数值建模与仿真-光伏电池

合集下载

光伏发电系统建模及其仿真(毕业设计论文)

光伏发电系统建模及其仿真(毕业设计论文)

本科生毕业设计说明书(设计论文)题目:光伏发电系统建模及其仿真光伏发电系统建模及其仿真摘要伴随着能源危机和环境问题的不断加剧,清洁能源的发展进程被大大的推进了。

太阳能作为一种新能源以其没有污染,安全又可靠,能量随处可以得到等优点越来越受到人们的青睐。

无论从近期还是远期,无论从能源环境的角度还是从边远地区和特殊应用领域需求的角度考虑,太阳能发电都极具有吸引力。

那么对光伏发电系统的研究则就变得既有价值又有意义。

通过对光伏发电系统的理论研究学习,建立了完整的光伏发电系统体系,本文深入的研究了光伏电池在不同光照强度、不同温度下的电压、功率输出特性。

本文的研究重点是光伏发电系统的控制技术,以及在MATLAB/SIMULINK 仿真环境下的仿真结果。

讨论了多种最大功率点跟踪方法;且分别讨论学习了在光伏并网和独立发电系统情况下的逆变器和MPPT的控制,并建立了仿真模型,提出了相应的控制策略。

且在最后论述了孤岛效应的产生和反孤岛策略,用电压频率检测法完成了孤岛检测与保护。

关键词:光伏电池,逆变器,最大功率点跟踪,孤岛效应,MATLAB仿真AbstractWith the growing energy crisis and environmental problems, clean energy is greatly promote the development process. Solar energy as a new kind of energy for its no pollution, safe and reliable, widely available energy advantages, such as more and more get the favor of people. No matter from the near future or long-dated and, no matter from the Angle of energy and environment, or from remote areas and special applications demand point of view, solar power generation is extremely attractive. So the study of photovoltaic power generation system has become both a rewarding and meaningful.Through the study of theoretical research of photovoltaic power generation system, established a complete system of photovoltaic power generation system, this paper in-depth study the photovoltaic cells under different illumination intensity, temperature, voltage, power output characteristics.In this paper, the research emphasis is the control technology of photovoltaic power generation system, and the simulation results in MATLAB/SIMULINK environment. Discussed a variety of maximum powerpoint tracking methods; And, respectively, to discuss the study under the condition of independent power generation and photovoltaic (pv) grid system of the inverter with MPPT control, and established the simulation model, put forward the corresponding control strategy. And islanding is discussed at the end of the production and the reverse island strategy, using frequency voltage tests completed island detection and protection.Keywords: photovoltaic batteries, inverter, maximum power point tracking, islanding, the MATLAB simulation目录摘要 (I)Abstract (II)第一章绪论 (2)1.1新能源发电的背景和意义 (2)1.2光伏产业的现状和前景 (2)1.2.1太阳能光伏发电的发展现状 (2)1.2.2光伏发电产业的前景 (2)1.3本文设计容 (2)第二章光伏发电系统概述 (2)2.1光伏发电系统的基本工作原理 (2)2.2光伏发电系统的组成 (2)2.3光伏发电系统的分类 (2)2.3.1太阳能独立光伏发电系统 (2)2.3.2 并网光伏发电系统 (2)2.3.3互补型光伏发电系统 (2)第三章光伏发电系统建模及其仿真 (2)3.1光伏电池阵列的建模 (2)3.1.1 光伏电池阵列的数学模型 (2)3.1.2 光强和温度对光伏电池输出结果的影响 (2)3.1.3太光照强度模型 (2)3.2光伏发电系统的主电路模型 (2)3.2.1光伏并网发电系统的主电路模型 (2)3.2.2离网型光伏发电系统的主电路的模型 (2)第四章光伏发电系统的控制技术 (2)4.1光伏发电MPPT技术 (2)4.2电导增量法 (2)4.2.1电导增量法的原理 (2)4.2.2电导增量法改进 (2)4.3 最大功率控制技术仿真 (2)4.4光伏并网发电系统的控制 (2)4.4.1并网逆变器控制 (2)4.4.2 电流环的分析建模 (2)4.4.3锁相环的原理分析 (2)4.5离网光伏发电系统的控制 (2)4.5.1 光伏充电控制分析 (2)4.5.2独立光伏发电系统的逆变器控制技术 (2)第五章光伏并网系统中的孤岛效应 (2)5.1孤岛效应的分析和危害 (2)5.2 孤岛效应的检测 (2)5.2.1孤岛检测标准 (2)5.2.2孤岛检测方法 (2)结论 (2)展望 (2)参考文献 (2)致 (2)第一章绪论1.1新能源发电的背景和意义能源一直是人类社会生存和发展的动力和源泉。

