两个整式相除汇总

合集下载

七年级下册数学整式的乘除

七年级下册数学整式的乘除

七年级下册数学整式的乘除
在七年级下册数学中,学习了一些关于整式的乘除运算。

下面是一些相关的知识点:
1. 整式的乘法:整式的乘法是指将两个或多个整式相乘的运算。

乘法的运算法则包括:同底数幂相乘、同底数幂相除、乘法分配律等。

例如,(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15。

2. 整式的除法:整式的除法是指将一个整式除以另一个整式
的运算。

在整式除法中,除数不能为零。

除法的运算法则包括:整式除整式、整式除单项式、整式除多项式等。

例如,(6x^2 + 3x) ÷ 3x = 2x + 1。

3. 整式的约分:整式的约分是指将一个整式的各项的公因式
提取出来并约去的运算。

约分可以简化整式的形式,使其更简洁。

例如,6x^2 + 9x可以约分为3x(2x + 3)。

这些是七年级下册数学中关于整式的乘除运算的一些基本知识点。

希望对你有帮助!。

整式的乘除知识点归纳

整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。

一、整式的定义整式由单项式或多项式组成。

单项式是一个数字或变量的乘积,也可以包含指数。

例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。

多项式是多个单项式的和。

例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。

二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。

2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。

3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。

在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。

例如,(2x^2)×(3y)=6x^2y。

三、整式的除法整式的除法是乘法的逆过程。

除法运算中,被除数除以除数得到商。

以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。

例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。

例如,5/0没有意义。

在进行整式的除法运算时,要注意约分和消去的原则。

例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。

四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。

常见的运算顺序规则如下:1.先解决括号内的运算。

2.然后进行乘法和除法的运算。

3.最后进行加法和减法的运算。

五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。

对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。

整式运算公式汇总

整式运算公式汇总

整式运算公式汇总整式是由常数、变量及其乘积所构成的代数表达式,常见的整式运算包括加法、减法、乘法和除法。

下面是整式运算的一些常用公式汇总。

1.加法和减法:-任意两个整式之和或之差仍然是整式。

2.乘法:-一个整数与一个整式相乘,所得结果仍然是整式。

-两个整式相乘时,可以利用分配律进行展开。

-两个含有相同的因子的整式相乘时,可以利用公因式提取法进行合并。

3.乘方:a^n表示a的n次方,在整式运算中,可以使用以下公式进行乘方运算:-a^m*a^n=a^(m+n)(底数相同的乘方,指数相加)-(a^m)^n=a^(m*n)(乘方的乘方,指数相乘)-a^0=1(任何数的0次方等于1)4.除法:整式的除法运算可以利用乘法的逆运算,即乘法逆元素,其中,除法过程可以通过因式分解、相除法或多项式长除法等方法进行。

5.因式分解:将一个整式分解为几个不可再分解的乘积形式的过程称为因式分解。

常见的因式分解公式包括:-公因式提取法:将一个整式中的公因子提取出来。

-二次差分公式:a^2-b^2=(a+b)(a-b)- 平方差公式:a^2 + b^2 = (a+b)^2 - 2ab- 三次方差公式:a^3 - b^3 = (a-b)(a^2 + ab + b^2)6.基本恒等式:- 乘法结合律:a(bc) = (ab)c- 乘法交换律:ab = ba-加法结合律:(a+b)+c=a+(b+c)-加法交换律:a+b=b+a- 加法与乘法的分配律:a(b+c) = ab+ac这些是整式运算的一些常见公式,它们在代数运算中起到重要的作用。

通过熟练掌握和运用这些公式,可以更好地理解和解决整式运算问题。

整式除法法则公式(一)

整式除法法则公式(一)

整式除法法则公式(一)整式除法法则公式1. 一次整式除法法则公式一次整式除法法则公式用于两个一次整式相除的情况,其公式为:被除式 = 除数× 商 + 余数例如:将被除式3x+5除以除数x+2。

首先,我们找到被除式中与除数的首项3x相乘后,得到3x2+6x。

然后,我们将其减去被除式,得到(3x2+6x)-(3x+5)=3x2+6x-3x-5=3x2+3x-5。

此时,我们可以继续进行整式除法。

继续整除时,我们发现被除式3x2+3x-5中没有与除数x+2的次数匹配的项,因此将剩余的3x2+3x-5作为余数。

因此,将被除式3x+5除以除数x+2的结果为商3与余数3x^2+3x-5。

2. 二次整式除法法则公式二次整式除法法则公式用于两个二次整式相除的情况,其公式为:(被除式) = (除数) × (商) + (余数)例如:将被除式2x^2+5x+3除以除数x+3。

