6-12 锥形压紧面
梯形槽压紧面
槽底不起密封作用,是 槽的内外锥面与垫片接触 成梯形,形成密封的,与 椭圆或八角形截面的金属 垫圈配合。
6-13 梯形槽压紧面
因素3. 垫片性能
垫片密封面的塑性变形能力 ——实现初始密封;
垫片材料及结构的回弹能力 ——提高工作状态下的残余密封比压。
耐腐蚀能力。 力学性能,尤其抗高温蠕变能力。 工作温度下的变质硬化或软化性。
(a)尚未预紧工况
图6-3 密封机理图
(b)预紧工况(无内压) 拧紧螺栓,螺栓力通过法兰压
紧面作用到垫片上。垫片产生弹性 或屈服变形,填满凹凸不平处,堵 塞泄漏通道,形成初始密封条件。
引入概念1“预紧比压y”
形成初始密封条件时垫片单位面积 上所需的最小压紧力,称为“垫片 比压力” ,单位为MPa。在预紧工 况下,如垫片单位面积上所受的压 紧力小于比压力y,介质即发生泄漏。
在跨距中点:载荷——介质压力,弯矩。
1
pc Rm 2Se
M1
R
2 m
Se
膜应力 弯曲应力
(b)预紧工况 图6-3 密封机理图
y值仅与垫片材料、 结构与厚度有关。
(c)操作工况
密封比压下降
导致 通入介质 压力上升
垫片弹性压缩变形部分产生回弹,使压 紧面上的密封比压力仍能维持一定值以 保持密封性能。
引入概念2 “操作密封比压”
为保证在操作状态时法兰的密封性 能而必须施加在垫片上的压应力, 称为操作密封比压。 操作密封比压往往用介质计算压力 的m倍表示, m称为“垫片系数”。
6-10 凹凸型压紧面
榫槽型压紧面
一榫一槽密封面组成,优点 是对中性好,密封预紧压力 小,垫片不易挤出,不受介 质冲刷,用于易燃易爆密封 要求高处。缺点是更换较困 难,榫易损坏。
压力容器安全操作工基础知识培训教案

压力容器安全操作工基础知识培训教案第一章:压力容器概述1.1 压力容器的定义1.2 压力容器的作用1.3 压力容器的分类1.4 压力容器的主要参数第二章:压力容器的基本结构2.1 容器本体2.2 容器附件2.3 容器的安全保护装置2.4 容器的主要材料第三章:压力容器的操作原理3.1 压力与压强的概念3.2 压力容器的压力产生与传递3.3 压力容器的液位控制3.4 压力容器的温度控制第四章:压力容器的安全技术要求4.1 压力容器的选用原则4.2 压力容器的安装与维护4.3 压力容器的检验与检测4.4 压力容器的安全操作规程第五章:压力容器事故预防与处理5.1 压力容器事故的类型及原因5.2 压力容器事故的预防措施5.3 压力容器事故应急预案5.4 压力容器事故的处理方法第六章:压力容器的操作技术6.1 压力容器的启动与停机操作6.2 压力容器内部清洗与置换6.3 压力容器的压力测试6.4 压力容器的介质传输控制第七章:压力容器的维护与检修7.1 压力容器日常维护的重要性7.2 压力容器的主要维护工作7.3 压力容器常见问题的检修方法7.4 压力容器的大修与改造第八章:压力容器的安全监控与控制8.1 压力容器监控系统的组成8.2 常见压力容器监控仪表的使用8.3 压力容器安全控制逻辑与原理8.4 压力容器紧急情况下的应急操作第九章:压力容器相关的法律法规9.1 压力容器的国家标准与行业规范9.2 压力容器设计、制造、使用、检验的相关法律9.3 压力容器操作工的资质要求与培训9.4 压力容器事故的法律责任与调查处理第十章:压力容器操作工的职业道德与安全意识10.1 职业道德在压力容器操作中的重要性10.2 压力容器操作工的安全职责10.3 安全意识与事故预防10.4 压力容器操作中的心理素质与沟通技巧重点解析本文教案主要涵盖了压力容器的基础知识、基本结构、操作原理、安全技术要求、事故预防与处理、操作技术、维护与检修、安全监控与控制、法律法规以及职业道德与安全意识等十个方面。
第二章、压力容器的基本结构及材料

29
第二章 压力容器的基本结构及材料 第三节 压力容器的材料
二、对压力容器选材的主要要求
1. 2.
3.
4.
