概率论与数理统计重要定理公式手册
概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
考研概率论与数理统计公式大全

考研概率论与数理统计公式大全1.概率公式:-概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-概率的乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)-全概率公式:P(B)=P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)-贝叶斯公式:P(Ai,B)=P(B,Ai)P(Ai)/(P(B,A1)P(A1)+P(B,A2)P(A2)+...+P(B,An)P(An))2.随机变量与分布:- 期望:E(X) = ∑(xP(X=x))或E(X) = ∫(xf(x)dx)- 方差:Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2- 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]- 标准差:SD(X) = sqrt(Var(X))-二项分布:P(X=k)=C(n,k)p^k(1-p)^(n-k)- 泊松分布:P(X = k) = (lambda^k)e^(-lambda) / k!- 正态分布:P(X = x) = (1 / (sqrt(2*pi)*sigma)) * e^(-(x-mu)^2 / (2*sigma^2))3.估计与检验:-极大似然估计:L(θ)=∏(f(x_i;θ))-似然比检验:λ=L(θ)/L(θ0)- 估计的无偏性:E(θ_hat) = θ- 估计的有效性:Var(θ_hat) ≤ Var(θ)- 中心极限定理:对于均值为μ、方差为σ^2的随机变量X,若样本容量n趋于无穷大,则样本均值X_bar的极限分布服从正态分布4.相关与回归:- 相关系数:r = Cov(X, Y) / (SD(X) * SD(Y))-简单线性回归方程:Y=β0+β1X+ε- 最小二乘估计:β1 = Cov(X, Y) / Var(X)- 线性回归预测:Y_hat = β0 + β1X5.抽样分布:- 样本均值分布:X_bar ~ N(μ, σ^2 / n)- 样本比例分布:p_hat ~ N(p, p(1-p) / n)-卡方分布:X^2~χ^2(k)-t分布:T~t(n)-F分布:F~F(m,n)以上是一些概率论与数理统计中常见的公式,希望对你的学习有所帮助。
概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。
2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。
3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。
4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。
二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。
2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。
3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。
4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。
三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。
大学概率论与数理统计公式全集

大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质P(X 乞b) =F(b) P(a :: X 冬b) = F(b) _ F(a)2、离散型随机变量3、连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布 P i =P(X =X i )二% P(X = xi ,丫二 yj ) = ' pij pj =P( Y=yj )=' P(X 二 X j , 丫二 yj )=' pij j j离散型二维随机变量条件分布P(X =X j ,Y =yj )pij…= P(X =X j Y =y j ),i=1,2jP(丫 =yj )P j P(X=X j ,Y=y j )p j2、 P i j P ji3、x yf(u,v)dvdu4、连续型二维随机变量边缘分布函数与边缘密度函数 边缘分布函数: F x (x) = [「f(u,v)dvdu 边缘密度函数:f x (x)二.-^o a-bof(u,y)du*^0.■bof (x, v)y ■:: F y (y)f (u,v)dudv f Y (y)二 5、二维随机变量的条件分布fYx (yx)二■■■■■y < fxY (xy)二<x ::: ■::x Y四、随机变量的数字特征1、数学期望离散型随机变量:E(X)=.;「X k P k连续型随机变量:E(X)二=xf(x)dx2、数学期望的性质(1)E(C) =C,C为常数E[E(X)] =E(X) E(CX) =CE(X)(2)E(X _Y) =E(X) _E(Y) E(aX _b) =aE(X) _b E(C^X^ ■ C n X n^C1E(X1^ ■ C n E(X n) ⑶ 若GY相互独立则:E(XY) =E(X)E(Y)(4) [E(XY)]2 <E2(X)E2(Y)3、万差:D(x) =E(X2) —E2(x)4、方差的性质(1) D(C) =0 D[D(X)] =0 D(aX _b) =a2D(X) D(X) :::E(X -C)2⑵ D(X _Y)二D(X) • D(Y) _2Cov(X,Y)若 GY相互独立则:D(X _Y)二D(X) • D(Y)5、协方差:Cov(X,Y)二E(X,Y) _E(X)E(Y)若 GY相互独立则:Cov(X,Y)=06、相关系数:认「(X,Y)〜Cov(X,丫)若GY相互独立则:认=0即GY不相关J D(X)阿石7、协方差和相关系数的性质(1)Cov(X,X) =D(X) Cov(X,Y)二Cov(Y, X)(2)Cov(X1 X2,Y) =Cov(X1,Y) Cov(X2,Y) Cov(aX c, bY • d)二abCov(X,Y)&常见数学分布的期望和方差五、大数定律和中心极限定理1、 切比雪夫不等式若 E(X)-」.,D(X)=:;2,对于任意'.0 有 P{X _E(X) _ }空里^2 或 P{X _E(X) ::: }n n2、 大数定律:若X i …X n 