太阳能光伏发电系统的建模与仿真

太阳能光伏发电系统的建模与仿真

太阳能光伏发电系统的建模与仿真随着全球环境保护意识不断增强,可再生能源的开发和应用变得越来越重要。

光伏发电作为一种利用太阳能直接转化为电能的方式,自然也备受关注。

在建设光伏发电场之前,我们可以使用建模与仿真技术,来帮助我们设计和优化光伏发电系统。

本文将会探讨太阳能光伏发电系统的建模与仿真方法。

一、建模方法建模是建立光伏发电系统物理模型的过程。

通过物理模型,我们可以了解系统内部的运作原理,优化系统的结构和技术参数以提高光伏发电效率。

在建模的过程中,可以采用两种方法:自顶向下和自下向上。

1.1 自顶向下自顶向下的建模法是由顶层向底层逐步分解,形成一整个系统的过程。

这种方法首先从整个光伏发电系统的总体设计出发,接着将系统分成不同的模块,最后分解到每个模块的细节设计。

在自顶向下的建模中,主要包括以下步骤:1) 确定建模目标和范围;2) 建立系统层次结构,确定系统的模块划分;3) 定义每个模块的详细参数,建立物理模型;4) 分析系统的总体性能,进行优化。

1.2 自下向上自下向上的建模法是由底层向顶层逐步合并,形成一整个系统的过程。

这种方法首先从每个部件的设计出发,接着将每个部件合并到模块,最后合并到整个系统。

在自下向上的建模中,主要包括以下步骤:1) 确定每个部件的设计参数;2) 将每个部件的设计合并到对应的模块中;3) 将所有模块合并,建立完整的系统模型;4) 分析系统的总体性能,进行优化。

二、仿真方法仿真是利用计算机模拟物理过程的一种方法。

通过仿真,我们可以模拟光伏发电系统在不同条件下的运行状态,优化光伏组件和逆变器的参数,评估发电量和电网接口的稳定性。

2.1 光伏组件的仿真光伏组件是光伏发电系统的核心部件。

在光伏组件的设计和仿真中,主要考虑以下因素:1) 光照强度和角度对光伏输出电能的影响;2) 温度对光伏输出电能的影响;3) 光伏单元的组合方式和布局对系统性能的影响。

