现代心理与教育统计学(张厚粲)课后习题答案
张厚粲《现代心理与教育统计学》配套题库【课后习题】(线性回归)【圣才出品】

第12章线性回归1.线性回归的基本假设是什么?答:(1)线性关系假设X与Y在总体上具有线性关系,这是一条最基本的假设。
回归分析必须建立在变量之间具有线性关系的假设成立上。
如果X与Y的真正关系不是线性,而回归方程又是按线性关系建立的,这个回归方程就没有什么意义了。
非线性的变量关系,需使用非线性模型。
(2)正态性假设正态性的假设系指回归分析中的Y服从正态分布。
(3)独立性假设①指与某一个X值对应的一组Y值和与另一个X值对应的一组Y值之间没有关系,彼此独立。
②指误差项独立,不同的X所产生的误差之间应相互独立,无自相关,而误差项也需与自变量X相互独立。
(4)误差等分散性假设误差等分散性是指特定X水平的误差,除了应呈随机化的常态分配,其变异量也应相等。
不相等的误差变异量(即误差变异歧异性),反应出不同水平的X与Y的关系不同,不应以单一的回归方程式去预测Y。
当研究资料具有极端值存在时,或非线性关系存在时,误差变异歧异性的问题就容易出现。
违反假设时,对于参数的估计检验力就会变得不足。
2.回归分析与相关分析的区别和联系是什么?答:(1)联系它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现在文章中。
(2)区别①作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著性,如果显著则可以进一步考虑建立变量间的回归方程。
②相关分析和回归分析各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关、质量相关和品质相关,回归分析还包括非线性回归等。
3.解释回归系数。
答:在回归方程式Y∧=a+bX中常数b称为Y对X的回归系数,表示该直线的斜率,实际上也是Y∧的变化率,它表示当X增加1个单位时Y的平均增加或减少的数量,即当X 变化一个单位时,Y∧将变化b个单位。
4.利用下面的数据建立英语对语文的线性回归方程,并对方程进行检验,根据所建方程,若某学生语文40分,则其英语成绩的0.95预测区间是多少?答:(1)建立回归方程经计算X_=41,Y_=46.5,s X=25.48,s Y=19.88。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](差异量数)
](https://img.taocdn.com/s3/m/446b814cb7360b4c2e3f64f4.png)
第4章差异量数1.度量离中趋势的差异量数有哪些?为什么要度量离中趋势?答:(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。
这些特殊性常表现为数据的变异性。
因此,只用集中量数不可能真实地反映出它们的分布情形。
为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
2.各种差异量数各有什么特点?答:(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。
缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。
因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。
当组距不确定,其他差异量数都无法计算时,可以计算四分位差。
但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
张厚粲《现代心理与教育统计学》配套题库【课后习题】(参数估计)【圣才出品】

第7章参数估计1.何谓点估计与区间估计,它们各有哪些优缺点?答:(1)点估计①定义点估计是指用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示。
②优缺点a.优点它能够提供总体参数的估计值。
b.缺点点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。
若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。
(2)区间估计①定义区间估计是指根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围。
②优缺点a.优点不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。
b .缺点 无法具体指出总体参数等于什么。
2.试以方差的区间估计为例说明区间估计的原理。
答:区间估计的原理是样本分布理论。
在计算区间估计值,解释估计的正确概率时,依据的是该样本统计量的分布规律及样本分布的标准误(SE )。
也就是说,只有知道了样本统计量的分布规律和样本统计量分布的标准误才能计算总体参数可能落入的区间长度,并对区间估计的概率进行解释,可见标准误及样本分布对于总体参数的区间估计是十分重要的。
样本分布可提供概率解释,而标准误的大小决定区间估计的长度。
一般情况下,加大样本容量可使标准误变小。
自正态分布的总体中,随机抽取容量为n 的样本,其样本方差与总体方差比值的分布为χ2分布。
根据χ2分布,可以说:σ2有1-α的概率落在与之间。
3.总体平均数估计的具体方法有哪些?答:总体平均数估计的具体方法有两种:(1)总体方差σ2已知时,用Z 分数对总体平均数μ的估计①当总体分布为正态时,不论样本n 的大小,其标准误X σ都是,这时样本的方差S 2在计算中没有用处。
依据上面所讲的步骤,查正态表,确定Z α/2,一般情况下显著性水平α确定为0.05或0.01。
()212/21n n s αχ--()()2121/21n n s αχ---②当总体为非正态分布时,只有当样本容量n >30以上,才能根据样本分布对总体平均数μ进行估计,否则不能进行估计。
张厚粲现代心理与教育统计学答案完整版