我们首先找到与除数首项2x相乘的结果2x3+6x2,然后将其减去被除式,得到(2x3+6x2)-(2x2+5x+3)=2x3+6x2-2x2-5x-3=2x3+4x2-5x-3。

此时,我们可以继续进行整式除法。

继续整除时,我们发现被除式2x3+4x2-5x-3中没有与除数x+3的次数匹配的项,因此将剩余的2x3+4x2-5x-3作为余数。

因此,将被除式2x2+5x+3除以除数x+3的结果为商2x与余数2x3+4x^2-5x-3。

3. 多次整式除法法则公式多次整式除法法则公式用于两个多次整式相除的情况,其公式与二次整式除法法则公式相同。

例如:将被除式3x3+2x2+5x+1除以除数x^2+2。

我们首先找到与除数首项3x相乘的结果3x2,然后将其减去被除式,得到(3x3+2x2)-(3x2+6x)=3x3+2x2-3x2-6x=3x3-x^2-6x。

此时,我们可以继续进行整式除法。

继续整除时,我们发现被除式3x3-x2-6x中没有与除数x2+2的次数匹配的项,因此将剩余的3x3-x^2-6x作为余数。

整式的乘法公式、整式的除法

整式的乘法公式、整式的除法

整式的运算强化乘法公式 平方差公式: 两数和与这两个数的差的积,等于这两个数的平方差.完全平方公式: 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.整式的除法 同底数幂的除法: 底数不变,指数相减.单项式相除:把系数与同底数幂分别相除作为商的因式.多项式除单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.五分钟练习 (1) 1.()()_,__________5=--a a ___________2222=m n2.()___,__________32=-x ()_____________23=-b 3.(),__________2223=-b a ()_________4223=⋅+a a a4.()_________,14.30=-∏()_______________32=--5. 如图,长方形的宽为b a +2,长为b a -,则周长为________,面积为___________________。