对于光伏组件的仿真,可以采用软件模拟和硬件实验相结合的方式。

光伏电站仿真建模实施方案

光伏电站仿真建模实施方案

光伏电站仿真建模实施方案光伏电站仿真建模是一种重要的工具,可以帮助电站设计者、运营商和决策者更好地理解光伏电站的性能、优化系统配置,提高光伏电站的效益和可靠性。

本文提出了一种光伏电站仿真建模的实施方案,以帮助读者了解如何进行光伏电站仿真建模。

第一步:收集数据在开始光伏电站仿真建模之前,首先需要收集光伏电站运行所需的数据。

这些数据包括电站的设计参数、光照情况、天气情况、电网连接情况等。

其中,光照和天气数据可以通过气象观测站或气象预报网站获取,电网连接情况可以通过电网接入点的参数获得。

第二步:建立光伏电站模型建立光伏电站的仿真模型是光伏电站仿真建模的核心环节。

根据收集到的数据,可以建立包括光伏组件、逆变器、电站参数等在内的光伏电站的运行模型。

在建立模型时,需要考虑光伏组件的光电特性、电站的布局和组串方式等因素,以准确反映光伏电站的运行情况。

第三步:确定仿真参数和目标在进行光伏电站仿真建模之前,需要明确仿真的目标和参数。

目标可以是评估电站的发电性能、优化组串方式和逆变器配置、分析系统可靠性等。

参数可以包括光照、温度、逆变器效率、组件损耗等。

第四步:选择仿真软件选择适合的仿真软件是光伏电站仿真建模的关键一步。

市场上有许多光伏电站仿真软件可供选择,如PVsyst、SAM 等。

根据实际需求和预算,选择一个功能全面、易于操作的软件进行光伏电站仿真建模。

第五步:进行仿真分析根据收集的数据、建立的模型、确定的目标和参数,利用选定的仿真软件进行光伏电站的仿真分析。

根据仿真结果,可以评估电站的发电量、系统效率、组件损耗等指标,优化电站配置和运行策略。

第六步:结果分析和优化完成仿真分析后,需要对结果进行分析和优化。

分析可以基于仿真结果,评估光伏电站的性能是否满足需求,找出问题并提出解决方案。

优化可以针对光伏电站的设计参数、组串方式、逆变器配置等,以提高光伏电站的发电效益和可靠性。

第七步:验证与验证完成光伏电站仿真建模后,需要对仿真结果进行验证与验证。

太阳能光伏电池全过程仿真模型研究

太阳能光伏电池全过程仿真模型研究

太阳能光伏电池全过程仿真模型研究太阳能光伏电池是一种基于光电效应转化太阳能为电能的装置。

由于其环保、经济、安全、长寿命等特点,近年来得到了广泛的研究和应用。

而在研究和应用中,仿真模型则是一项重要的工作。

一、太阳能光伏电池的基本原理太阳能光伏电池基于半导体PN结构,由P型半导体和N型半导体相接,在两者交界处形成一个电场。

当太阳光照射在P-N结的界面上时,被吸收的光子能量将释放出电子和空穴,导致电子和空穴在P-N结的界面处发生迁移,并形成电动势。

这个电动势将产生电流,从而将太阳能转化为直流电能。

二、太阳能光伏电池的仿真模型太阳能光伏电池的仿真模型可以分为两个部分:光伏发电模型和电路模型。

1. 光伏发电模型光伏发电模型描述了太阳能光伏电池的输出特性。

该模型涉及到光伏电池的输入参数(太阳辐射和温度)以及材料参数(短路电流、开路电压、填充因子等)。

在光伏发电模型中,太阳辐射可以用标准太阳辐射光谱模型(AM1.5G)来模拟。

同时,由于温度对光伏电池性能的影响,需要考虑温度对太阳能光伏电池的电子迁移率和扩散率的影响。

在材料参数方面,短路电流、开路电压和填充因子是光伏电池的主要性能参数,它们与光伏电池的材料和制造工艺有关。

在建立光伏发电模型时,需要结合实际测试数据及公式进行参数的确定。

2. 电路模型电路模型是太阳能光伏电池输出电能的转换和控制过程的模型。

该模型通常由直流-直流变换器(或DC/AC变换器)和电池电压/电流测量电路组成。

直流-直流变换器将光伏电池的输出转化为适宜的直流电压,并保证输出电流符合负载电流需求。

在电路模型建立中,需要考虑典型负载和变换器的响应特性,并配合控制策略,实现太阳能光伏电池输出电能的最大匹配、最大跟踪与充电/放电控制等功能。

三、太阳能光伏电池的仿真模拟分析太阳能光伏电池的仿真模拟分析是利用计算机进行电路仿真和模拟的过程。

通过模拟太阳能光伏电池在不同条件下的电力输出,可以得到太阳能光伏电池的电性能特性曲线、效率、最大功率点、功率图、电压图等信息。

太阳能光伏发电系统建模与仿真