心理学解答心理学考研第一章1.名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本答:样本是从总体中抽取的一部分个体。
(4)个体答:构成总体的每个基本单元。
(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量答:样本的特征值叫做统计量,又称作特征值。
(9)参数答:又称总体参数,是描述一个总体情况的统计指标。
(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。
2.何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法。
统计方法是从事科学研究的一种必不可少的工具。
现代心理与教育统计学(张厚粲)课后习题答案

现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](多变量统计分析简介)
](https://img.taocdn.com/s3/m/2df4574c49649b6649d7470b.png)
第13章多变量统计分析简介1.探索性因素分析与验证性因素分析有什么区别?答:(1)探索性因素分析(exploratory factor analysis,简写为EFA)就是指传统的因素分析。
这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。
对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。
在典型的EFA中,研究者通过共变关系的分解,找出最低限度的主要成分(principal component)或共同因子(common factor),然后进一步探讨这些主成分或共同因子与个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值(factor loading),以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。
由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子数目与可解释变异量(explained variance)两者间寻找平衡点。
因为因素分析至多可以抽取出相等于观察变量总数的因子数目,这样,虽然可以解释全部百分之百的变异,但失去因素分析找寻因子结构的目的,但如果研究者企图以少数几个较明显的因子来代表所有的项目,势必然将损失部分可解释变异来作为代价。
因而在EFA中,研究者相当一部分工作是在决定因子数目与提高因子解释的变异(即R square)。
(2)验证性因素分析(confirmatory factor analysis,简写为CFA)是在研究人员积极改善传统因素分析的限制,扩大其应用范围的基础上产生的。
这类因素分析要求,研究者对于潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观察变量的组成模式,进行因素分析的目的是为了检验这一先期提出的因子结构的适合性。
这种因素分析方法也可用于理论架构的检验,它在结构方程模型中占有相当重要的地位,有着重要的应用价值,也是近年来心理测量与测验发展中相当重视的内容。
张厚粲《现代心理与教育统计学》第3版笔记和课后习题含考研真题详解(概率分布)【圣才出品】

圣才电子书 十万种考研考证电子书、题库视频学习平台
1.离散分布与连续分布 这是依随机变量是否具有连续性来划分的概率分布类型。当随机变量只取孤立的数值 时,这种随机变量称做离散随机变量,即计数数据。离散随机变量的概率分布又称作离散分 布,可用分布函数加以数量化描述。在心理与教育统计中最常用的离散分布为二项分布,除 此 之 外 还 有 泊 松 分 布 ( Poisson distribution ) 和 超 几 何 分 布 ( hypergeometric distribution)等。 连续分布是指连续随机变量的概率分布,即测量数据的概率分布,它用连续随机变量的 分布函数描述它的分布规律。统计中最常用的连续随机变量的分布为正态分布,其他连续分 布如负指数分布、威布尔分布等。 2.经验分布与理论分布 这是依分布函数的来源而划分的分布类型。经验性分布(empirical distribution)是 指根据观察或实验所获得的数据而编制的次数分布或相对频率分布。经验分布往往是总体的 一个样本,它可对所研究的对象给以初步描述,并作为推论总体的依据。理论性分布 (theoretical distribution)有两个含义,一是随机变量概率分布的函数——数学模型, 二是指按某种数学模型计算出的总体的次数分布。 随机变量概率分布的性质,由它的特征数来表达。这些特征数主要有期望值,即理论平 均数;方差,即理论的标准差的平方。因此,在统计推论部分通常只用平均数和标准差,而 不采用其他集中量数与差异量数。 3.基本随机变量分布与抽样分布 这是依概率分布所描述的数据特征而划分的概率分布类型。心理与教现代心理与教育统 对 学 育 统 计 中 常 用 的 基 本 随 机 变 量 分 布 有 二 项 分 布 与 正 态 分 布 。 抽 样 分 布 ( sampling distribution)是样本统计量的理论分布。样本统计量有:平均数、两平均数之差、方差、
张厚粲现代心理与教育统计学第4版知识点总结课后答案