压力容器的选材应当考虑材料的力学性能、化学性能、物理性能和 工艺性能。 选择压力容器用钢应考虑容器的使用条件(如设计温度、设计压力、 介质特性和操作特点等)、材料的焊接性能、容器的制造工艺以及 经济合理性。 压力容器受压元件用钢应符合GB150中4.材料章的要求。非受压元件 用钢,当与受压元件用钢焊接时,也应是焊接性良好的钢材。 钢材的化学性能、力学性能应符合《固定容规》有关规定。选用碳 素钢和合金钢制造的压力容器应符合GB150-2011《压力容器》的有 关规定,Q235B钢板不得用于直接受火焰加热的压力容器。用于焊接 结构压力容器主要受压元件的碳素钢和低合金钢,其碳含量不应大 于0.25%。钢制压力容器材料的力学性能、弯曲性能和冲击试验要求, 应符合GB150-2011《压力容器》中相关规定。 30
第一章 压力容器的基本结构及材料 第三节 压力容器的材料
一、压力容器材料性能 2. 工艺性能
良好的冷塑性变形能力:在加工时容易成形且不会产生裂 纹等缺陷。 具有较好的可焊性:以保证材料在规定的焊接工艺条件下 获得质量优良的焊接接头。第三,要求材料具有适宜的热 处理性能,容易消除加工过程中产生的残余应力,而且对 焊后热抗氧化性能处理裂纹不敏感。
19
第二章 压力容器的基本结构及材料 第二节 常见压力容器结构
二、列管式换热器
3. U形管式换热器 其结构特点是只有一个管板,管子成U形,管子 两端固定在同一管板上。管束可以自由伸缩,当壳体与管子有温差时, 不会产生温差应力。U形管式换热器的优点是结构简单,只有一个管板, 密封面少,运行可靠,造价低,管间清洗较方便。其缺点是管内清洗较 困难,可排管子数目较少,管束最内层管间距大,壳程易短路。U形管式 换热器适用于管、壳程温差较大或壳程介质是易结垢而管程介质不易结 垢的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章.压力容器基本结构————————————————————————————————作者:————————————————————————————————日期:ﻩ第二章压力容器基本结构第一节压力容器的结构形式一、球形容器球形容器的本体是一个球壳,通常采用焊接结构,由于球形容器一般直径都较大,难以整体成形,大多由许多块预先按一定尺寸压制成型的球面板拼焊而成。
球形容器受力时其应力分布均匀,在相同的压力载荷下,球壳体的应力仅为直径相同的圆筒形壳体的1/2,即如果容器的直径、工作压力、制造材料相同时,球形容器所需的计算壁厚仅为圆筒形容器的1/2,另外,相同的容积,球形的表面积最小。
综合面积及厚度的因素,故球形容器与相同容积、工作压力、材料的圆筒形容器相比,可节省材料30%~40%。
球形容器制造复杂、拼焊要求高,而且作为传质、传热或反应的容器时,因工艺附件难以安装,介质流动困难,故广泛用作大型贮罐;也可用作蒸汽直接加热的容器,可以节省隔热材料,减少热量损失,如造纸行业用于蒸煮纸浆的蒸球。
二、圆筒形容器圆筒形容器的几何形状特点是轴对称,外观没有形状突变,因而受载应力分布也较均匀,承载能力较高,与球形容器相比,受力状态虽不如球形容器,但制造方便,质量易得到保证,工艺内件易于安排装拆,可用作任何用途的容器。
与其他形式容器相比,受力状态要理想得多。
故圆筒形容器是目前使用最广泛的一种压力容器。
三、箱形容器箱形结构容器分为正方形结构及长方形结构两种。
由于其几何形状突变,应力分布不均匀,转角处局部应力较高,所以这类容器结构不合理,较少使用。
一般仅用作压力较低的容器,如蒸汽消毒柜及化纤设备的加热箱体。
四、锥形容器单纯的锥形容器在工程上很少见,其连接处因形状突变,受压力载荷时将会产生较大的附加弯曲应力。
一般使用的是由锥形体与圆筒体组合而成的组合结构。
这类容器在锥形体与圆筒体结合部仍存在较大局部应力,故这类容器通常因生产工艺有特殊要求时采用,锥形体作为收缩器或扩大器以逐渐改变流体介质的流速,或者作为锥底以便于粘稠、结晶或固体物料排除第二节压力容器的组成压力容器的结构一般比较简单,主要由一个能承受一定压力的壳体及必要的连接件、密封件和内件构成。