太阳能光伏发电系统建模与仿真

太阳能光伏发电系统建模与仿真随着人们对环保意识的不断加强,太阳能光伏发电系统的需求量在逐渐增加。

为了更好地了解该系统的工作原理和性能,建模与仿真成为了必要的研究手段。

一、太阳能光伏发电系统的工作原理太阳能光伏发电系统主要由光伏电池、光伏逆变器和电网组成。

光伏电池是将太阳能转化成电能的核心部分,它是由多个电池片组成的,每个电池片都是由两层硅晶体和P-N结构组成的。

当光照射到光伏电池上时,电池片中的P-N结构会通过光生电效应形成电子-空穴对,进而产生电压和电流。

然后这些电能会通过光伏逆变器转换为与电网相适应的直流电或交流电。

二、太阳能光伏发电系统的建模为了了解太阳能光伏发电系统的工作状态,必须对其进行建模。

在建模时,需要将光伏电池、逆变器及电网等部分分别进行建模,且分别建立相应的模型。

光伏电池是太阳能光伏发电系统的核心,因此需要着重研究其模型。

理想情况下,光伏电池可以被建模为一个单一的电流源,其效应等同于一个弱光源或一个电阻。

常见的光伏电池模型有单二极管、单指数电阻和多指数电阻模型等。

而光伏逆变器则可以使用各种电子元器件和电路组件组成,如电感、电容和开关管等。

三、太阳能光伏发电系统的仿真与建模相比,仿真更为复杂。

在仿真中,需要模拟不同的实际工况,如天气条件的变化、电池温度的变化等。

常见的仿真软件有PSpice、MATLAB等。

在仿真时,需要根据实际情况确定相应的输入参数,如光伏辐照度、空气质量等,然后根据所建模型及输入参数进行仿真计算。

在完成仿真后,可以对仿真结果进行分析,评估系统的性能指标以及各种因素对系统性能的影响。

仿真还可以帮助优化系统的设计,确定逆变器的控制策略等。

四、太阳能光伏发电系统的应用前景太阳能光伏发电系统已经广泛应用于很多领域,如居民住宅、商业、工业等。

在居民住宅中,太阳能光伏发电系统可以为家庭供电,实现自给自足;在商业领域中,太阳能光伏发电系统可以降低企业的用电成本,提高企业的经济效益;在工业领域中,太阳能光伏发电系统可以帮助企业减少能源消耗和排放,提高企业的生产效率。

太阳能光伏电池的建模与仿真

太阳能光伏电池的建模与仿真
参考文献
[1] 车孝轩. 太阳能光伏系统概论[M]. 武汉大学出版社,2000. [2] 李安定. 太阳能光伏发电系统工程[M]. 2001. [3] Bimal K. Bose. Energy,Environment,and Advances in Power,IEEE [J]. Trans. Power Electron,2000( 15) ; 688 - 701. [4] R. C. Dugan and T. E. McDermot,t “Distributed generation,”IEEE Ind[J]. Appl. Mag. ,vol. 8,no. 2,pp. 19 - 25,Mar. / Apr. 2002. [5] 王长贵,黄路影. 家用太阳能光伏电源系统[J]. 太阳能,2002,2: 3 - 5. [6] 崔容强,喜文华,魏一康,等. 太阳能光伏发电[J]. 太阳能,2004 ( 4) : 72 - 76. [7] 刘树,刘建政,赵争鸣. 太阳能发电并网系统的仿真分析[J]. 电力 电子,2003: 1 - 2. [8] 张金波,康云龙. 可再生能源并网发电仿真[J]. 电工技术杂志, 2004( 11) . [9] 吴海涛,孔娟,夏东伟. 基于 MATLAB / SIMULINK 的光伏电池建模 与仿真[J]. 青岛大学学报,2006,21( 4) .
日照强度的大小直接影响太阳能光伏电池输出电 能的多少。日照强度越强,光伏电池的输出功率就越 大; 反之,输出功率就越小。由于光生电流 Iph 受日照 强度影响比较大,而且与日照强度成正比例关系。因 此,我们可以改变 Iph值来等效地模拟不同日照强度下 光伏电池的输出特性曲线及输出功率曲线。
仿真 参 数 设 为 I0 = 0. 0008A,T = 300K,Rsh = 10kΩ,Rs = 0. 01Ω。对 Iph 赋予不同的数值进行仿真, Iph分别选取 0. 2、0. 5 和 1,得到一组输出电流、电压、 功率值,利用 MATLAB 仿真出如图 5、图 6 所示的光伏 电池的输出特性曲线和输出功率曲线。