第1 章绪论1.1 复习笔记本章重点✓心理与教育统计的研究内容✓选择使用统计方法的基本步骤✓统计数据的基本类型✓心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现。
2.心理与教育科学研究数据具有随机性和变异性。
3.心理与教育科学研究数据具有规律性。
4.心理与教育科学研究的目标是通过部分数据来推测总体特征。
(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题:(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
二、心理与教育统计学的内容心理与教育统计学的研究内容,可依不同的分类标志划分为不同的类别:(一)分类一依据统计方法的功能进行分类,统计学可分为下述三种类别,这是由于数理统计的发展历史所决定的,也是最常见的分类方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代心理与教育统计学(张厚粲)课后习题答案(2011-03-25 10:54:43)转载第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.687、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
6、该区教学的真实情况在78.62—81.38之间,估计正确的概率为95%,错误概率为5%。
7、学生身高的真实情况在167.45—174.50cm之间,估计正确的概率为95%,错误概率为5%。
8、估计正式测验的平均成绩在76.55—79.44之间,估计正确的概率为95%,错误概率为5%。
9、该总体的标准差在7.80—12.20之间,估计正确的概率为95%,错误概率为5%。
10、该总体方差在2.73—11.98之间,估计正确的概率为95%,错误概率为5%。
11、两个样本的方差相等。
12、这个总体方差的0.95的置信区间是0.27—10.38.13、总体相关系数在0.385—0.695。
正确的概率为95%,错误概率为5%。
14、总体相关系数在0.32—0.95.正确的概率为95%,错误概率为5%。
可以说总体相关系数比0大。
15、总体等级相关系数在0.109—0.812。
正确的概率为95%,错误概率为5%。
可以说总体相关系数比0大。
16、该地区初三学生患近视的真实比率在0.27—0.43,不可以说患近视者接近半数。
作此结论犯错误的概率为0.05,正确概率为0.95。
第八章假设检验5、应该按照相关样本的平均数差异检验进行。
若两组随机样本之间具有显著的相关关系,则称两组样本是相关样本。
相关样本数据的获得通常有两种方式:一种是对匹配的被试进行观察,另一种是对同一个组被试进行多次观察。
题目中列出的情况是对同一被试进行的多次观察。
6、应该按照独立样本的平均数差异检验来进行。
因为每个被试分别只收集视、听反应时数据中的一个,则数据之间不存在对应关系应该按照独立样本来进行。
独立样本的判断可以首先判断两个样本是否满足相关样本的两种情况,若两个样本不是相关则一定是独立样本。
7、略。
8、t=3.6;显著低于正常值。
9、方差齐性检验为:F=1.5635;两总体方差齐。
t=-2.59;训练明显减小了深度知觉的误差。
10、t=1.930;两种识字教学效果没有显著差异。
11、Z=0.754;两个相关系数没有显著差异。
12、方差齐性检验为:F=1.309;两总体方差齐。
t=-1.314;两种呈现方式下平均错误相同。
第九章方差分析6、7、8、第十章卡方检验5、卡方=24.146,幼儿对颜色的爱好不同。
6、卡方=7.74,该地区升学人数符合2:5:5:1:1:0.5:0.5。
7、卡方=1.08,分数分布符合正态分布。
8、卡方=50.7,这个评选结果不符合赞成和反对概率相等的二项分布。
9、卡方=117.8,以上物理成绩的分布符合正态分布。
10、卡方=8.17,该措施有效。
11、卡方=9.74,该措施与性别有关。
相关系数用尤尔Q系数表示为0.74,该措施更适合女生的特点。
12、卡方=56.15;列联相关系数:C=0.44;这个报告符合青年人的特点。
年龄与评价的关联程度用列联相关系数C表示为0.44。
13、卡方=3.6,以上数据不支持美国与中国子女教养方式有差异。
14、卡方=4.05,评价与性别有关。
15、卡方=37.08;评价好与不置可否在不同年龄有差异。
16、(1)异质的卡方=0.78,两个表可以合并。
(2)异质的卡方=7.02,两个表不可以合并。
(3)异质的卡方=1.21,两个表可以合并。
分析合并表的相关源:略第十一章非参数检验4、(1)秩和检验:T1=71.5,T2=,33.5;两组错觉有显著差异。
(2)中数检验:=1.14;两组错觉没有显著差异。
5、(1)符号检验:r=n_=3,反馈有显著影响。
(2)用符号等级检验:T=T_=6?6、用克-瓦氏单向方差分析:H=1.10,教练员年龄对运动员成绩没有显著影响。
7、用弗里德曼两因素等级方差分析:卡方=27.76,学生对某些教师比对其他教师更喜欢。
第十二章线性回归4、(1)回归方程为:Y=22.11+0.59X。
(2)F=10.67;所建的回归方程是有效的。
(3)该学生英语成绩的估计值为45.71;置信区间为:20.45~70.95。
5、(1)回归方程为:Y=51.06+0.42X。
(2)F=14.72;所建的回归方程是有效,教授可以用期中成绩预测期末成绩。
第十三章多变量统计分析简介第十四章抽样原理及方法。