另外,由于各种工艺用途不同,有时还需配置相应的工艺附件,但这些附件一般不承受介质的压力,对容器安全影响很小,故只是作为附件。
常见压力容器一般由筒体、封头(管板)、法兰、接管、人(手)孔、支座等部分组成。
1一、筒体筒体是压力容器最主要的组成部分,与封头或端盖共同构成承压壳体,是贮存物料或完成化学反应的压力空间。
常见的是圆筒形筒体,其形状特点是轴对称,圆筒体是一个平滑的曲面,应力分布比较均匀,承载能力较高,且易于制造,便于内件的设置与装拆,因而获得广泛应用。
筒体直径较小时(一般<500mm),可用无缝钢管制作,直径较大时,可用钢板在卷板机上先卷成圆筒然后焊接而成。
随着容器直径的增大,钢板需要拼接,因而筒体的纵焊缝条数增多。
当筒体较长时,因受钢板尺寸的限制,需将两个或两个以上的筒节组焊成所需长度的筒体。
为便于成批生产,筒体直径的大小已标准化,可按下表中所示的公称直径选用(带括号的尺寸尽量不采用)。
对焊接筒体,表中公称直径是指它的内径,而用无缝钢管制作的筒体,表中公称直径是指它的外径。
焊接筒体的公称直径单位:mm300 90 (1900) 3400 (350) 1000 2000 3600 400 (1100) (2100) 3800 (450) 1200 2200 4000500(1300)(2300)(550)1400 2400600 (1500)2600(650) 1600 2800 700 (1700)3000800用无缝钢管制筒体的公称直径单位:mm筒体公称直径159****73325 377 426所用无缝钢管的公称直径150 200 250300 350 400圆柱形筒体按其结构又可分为整体式和组合式两大类。
二、封头与端盖凡与筒体焊接连接而不可拆的,称为封头;与筒体及法兰等连接而可拆的则称为端盖。
对于组装后不再需要开启的容器,如无内件或虽有内件而不需要更换、检修的容器,封头和筒体采用焊接连接形式,能有效地保证密封,且节省钢材和减少制造加工量。
对于需要开启的容器,封头(端盖)和筒体的连接应采用可拆式的,此时在封头和通体之间必须装置密封件。
封头按形状可以分为三类,即凸形封头、锥形封头和平板封头。
㈠凸形封头凸形封头有半球形、碟形、椭圆形和无折边球形封头。
1、半球形封头半球形封头实际上是一个半球体,在相同直径和相同压力下,所需板厚最小。
但其深度大(与半径相同),整体压制困难,通常直径较大的半球形封头由几块形状相同的球面板及顶部中心的一块圆形球面板(球冠)组焊而成,且对组焊要求高,因而除用于压力较高、直径较大的贮罐及其他有特殊要求的容器外,一般较少采用。
22、椭圆形封头椭圆形封头由半球体及圆筒体(即直边)两部分组成。
由于其曲率半径连续变化,没有形状突变,受力情况仅次于半球形封头。
制造较半球形封头容易。
椭圆形封头的深度决定于椭圆形的长轴与短轴之比(即封头直径D与深度的两倍2h之比),深度愈大受力情况愈好,但加工也愈困难。
标准椭圆形封头的深度为直径的1/4(即D/2h=2)。
椭圆形封头是目前压力容器使用最普遍的一种。
3、碟形封头碟形封头又称带折边球形封头。
由几何形状不同的三个部分组成,中央为球面,与筒体连接的部分为圆筒体,球面体与圆筒体用过度圆弧(即折边)连接。
因过度圆弧半径远小于球体半径,故其受力状况较上述两种封头差,通常只用于压力较低,直径较大的容器。
4、无折边球形封头无折边球形封头是一块深度较小的球面体。
结构简单、制造方便。
但在它与筒体的连接处由于形状突变而存在很高的局部应力,故只适用于直径较小、压力较低的容器上。
㈡锥形封头介质中含有颗粒状、粉末状物质或为粘稠液体的容器,为便于物料汇集及卸料,容器底部常采用锥形封头,有时为保证气体介质在容器中均匀分布或改变流体流速,也采用锥形封头。
锥形封头有带折边和无折边两种。
无折边锥形封头是一段圆锥体,圆锥体与圆筒体直接连接造成形状突变而引起局部应力过高,故仅适用于压力较低且半径锥角小于300的场合。