光伏电池实用仿真模型及光伏发电系统仿真

光伏电池实用仿真模型及光伏发电系统仿真
光伏电池实用仿真模型及光伏 发电系统仿真
目录
01 一、光伏电池实用仿 真模型的基本原理和 设计流程
二、不同类型光伏电
02 池组件的性能和优缺 点
03
三、仿真软件的应用 和发展趋势
04 四、总结
05 参考内容
随着人们对可再生能源的重视和光伏技术的不断发展,光伏电池实用仿真模 型及光伏发电系统仿真的研究变得越来越重要。本次演示将探讨光伏电池实用仿 真模型的基本原理和设计流程,并对比分析不同类型光伏电池组件的性能和优缺 点,最后展望未来光伏电池技术的发展前景。
三、仿真软件的应用和发展趋势
仿真软件在光伏电池实用仿真模型中发挥着重要作用,通过仿真软件可以对 光伏电池组件的性能进行模拟和分析,进而为整个光伏发电系统的设计和优化提 供有力支持。目前,市面上有很多成熟的仿真软件可供选择,例如MATLAB、 Simulink、TracePro等。这些软件都具有一定的优点和局限性,需要根据具体需 求进行选择。
仿真模型
在MatlabSimulink中,可以建立光伏电池的仿真模型以进一步研究其性能。 模型包括电路连接、模拟光照条件、设置定时事件等。通过调整模型中的参数, 可以仿真分析光伏电池在不同条件下的输出电压和电流。
实验结果与分析
通过实验验证了仿真模型的正确性和可行性。实验结果表明,光伏电池的输 出性能受到光照强度、温度等参数的影响较大。在相同条件下,短路电流密度 Jsc随着光照强度的增加而增加,开路电压Voc随着温度的升高而降低。这些结果 与仿真结果相一致,进一步验证了仿真模型的可靠性。
参考内容
随着可再生能源的日益重视和广泛应用,太阳能光伏发电技术在电力系统中 的地位也日益重要。其中,太阳能光伏发电并网系统的建模和仿真对于优化系统 性能,确保稳定运行具有关键的作用。

光伏电池模型及其仿真实现

光伏电池模型及其仿真实现

光伏电池模型及其仿真实现摘要:能源领域中的新能源产业一度崛起并得到了高速的发展,而光伏是清洁能源的重压组成部分之一。

本文从数学角度分析研究了光伏电池模型的机理,将其分成光电电流模块、饱和电流模块、反向饱和电流模块、分流电流模块、输出电流模块五大模块,在数学模型的基础上,基于matlab的simulink对光伏电池模型进行仿真实现,根据输出电压电流以及功率图像分析,该电池模型具有良好的拟合度,与工程实际的太阳能电池输出一致,模型为研究光伏发电功的相关仿真实验提供了平台支持。

关键字:光伏电池;模型;仿真;拟合度引言光伏系统在可再生能源发电系统中是最成熟的技术之一,具有电力可扩展,安装简单,维护量少和模块化等优点。

美洲、日本和德国较早的光伏产业发展一直走在世界前列,而中国的光伏产业近年来发展迅速,“十四五”发展计划以来,中国光伏产业得到了迅猛的发展[1-2],已占据了世界光伏电池产量的一半,太阳能资源由于其取之不尽,用之不竭的特点已经被世界各国所开发利用。

影响其发展的主要因素是国家的能源发展战略以及总体的发电系统运行投入成本。

从经济性的角度来看,太阳能资源获得容易,发电成本较低,在未来的很长时间里都可以作为新能源并网发电工程中的中坚力量[3]。

随着技术的进步,太阳能光伏未来很有可能成为人类的主流能源利用形式,因此光伏发电作为太阳能的利用方式成为人类必须要研究的课题[4]。

本文对光伏发电原理进行了探究分析,在matlab中搭建了光伏电池的仿真模型,得到了模型的输出曲线。

用matlab编程对光伏发电功率进行了预测,经探究,光伏发电功率与太阳辐射强度、大气温度、大气湿度有关,本文根据在西藏林芝地区采集的数据,设计了一个太阳能光伏发电功率的预测系统,在已知太阳辐射、大气温度、大气湿度的情况下,可以预测光伏系统的发电功率。

1.光伏电池模型光伏电池作为光伏阵列的最小组成单元,是一种利用半导体“光生伏打”效应将光能直接转化为电能的新型能量转换器[5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开发新能源和可再生清洁能源是21世纪世界经济发展中最具有决定性影响的五项技术领域之一。

充分开发利用太阳能是世界各国政府可持续发展的能源战略决策,其中太阳能发电则最受瞩目。

由于目前光伏电池板转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文对光伏发电进行最大功率跟踪显得尤为必要。

本文针对如何提高太阳能光伏发电系统的转换效率,分别从工程数学模型、matlab建模仿真方面对外界环境影响因素就行分析,同时对具有最大功率点跟踪(MPPT)的控制器的原理进行了研究,并分析比较各测量方法的优缺点。