平方差公式: 22))((b a b a b a -=+-例1. 计算:(1))23)(23(b a b a --+-; (2))32)(32(b a b a ---例2. 利用平方差公式进行计算:(1) 9931007⨯ (2) 2000199819992⨯-(3))9)(3)(3(2++-a a a (4) )1)(1)(1)(1)(1(842++++-x x x x x(5)))((c b a c b a +--- (6))32)(32(z y x z x y -----例3.化简求值:),23)(32()13)(13(+---+a a a a 其中31-=a .例4. 若,12,422=-=+b a b a 求b a ,的值.【拓展提升】 例1.计算:(1)98.002.1⨯(2) ))(())(())((x z x z z y z y y x y x +-++-++-(3) 22)234()234(b a y x b a y x -++-+--例2. 若,32,15422=+-=-y x y x 求x 、y 的值.例3. 求值: )10011()511)(411)(311)(211(22222-----全平方公式:2222)(b ab a b a +±=± 例1. 运算结果为42221b a ab +-的是( )A. 22)1(ab +-B. 22)1(ab +C. 222)1(b a +-D. 22)1(ab --例2. 如果1212++ax x 是另一个整式的平方,那么常数a 的值是 .例5. 计算:(1)2)()2)(2(b a b a b a +--+ (2))2)(1()21(2----x x x例6. 一个正方形像框,中间部分边长为a 2厘米,像框宽为b 厘米,这个像框的面积是多少?(结果化成几个单项式的和)变式题:要给一边长为a 米的正方形桌子铺上正方形桌布,桌布的四周均超出桌面0.1米,问需要多大面积的桌布?【拓展提升】例1. 运用乘法公式计算(1)))((c b a c b a -+++ (2))13)(13(-+--y x y x(3)2)4123(+-y x (5)11234612344123452-⨯-例3. 已知20,9==+xy y x ,求2)(y x -的值.变式题:要使等式22)()(b a M b a +=+-成立,则整式M= .例5. 若∆ABC 三边a 、b 、c 满足ca bc ab c b a ++=++222,试问∆ABC 的三边有何关系?例6. 若0610222=+++-y y x x ,求2)2(y x -的值. ·例7. 化简求值:],2))()][()((2[22y x y y x y x y x x +----+-其中.2,1==y x例8. 已知),)(1(6116223n mx x x x x x ++-=-+-求m 和n . .同底数幂的除法 例1.计算: (1) )3()53(232y x y x ÷- ; (2))5()10(3234bc a c b a ÷;(3))14()7()2(34232y x xy y x ÷-⋅; (4)24)2()2(b a b a +÷+(5) )4()6(432232y x z y x ÷; (6))61()21(2344x a x a -÷-.例3.(1)若54223)()(b a ab b a n m =÷,则m= ,n= .(2)若等式( )nn 264=÷成立,则括号内应填的代数式为( )A. n24 B. n212C. n224 D. n210例4. 观察下面一列单项式:,x ,22x -,43x ,84x - ,165x(1)计算一下这里任一单项式除以它前面的单项式的商,你有什么发现?(2)根据你发现的规律写出第n 个单项式. 例6. 化简求值:(1)y y x y y x y x y x 4)](2)())([(2÷-+---+(2) )32()94()3()96(2222n m n m n m n mn m -÷---÷+-,其中31,3-=-=n m .(3) ,)()2()(44223224m m m m m m ÷-+⋅-+÷-其中.1-=m【拓展提升】例1. 要使1162+x 成为一个完全平方式,可以加上一个单项式 .例2. 满足1)1(32=-++x x x 的所有x 的个数有 个.例3. 已知3n-2m 8,28,38求==nm的值.例4. 若223283566y y x y x nm=÷,求n m ,的值. 例5. 化简).21(})()]()()2(5{[3224a a a a a a -÷-÷-⋅---若2=a ,求这个代数式的值. 例6. 已知,0132=+-x x 求221xx +的值.6.观察例题,然后回答: 例:31=+x x ,则221xx += .解:由31=+x x ,得9)1(2=+x x ,即92122=++xx所以:729122=-=+xx通过你的观察,请你来计算:当31-=+x x 时,那么221xx += ;当51=-x x时,那么221xx += ; 通过计算、观察、归纳,用字母写出能反映这种规律的一般结论是:当a x x =±1时,那么221xx +=巩固练习:填空题.1. 在代数式4,3xa ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 ..3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n--⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=--7.-+2)23(y x =2)23(y x -.8. ( )-(5x 2+4x -1)=6x 2-8x +2.9.计算:31131313122⨯--= .10.计算:02397)21(6425.0⨯-⨯⨯-= .11.若84,32==n m,则1232-+n m = .12.若10,8==-xy y x ,则22y x += .13.若22)(14n x m x x+=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a ,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 . 16. 若 b 、a 互为倒数,则 20042003b a ⨯= .计算题.(1)25223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- (2))2(3)121()614121(22332mn n m mn mn n m n m +--÷+--(3))21)(12(y x y x --++ (4)22)2()2)(2(2)2(-+-+-+x x x x(5)24422222)2()2()4()2(y x y x y x y x ---++四.解答题. 已知将32()(34)xmx n x x ++-+乘开的结果不含3x 和2x 项.(1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求22()()m n m mn n +-+的值.五.解方程:(3x+2)(x -1)=3(x -1)(x+1).六.求值题:1..已知a -b=2,b -c=-3,c -d=5,求代数式(a -c)(b -d)÷(a-d)的值.2.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++-课后练习:用简便方法计算:(1)7655.0469.27655.02345.122⨯++ (2)9999×10001-100002化简求值:(1)4(x 2+y )(x 2-y )-(2x 2-y )2 , 其中 x=2, y=-5(2)已知:2x -y =2, 求:〔(x 2+y 2)-(x -y )2+2y (x -y )〕÷4y4.已知:a (a -1)-(a 2-b )= -5 求: 代数式 2b a 22 -ab 的值.5.已知: a 2+b 2-2a +6b +10 = 0, 求:a 2005-b1的值.。