带折边的锥形封头是在锥体与圆筒体之间有一圆弧折边,可以降低局部应力,带折边锥形封头的半锥角一般不大于450。
标准带折边锥形封头的半锥角有300及450两种,过度圆弧曲率半径与封头直径D之比值为0.15。
㈢平板封头平板封头受力时强度较低,相通直径、相同压力下所需的厚度最大,除用作人孔盖以及一些高压容器外,一般很少采用。
三、法兰1、由于生产工艺需要和安装检修的方便,不少容器需采用可拆的连接结构,如压力容器的端盖与通体之间、接管与管道之间的连接,通常采用法兰结构。
法兰通过螺栓、楔口等连接件压紧密封件保证容器的密封。
故法兰连接是由法兰、螺栓、螺母及密封元件所组成的密封连接件。
2、法兰的分类法兰按照所连接的部件可分为容器法兰及管道法兰。
容器法兰用于容器的端盖与筒体连接;管道法兰用于接管(管道)与管道之间的连接。
法兰按其整体性程度,分为整体法兰、松式法兰、任意式法兰三种。
法兰按其密封面形式分为平面法兰、凹凸法兰、榫槽法兰三种。
33、密封件的分类密封元件是放在两法兰接触面之间或封头与筒体顶部的接触面之间,借助于螺栓等连接件的压紧力达到密封的目的。
密封元件按其所用材料的不同分为非金属密封元件(如石棉垫、橡胶垫、橡胶“O”型圈、聚四氟乙烯板等)、金属密封元件(如紫铜垫、铝垫、软钢垫等)、和组合式密封元件(如铁包石棉垫、铜丝缠绕石棉垫等)。
密封元件按其截面形状分为平垫片、三角形垫片、八角形垫片、透镜式垫片等。
4、密封结构不同的密封元件和不同的连接件相组配,可构成各种不同的密封结构。
⑴强制密封:强制密封是通过紧固端盖与筒体法兰之间的连接螺栓或接管与管道法兰之间的联结螺栓等强制方式将密封面压紧,从而达到密封的目的。
如平垫密封、卡扎里密封等属于强制密封。
⑵自紧密封:自紧式密封是利用容器内介质的压力使密封面产生压紧力达到密封目的。
其密封力随着介质压力的增大而增大,因而在较高的压力下也能保证可靠的密封性能。
如组合式密封、“0”形环密封、“C”形环密封、楔形密封、八角垫和椭圆垫密封、平垫自紧密封、伍德密封等。
⑶半自紧密封:它既利用容器内介质的压力,又利用紧固件的联结使密封面产生压紧力达到密封目的,如双锥密封就属于半自紧密封。
四、接管1、用途为适应压力容器安全运行及工艺生产的需要而设置于封头(端盖)及筒体上,用于介质的进出、安全附件的安装等。
2、接管形式螺纹短管、法兰短管、平法兰短管。
⑴螺纹短管式接管是一段带有内螺纹或外螺纹的短管,短管插入并焊接在容器的器壁上,短管螺纹用来与外部管件连接。
一般用于连接直径较小的管道,如接装测量仪表等。
⑵法兰短管式接管一端焊有管法兰,一端插入并焊接在容器的器壁上,法兰用以与外部管件连接。
一般用于直径稍大的接管。
⑶平法兰接管是法兰短管式接管除掉了直管的一种特殊形式,实际上就是直接焊接在容器开孔上的一个管法兰,这种接管与容器的连接有贴合式和插入式两种型式。
五、人孔和手孔1、用途:根据容器的结构、介质等情况,设置人孔或手孔等检查孔,供容器定期检验、检查或清除污物用。
2、分类:⑴按其形状分为圆形及椭圆形两种。
⑵按其封闭形式分为外闭式及内闭式两种。
3、开孔处的补强容器的筒体或封头开孔后,孔边的最大应力要比器壁上平均应力大几倍,对4容器安全不利。
为了补偿开孔处的薄弱部位,就需进行补强措施。
开孔处的补强方法有整体补强和局部补强两种。
容器上的开孔处补强一般均采用局部补强法,其原理是等面积补强。
局部补强常用的结构有补强圈、厚壁短管和整体锻造补强等数种。
六、支座支座是用于支承容器重量并将它固定在基础上的附加部件,制作的结构形式决定于容器的安装方式、容器重量及其他载荷,一般分为三大类:即立式容器支座、卧式容器支座及球形容器支座。
常用的立式容器支座有悬挂式支座(耳式支座)、支承式支座、裙式支座及腿式支座。
其中裙式支座主要用于高大的直立容器(塔类)。
卧式容器支座的结构形式主要有鞍式支座、圈座和支承式支座等。
支承式支座只适用于小型容器;大中型容器常用鞍式支座;圈座适用于薄壁容器及两个支撑的长容器。
球形容器常用裙式支座或柱式支座。