Keywords: 太阳能发电;转换效率;MPPT;matlab建模仿真AbstractThe development of new energy and renewable clean energy is oneof the five technologies have the most decisive influence in the development of the world economy in twenty-first Century. The full development and utilization of solar energy is the energy strategyof the governments of the world sustainable development, where thesolar power generation is the most popular. Due to the current solar photovoltaic conversion efficiency is low, in order to reduce thecost of system and the effective use of solar energy, the pho-tovoltaic maximum power point tracking is particularly necessary.This article base on how to improve the conversion efficiencyof solar photovoltaic power generation system, from the aspects of MATLAB modeling and simulation calculation of measurement results世界的节约能源概念普遍下,光伏电池绿色科技已是目前的产业新星。

而这波绿色科技潮流,又首推太阳能最为行情看涨,有可能成为全球红透半边天的明日之星。

面对国际油价不断飙高,第三次石油危机即将到来的危机,一股全世界重新洗牌的能源卡位战,已经响起咚咚战鼓,蓄势待发了。

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。

总之,随着世界能源短缺和环境污染问题的日益严重,能源和环境成为二十一世纪人类所面临的重大基本问题,清洁的可再生能源的发展和应用越来越受到世界各国的广泛关注。

近二、三十年来,太阳能光伏(Photovoltaic,PV)发电技术得到了持续的发展,光伏发电已经成为利用太阳能的主要方式之一。

开展太阳能光伏发电系统的研究,对于缓解能源和环境问题,开拓广阔的光伏发电市场和掌握相关领域的先进技术,具有重大的理论和现实意义。

摘要 (1)Abstract (1)Key Words (1)前言 (2)第1章概述 (3)1.1 光伏产业的发展现状 (3)1.1.1 国外光伏产业发展现状 (3)1.1.3 国内光伏产业发展现状 (1)1.2 本课题主要研究内容和意义 (4)第2章光伏电池原理及其模型的建立 (5)2.1 光伏电池的工作原理 (5)2.2 光伏电池等效电路 (5)2.3 光伏电池的特性 (7)2.4 光伏电池模型的建立 (8)2.3.1 工程用光伏电池的数学模型 (8)2.3.2 光伏电池的matlab模型 (9)第3章 MPPT控制器 (14)3.1 开路电压法算法的具体模型 (14)3.1.1 开路电压法算法的具体模型 (15)3.1.2 扰动观察法算法的具体模型 (16)3.1.3 恒压控制法算法的具体模型 (17)3.2 波形比较 (18)3.3 各种方法的优缺点 (20)结论参考文献第1章概述1.1 光伏产业的发展现状1.1.1 国外光伏产业发展现状1973年的石油危机和20世纪90年代的环境污染问题大大促进了太阳能光伏发电的发展。

随着人们对能源和环境问题认识的不断提高,光伏发电越来越受到各国政府的重视,科研投入不断加大,鼓励和支持光伏产业发展的政策也不断出台。

以1997年美国总统克林顿的“百万太阳能光伏屋顶计划”为标志,日本还有欧洲的德国、丹麦、意大利、英国、西班牙等国也纷纷开始制定本国的可再生能源法案,刺激了光伏产业的高速发展。

专家预测到2030年,光伏发电将占世界发电总量的50%,所以,大力发展太阳电池产业是一件有利于降低环境污染并造福人类的伟大事业,太阳电池也必将成为人类未来能源的希望之星。

1.1.2 国内光伏产业发展现状我国于1958年开始太阳能电池的研究,1959年研制成功第一个又实用价值的太阳电池,1971年首次成功应用于东方红二号卫星上,于1973年开始用于地面。

在1973~1987年短短的几年内,先后从美国,加拿大等国引进了7条太阳电池生产线,使我国太阳电池生产能力从1984年以前的200kW跃到1988年的4.5MW。

自2002年起我国太阳电池制造业高速发展,年均增长率达180%。

据不完全统计,全国光伏产品生产企业逾500家。

2006年我国光伏电池的产量369.5MW,同比增长145.0%,产量超过美国居全球第三位,占全球产量的14.8%。

全国光伏企业500多家中,已在海外上市企业有10家,但产能在5MW以上的企业仅20多家,多数企业规模小、技术水平低,尚未达到经济规模,造成资源严重浪费和无序竞争。