整式乘除知识点

整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。

下面就让我们一起来深入了解整式乘除的相关知识点。

一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。

例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。

整式的除法法则

整式的除法法则整式的除法法则是指在代数学中,对两个整式进行除法运算的规则。

整式的除法法则是代数学中的基本概念,它是解决代数问题的重要工具。

本文将介绍整式的除法法则的基本概念、步骤和相关例题。

一、整式的基本概念在代数学中,整式是由数字、变量和它们的乘积与幂的和构成的式子。

例如,3x^2+2xy-5是一个整式。

整式的除法是指对两个整式进行除法运算,得到商式和余式的过程。

在整式的除法中,被除式和除数都是整式,它们的系数可以是实数,也可以是复数。

二、整式的除法法则整式的除法包括长除法和短除法两种方法。

下面分别介绍这两种方法的具体步骤。

1. 长除法长除法是一种逐步相除的方法,适用于任意整式的除法运算。

其具体步骤如下:(1)将被除式和除数按照同类项排列。

(2)将被除式的最高次项与除数的最高次项相除,得到商式的最高次项。

(3)用商式的最高次项乘以除数,得到一个中间结果。

(4)将中间结果减去被除式,得到一个新的多项式。

(5)重复步骤(2)~(4),直到无法再相除为止,得到最终的商式和余式。

2. 短除法短除法是一种简化的除法方法,适用于除数为一次式的情况。

其具体步骤如下:(1)将被除式和除数按照同类项排列。

(2)用被除式的首项除以除数的首项,得到商式的首项。

(3)用商式的首项乘以除数,得到一个中间结果。

(4)将中间结果减去被除式,得到一个新的多项式。

(5)重复步骤(2)~(4),直到无法再相除为止,得到最终的商式和余式。

三、相关例题下面通过一些例题来演示整式的除法法则的具体应用。

例题1:计算多项式(3x^3-5x^2+2x-1)÷(x-2)。

解:按照长除法的步骤进行计算,首先将被除式和除数按照同类项排列:3x^3-5x^2+2x-1÷ x-2然后将被除式的最高次项与除数的最高次项相除,得到商式的最高次项3x^2。

用3x^2乘以除数x-2,得到一个中间结果3x^3-6x^2。

将中间结果减去被除式,得到一个新的多项式x^2+2x-1。

初二数学整式的除法知识点总结

初二数学整式的除法知识点总结①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

希翼同学们认真学习上面的知识点,相信老师对整式的除法知识点的总结一定能很好的匡助同学们的学习的。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希翼同学们很好的掌握下面的.内容。

水平的数轴称为 x 轴或者横轴,竖直的数轴称为 y 轴或者纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④ 原点重合①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;普通情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希翼同学们都能考试成功。

《农田里的数学除数是两位数的除法》四年级数学上册教学反思今天我讲了:除数是两位数的除法,感觉教学效果不太好,反思教学过程,感悟颇多。

早就听有经验的老师说过,这堂课不太好上,学生们接受的要慢一些,今天看来确实有一定的难度,本来教学设计就有点生硬、过程无趣,学生迟迟找不到感觉和好的方法,惟独一步一步慢慢引导。

除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的.书写位置,除的顺序及试商的方法,匡助学生解决笔算的算理;难点就是试商。

课上我先让学生回顾除数是一位数除法的计算过程,孩子们能够说出要先从最高位开始除起,最高位不够除,就要看前两位,除到哪一位就把商写在哪一位。

在学习除数是两位数的除法的笔算时,学生已经有了口算的基础,在试商时,学生按老师要求先把想的内容写下来,例如: 24560=?想: 604=240,240 最接近 245,所以商试 4。

初中数学 整式的除法规则是什么

初中数学整式的除法规则是什么整式的除法规则是指在代数中,将一个整式除以另一个整式的运算规则。

下面是对整式的除法规则的详细解释:1. 除法的定义:对于两个整式f(x) 和g(x),其中g(x) ≠ 0,我们可以定义它们的除法为q(x) 与r(x) 的形式,满足f(x) = g(x) * q(x) + r(x),其中q(x) 是商式,r(x) 是余式,且r(x) 的次数小于g(x) 的次数。

2. 短除法:短除法是一种用来简化整式除法的方法。

它适用于除式为一元一次式的情况。

具体步骤如下:a) 将除式和被除式按照次数从高到低排列。

b) 将被除式的最高次项除以除式的最高次项,得到商式的最高次项。

c) 用商式的最高次项乘以除式,然后将结果减去被除式。

d) 重复步骤b) 和c),直到无法继续进行短除。

3. 长除法:长除法是一种适用于任意次数的整式除法的方法。

具体步骤如下:a) 将除式和被除式按照次数从高到低排列。

b) 从被除式的最高次项开始,将除式的最高次项乘以一个适当的多项式,使得乘积的次数与被除式的最高次项一致或稍低。

c) 用乘积减去被除式,得到一个新的多项式。

d) 重复步骤b) 和c),直到无法继续进行长除。

4. 带余除法:带余除法是整式除法中的一种特殊情况,其中被除式的次数小于等于除式的次数。

具体步骤如下:a) 将除式和被除式按照次数从高到低排列。

b) 将除式的最高次项乘以一个适当的多项式,使得乘积的次数与被除式的最高次项一致或稍低。

c) 用乘积减去被除式,得到一个新的多项式。

d) 当新的多项式的次数小于除式的次数时,此时的新多项式为余式。

以上是整式除法的基本规则和方法。

通过短除法、长除法和带余除法,我们可以将整式除法问题简化,从而更方便地进行计算和求解。

在实际应用中,整式的除法规则经常被用于解决方程、简化表达式等问题。

希望以上内容能够对你的学习有所帮助。

求整式的除法公式

求整式的除法公式整式的除法公式是指两个整式相除所得的结果的表达式。

在整式的除法中,被除数除以除数所得的商及余数叫做整式的商和余数。

设有两个整式 f(x) 和 g(x),其中g(x) ≠ 0。

若存在整式 q(x) 和 r(x),使得 f(x) = g(x)·q(x) + r(x),且 r(x) = 0 或 r(x) 的次数小于 g(x) 的次数,则可以说 f(x) 可以被 g(x) 整除。