相互独立且「时,—、• X i —D r-7 E(X i )ni 4ni二nn(1)若 X i X n 相互独立,E(X i ) =A i , D(X i ) =52且 O i 2兰M 贝y : -Z X i — 1瓦 E(X i ),(n T ©nyny1n⑵若X i …X n 相互独立同分布,且E(X j )=n 则当n 时:―、X, P> Jn y3、 中心极限定理(1) 独立同分布的中心极限定理:均值为 」,方差为C 20的独立同分布时,当n 充分 大时有:n' X k —n ・iY n = ------------------- 二 N(0,1)U n cr(2) 拉普拉斯定理:随机变量n (n =1,2 )~B( n, p)则对任意G 有:xt 2lim P { :n np兰x} = f -j^e 2dt =Q (x) x -°p(1-p) - : .2 二六、数理统计1、总体和样本n _(5) 样本 k 阶中心距:B k =Mk(X i -X)k ,^2,3'nm(1)样本平均值: n n n2X 」、X i (2)样本方差:S 2匚、(X i -X)2L' (X i 2-nx )n-1y n -1(3)样本标准差:,彳 n ns= 1v(X i-X)2(4)样本 k 阶原点距:A k X i k,k=1,2 … ,n -1^(X 1,X 2 X n )的联合分布为 F(X 1,X 2 X n )F (X k )心(3)近似计算:nP(a 乞、X k Eb) =P(生' X k -n 」■k'.nc<^n 1才一门.」:泸- nc、、..总体X 的分布函数F(X)样本 2、统计量(6)次序统计量:设样本(X1,X2…X n)的观察值凶七和,将为,X?…X.按照由小到大的次,记取值为X(i)的样本分量为X(i),则称X(1宀(2)「乞x(n) 序重新排列,得到X(1)乞X(2) <X(n)为样本(X1,X2…X n)的次序统计量。
概率论与数理统计公式大全

概率论与数理统计公式概率公式整理1.随机事件及其概率吸收律:AAB A AA A =∪=∅∪Ω=Ω∪)(A B A A A A A =∪∩∅=∅∩=Ω∩)()(AB A B A B A −==−反演律:B A B A =∪BA AB ∪=∩∪n i i n i iA A 11===∪∩n i i n i i A A 11===2.概率的定义及其计算)(1)(A P A P −=若B A ⊂)()()(A P B P A B P −=−⇒对任意两个事件A ,B ,有)()()(AB P B P A B P −=−加法公式:对任意两个事件A ,B ,有)()()()(AB P B P A P B A P −+=∪)()()(B P A P B A P +≤∪)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P ⋯⋯∪−≤<<≤≤<≤==−+++−=∑∑∑3.条件概率()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=−−n n n n A A A P A A A A P A A P A P A A A P ⋯⋯⋯⋯w w w .k h d a w .c o m 课后答案网全概率公式∑==n i i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P −=≤−≤=≤<5.离散型随机变量(1)0–1分布1,0,)1()(1=−==−k p p k X P k k (2)二项分布),(p n B 若P (A )=pnk p p C k X P k n k k n ,,1,0,)1()(⋯=−==−*Possion 定理0lim >=∞→λn n np 有⋯,2,1,0!)1(lim ==−−−∞→k k e p p C k k n n k n k n n λλ(3)Poisson 分布)(λP ⋯,2,1,0,!)(===−k k e k X P kλλw w w .k h d a w .c o m 课后答案网6.连续型随机变量(1)均匀分布),(b a U ⎪⎩⎪⎨⎧<<−=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧−−=1,,0)(ab a x x F (2)指数分布)(λE ⎪⎩⎪⎨⎧>=−其他,00,)(x e x f x λλ⎩⎨⎧≥−<=−0,10,0)(x e x x F x λ(3)正态分布N (µ,σ2)+∞<<∞−=−−x e x f x 222)(21)(σµσπ∫∞−−−=x t t e x F d 21)(222)(σµσπ*N (0,1)—标准正态分布+∞<<∞−=−x e x x 2221)(πϕ+∞<<∞−=Φ∫∞−−x t e x x t d 21)(22π7.多维随机变量及其分布二维随机变量(X ,Y )的分布函数∫∫∞−∞−=xy dvdu v u f y x F ),(),(w w w .k h d a w .c o m 课后答案网边缘分布函数与边缘密度函数∫∫∞−+∞∞−=xX dvdu v u f x F ),()(∫+∞∞−=dv v x f x f X ),()(∫∫∞−+∞∞−=yY dudv v u f y F ),()(∫+∞∞−=du y u f y f Y ),()(8.连续型二维随机变量(1)区域G 上的均匀分布,U (G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f (2)二维正态分布+∞<<−∞+∞<<∞−×−=⎥⎥⎦⎤⎢⎢⎣⎡−+−−−−−−y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σµσσµµρσµρρσπσ9.二维随机变量的条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ∫∫+∞∞−+∞∞−==dy y f y x f dy y x f x f Y Y X X )()(),()(∫∫+∞∞−+∞∞−==dxx f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X =w w w .k h d a w .c o m 课后答案网10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E ∫+∞∞−=dx x xf X E )()(随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X E X 的k 阶中心矩)))(((k X E X E −X 的方差)()))(((2X D X E X E =−X ,Y 的k +l 阶混合原点矩)(l k Y X E X ,Y 的k +l 阶混合中心矩()l k Y E Y X E X E ))(())((−−X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩X ,Y 的协方差()))())(((Y E Y X E X E −−w ww .k h d a w .c o m 课后答案网X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎟⎟⎠⎞⎜⎜⎝⎛−−)()())())(((X 的方差D (X )=E ((X -E (X ))2))()()(22X E X E X D −=协方差()))())(((),cov(Y E Y X E X E Y X −−=)()()(Y E X E XY E −=())()()(21Y D X D Y X D −−±±=相关系数)()(),cov(Y D X D Y X XY =ρw w w .k h d a w .c o m 课后答案网。
概率论与数理统计公式
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论与数理统计计算公式
概率论与数理统计计算公式概率论和数理统计是数学中的两个重要分支,广泛应用于自然科学、社会科学和工程技术等领域。
在实际中,我们经常需要计算各种概率和统计量,因此理解和掌握概率论和数理统计中的计算公式是十分重要的。
接下来,我将给出概率论和数理统计中一些常用的计算公式。
一、概率计算公式:1.加法原理:如果A和B是两个事件,那么它们的和事件(A∪B)的概率可以由如下公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)2.条件概率:如果A和B是两个事件,且P(A)>0,那么事件B在已知事件A发生的条件下发生的概率可以由如下公式计算:P(B,A)=P(A∩B)/P(A)3.全概率公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A,我们有:P(A)=ΣP(A,Bi)P(Bi),其中i取1到n。
4.贝叶斯公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A和i取1到n,我们有:P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中j取1到n。
5.乘法定理:如果A和B是两个事件,那么它们的交事件的概率可以由如下公式计算:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)二、统计量计算公式:1.样本均值:对于由n个观测值组成的样本,样本的均值可以由如下公式计算:\(\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n x_i\)2.样本方差:对于由n个观测值组成的样本,样本的方差可以由如下公式计算:\(S^2 = \frac{1}{n-1} \sum\limits_{i=1}^n (x_i - \bar{X})^2\) 3.标准差:样本的标准差是样本方差的平方根\(S = \sqrt{S^2}\)4.相关系数:对于两个随机变量X和Y,它们的相关系数可以由如下公式计算:\(\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}\)5.协方差:样本的协方差可以由如下公式计算:\(Cov(X,Y) = \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})\)以上只是概率论和数理统计中的一些常用计算公式,实际应用中还有很多其他的公式和方法。
概率论与数理统计公式大全
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计笔记(重要公式)
r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0
设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Bi
i 1
n
, P ( A) 0 , ,i=1,2,…,n,
(16)贝叶 斯公式
P( Bi | A)
P( Bi ) P( A | Bi )
P( B ) P( A | B )
j 1 j j
n
此公式即为贝叶斯公式。
P( Bi ) ( i 1 , 2 ,…, n ) ,通常叫先验概率; P( Bi | A) ( i 1 , 2 ,…, n ) ,通常称为后验概率。
k P ( X k ) Pn ( k ) C n p k q nk ,
其中 q 1 p,0 p 1, k 0,1,2, , n , 则称随机变量 X 服从参数为 n , p 的二项分布,记为
X ~ B ( n, p ) 。
当 n 1 时, P ( X k ) p q
A、B 同时发生:A B,或者 AB。
-1-
A B= ,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相容或者 互斥。基本事件是互不相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A ,它表示 A 不发生
的事件。 互斥未必对立。 ② 运算: 结合率:A(BC)=(AB)C, A∪(B∪C)=(A∪B)∪C; 分配率:(AB)∪C=(A∪C)∩(B∪C), (A∪B)∩C=(AC)∪(BC);
德摩根率: i 1
Ai Ai
i 1
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满 足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1, 3° 对于两两互不相容的事件 A1 , A2 ,…,有
A B A B, A B A B。
否是互不影响的。 这种试验称为伯努利概型,或称为 n 重伯努利试验。 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为 1 p q ,用 Pn ( k ) 表 示 n 重伯努利试验中 A 出现 k (0 k n ) 次的概率,
Pn ( k ) C n p k q n k
P( B | A)
(14)独立 性
P( AB) P( A) P( B) P( B) P ( A) P( A)