太阳能电池制造业的迅猛发展,使国内硅材料严重短缺,多晶硅供不应求,所需多晶硅90%以上需要进口。

1.2 本课题主要研究内容和意义1.2.1研究内容(1)建立了太阳能光伏电池的工程数学模型,并以此为基础设计一种采用多段直线和二次曲线模拟光伏电池I-V曲线的算法,该算法简化函数方程,使其满足DSP计算的要求,同时也保证了较高的模拟精度,减小了系统误差。

(2)建立光伏电池matlab数值模型,理解光伏阵列的输出特性,了解影响光伏电池输出特性的各个环境因素。

1.2.2研究意义通过模拟光伏电池输出的I-V曲线,从而能够代替实际的太阳能光伏电池阵列在室内进行各种光伏实验,并满足易于修改设定的要求的光伏电池模拟器。

使光伏实验不再受到场地、自然气候条件等的影响,降低实验成本,节省实验时间。

建立光伏电池仿真模型,有利于理解光伏阵列的输出特性,了解影响光伏电池输出特性的各个环境因素,并将这些影响因素置入实际使用中,提高光伏电池转换率。

第2章光伏电池原理及其模型的建立2.1 光伏电池的工作原理太阳能光伏电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管。

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。

若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。

这样,太阳的光能就变成了可以使用的电能。

由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。

但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结,以增加入射光的面积。

光生伏打效应原理简图如图2-1图2-1 光生伏打效应原理简图2.2 光伏电池等效电路根据电子学理论,太阳电池的等效电路如图2.2所示。

图2-2 太阳能电池等效电路用公式表示太阳能电池发电状态的电流方程式为:(2-1)(2-2) 式中::光生电流,A;:流过二极管电流,A;:输出电压,V;:输出电流,A;:等效并联负载,Ω;:等效串联负载,Ω;:反向饱和电流,A;:电子电荷();:二极管因子;:玻耳兹曼常数;:绝对温度,K ; 其中的值很大,而的值很小,因此在一般分析中为了简化分析过程可将其忽略。

上式(2-2)是基于物理原理的太阳能电池最基本的解析表达式,已被广泛应用于太阳电池的理论分析中,但由于表达式中的5个参数,包括I L 、I 0、Rs 、R sh 和A,它们不仅与电池温度和日射强度有关,而且确定十分困难,因此不便于工程应用,也不是太阳电池供应商向用户提供的技术参数2.3光伏电池的特性光伏电池的输出特性太阳能电池具有独特的I-V 特性,该特性由太阳能电池材料的物理特性所决定。

太阳能电池组件的I-V 特性强烈地随日射强度S 和较强烈地随电池温度T 而变化,即I = f ( V , S , T) 。

S=1000W/m太阳能电池温度25°c 8006004002001002003004005000.51.01.52.0U/V (A)常温不同日照下I/A 2.0S=1000W/m 50°c25°c0°c 100200300400500600(B)相同日照不同温度下图2-3光伏电池的I-V 特性曲线光伏电池由于其受外界影响因素(温度、光照等) 很多,且其输出具有非线性特性,如图2-1的伏安(电压-电流) 特性。

从特性曲线看,太阳能电池在不同的光照强度下和12不同的环境温度下的伏安特性曲线大致的形状是一样的,也就是说太阳能电池的伏安特性曲线可以划分三个区域,恒流源区、最大功率区以及恒压源区。

2.4 光伏电池仿真模型的建立2.4.1 工程用光伏电池的数学模型根据标准参考条件(标准参考日照强度ref S = 1000W/m2 ,标准参考电池温度s =25 ℃)下光伏电池的数学模型,太阳能电池的I-V方程为:ref(2-3) 在最大功率点处V=Vm,I=Im,可得:(2-4) 由于在常温条件下exp[Vm/(C2V oc)] >>1,可忽略式中的“-1”项,解出C1:(2-5) 在开路状态下,当I=0时,V=Voc,并把(2-5)带入(2-3)得:(2-6) 由于exp(1/C2)>>1,忽略式中的“-1”项,解出C2:(2-7) 本模型只需要输入太阳电池通常的技术参数Isc、Voc、Im、Vm,就可以根据式(2-4)、(2-6)得出C1和C2。

相关文档
最新文档