其中,整式 f(x) 是被除数,g(x) 是除数,q(x) 是商,r(x)是余数。

例如,有整式 f(x) = 2x³ - 3x² + 5x + 4 和 g(x) = x² - 2x + 3,现在求f(x) 除以 g(x) 的商和余数。

首先,我们比较 g(x) 的最高次项 x²和 f(x) 的最高次项 2x³,可以得知商 q(x) 的最高次数应为 2x³ / x² = 2x。

所以我们可以将 q(x) 的表达式设为 q(x) = 2x。

然后,我们将 g(x) 和 2x 相乘,得到 2x·(x² - 2x + 3) = 2x³ - 4x² + 6x。

接下来,我们将 f(x) 减去这个结果,得到 f(x) - 2x³ + 4x² - 6x = (-7x² +11x + 4)。

此时,我们需要再次比较 g(x) 和 (-7x² + 11x + 4) 中的最高次项,即g(x) 的最高次项 x²和 (-7x² + 11x + 4) 的最高次项 -7x²。

可以得知商 q(x) 的次数应为 -7x² / x² = -7。

将 q(x) 更新为 q(x) = 2x - 7,并将 g(x) 与 q(x) 相乘得到 (2x - 7)·(x² - 2x + 3) = 2x³ - 11x² + 20x - 21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
不改变分式的值,把下列各式的分子 与分母中各项的系数都化为整数:
2 x y 3 1 x 2y 2
0.03a 0.5b 0.7a b
当系数是分数时:分子、分母同乘系数 分母的最小公倍数; 当系数是小数时:一般情况下,分子、 分母同乘10的倍数。
不改变分式的值,使下列分式的分 子与分母都不含“ ”号
22
后约去;若分子、分母是多项式时,先 “准备”,然后因式分解,再约分
约分(一)
2x y x 2 2 4x y 2y
3
a 6a 9 a 3 2 a3 a 3
2
约分(二)-选做
yx 1 2 2 x y x y
1. 分式的分子与分母都乘以(或除以)同一个不等于 零的整式,分式的值不变 2. 把一个分式的分子分母的公因式约去, 叫做分 式的约分.
7.1.2 作业本 7.1.2 书上作业题写在通用本上交 预习 7.2
ab 1.若将分式 ab
A.扩大到原来的2倍 1

B.缩小为原来的 2 C.不变 1 D.缩小为原来的
2 x 3xy 2 y 1 1 2.已知 的值 5 ,求 x y x 2 xy y
1 a m am
(a 0)
1 1 2 2 4 4 2 8
尝试归纳得到 分式基本性质
a 1 1 1 a 1 m (a 1)m (a 1)m m
(a 1)
分数的分子与分母都乘以(或除以) 同一个不等于零的数,分数的大小不变
重要的数学思维方法
类比,归纳得到分式的基本性质 分式的分子与分母都乘以(或除以) 同一个不等于零的整式,分式的值不变
2
2
2
2
当分子或分母是多项式时:先按同一字母 次数递减排列,然后,若第一项为负,则 多项式添带负号的括号,最后把分子或分 母的符号化去。
约分
分子、分母系数的最大公约数和分子、 分母中相同因式的最低次幂
2 3
2
2 a 4 a 4 6a b c 2a b 3b c 3b c 2 2 3 2a b 7 aa 4 7a 14a b 2 2 a2 a 4a 4 (a 2) 先找出公因式 约去公因式 2 a2 (a把一个分式的分子与分母的 4) (a 2)(a 2) 公 若分子、分母是单项式:先找出公因式, 因式约去,叫做分式的约分
a b 2 3
分子的 负号 分母的 负号
a b 2 3
分式本身 的负号
a b 2 3
不改变分式的值,把下列各式的分子 与分母中最高次项的系数都化为正数:
3x x x 3x ( x 3x) x 3x x2 x 2 x 2 ( x 2)
1. 两个整式相除,且除式中含有字母的代数式叫 做 分式。
2. 分式中字母的取值不能使分母为零。当分母的 值 为零时,分式就没有意义。
3. 当分子等于零,分母不等于零时,分式的值是零。
观察以下式子的变形
类比 分数的基本性质
1 2 m 2m
2 1 2m m
a 1 am m
4 44 1 16 16 4 4
相关文档
最新文档