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 与任何事件都相互独立。 与任何事件都互斥。 ② 多个事件的独立性 设 A,B,C 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(CA)=P(C)P(A), 并且同时满足 P(ABC)=P(A)P(B)P(C),那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2, , Bn 满足 1° B1, B 2, , Bn 两两互不相容, P ( Bi ) 0(i 1,2, , n ) ,
F () lim F ( x) 0 ,
x
F () lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P ( X x ) F ( x ) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
F ( x) f ( x)dx
x
,
则称 X 为连续型随机变量, f ( x ) 称为 X 的概率密度函数或密度函数,简称概 率密度。 密度函数具有下列性质: 1° 2°
f ( x) 0 ;
f ( x)dx 1
。
(3)离散 与连续型 随机变量 的关系
P ( X x ) P ( x X x dx ) f ( x ) dx ,
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样本 空间和事 件
A B
(6)事件 的关系与 运算 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B: A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可 表示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
P Ai P( Ai ) i 1 i 1
常称为可列(完全)可加性。称 P(A)为事件 A 的概率。 1° 1 , 2 n ; 2° P ( 1 ) P ( 2 ) P ( n )
(8)古典 概型
设任一事件 A ,它是由 1 , 2, m 组成的,则有
P (a X b) F (b) F (a )
可以得到 X 落入区间 (a, b] 的概率。
分布函数 F ( x ) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x 2 时,有 F ( x1) F ( x 2) ;
(13)乘法 公式
P ( A1 A2 … An ) P ( A1) P ( A2 | A1) P ( A3 | A1 A2) … P ( An | A1 A2 … An 1) 。
① 两个事件的独立性 设事件 A 、B 满足 P ( AB ) P ( A) P ( B ) , 则称事件 A 、B 是相互独立的。 若事件 A 、 B 相互独立,且 P ( A) 0 ,则有
k 1 k
, k 0.1 ,这就是(0-1)分
布,所以(0-1)分布是二项分布的特例。
-5-
泊松分布
设随机变量 X 的分布律为
P( X k )
k e , 0 , k 0,1,2 , k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ ( ) 或 者 P( )。 泊松分布为二项分布的极限分布(np=λ,n→∞) 。 超几何分布
积分元 f ( x )dx 在连续型随机变量理论中所起的作用与 P ( X xk ) pk 在离散 型随机变量理论中所起的作用相类似。
-4-
(4)分布 函数
设 X 为随机变量, x 是任意实数,则函数
F ( x) P ( X x )
称为随机变量 X 的分布函数,本质上是一个累积函数。
-2-
P( AB) 为事件 A 发生条件下,事 P ( A) (12)条件 P( AB) 件 B 发生的条件概率,记为 P ( B | A) 。 概率 P ( A)
定义 设 A、B 是两个事件,且 P(A)>0,则称 条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω|B)=1 P( B |A)=1-P(B|A)。 乘法公式: P ( AB ) P ( A) P ( B | A) 。 更一般地,对事件 A1,A2,…,An,若 P(A1A2…An-1)>0,则有
L( A) ,其中 L 为几何度量(长度、面积、体积) 。 L ( )
(10)加法 公式 (11)减法 公式
P(A+B)=P(A)+P(B)-P(AB), 当 P(AB)=0 时,P(A+B)=P(A)+P(B)。 P(A-B)=P(A)-P(AB), 当 B A 时,P(A-B)=P(A)-P(B)。 当 A=Ω时,P( B )=1- P(B)。
k
, k 0,1,2, , n 。
第二章
随机变量及其分布
(1)离散 型随机变 量的分布 律
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事 件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。 有时也用分布列的形式给 出:
1 。 n
P(A)= P 1 2 m = P( 1 ) P( 2 ) P( m )
m A所包含的基本事件数 。 n 基本事总数
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空 间中的每一个基本事件可以使用一个有界区域来描述, 则称此随机试验为几何 概型。 对任一事件 A, P ( A)
p
k
;
对于连续型随机变量, F ( x ) (5)八大 分布 0-1 分布 二项分布
f ( x ) dx
。
P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p ,事件 A 发生 的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2, , n 。
贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
-3-
我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; (17)伯努 利概型
n 次试验是重复进行的,即 A 发生的概率每次均一样; 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
(15)全概 公式
2° 则有
A Bi
i 1
n
,
P ( A) P ( B1) P ( A | B1) P ( B 2) P ( A | B 2) P ( Bn ) P ( A | Bn ) 。
设事件 B1 , B 2 ,…, Bn 及 A 满足 1° B1 , B 2 ,…, Bn 两两互不相容, P ( Bi ) >0, i 1,2,…, n , 2° 则
第一章
n Pm