主动悬架
汽车构造-主动悬架

主动悬架老式汽车上普通的悬架系统,其性能是预先设定好的,在汽车行驶过程中不能根据实际路况对悬架的性能(刚度、阻尼、车身角度和高度等)进行调整,无法做到在多种工况下都实现最佳的行驶平顺性和操纵稳定性。
这种性能无法调整的悬架系统称为被动悬架。
如果悬架系统的刚度、阻尼和车身位置能根据汽车的行驶条件(车辆的运动状态和路面状况等)进行动态自适应调节,使悬架系统始终处于最佳缓冲减振状态,这种悬架就称为主动悬架。
主动悬架能够根据汽车的运动状态和路面状况,适时地调节悬架的刚度和阻尼,使悬架系统处于最佳缓冲和减振状态,让汽车对于各种路面状况下都会有良好的适应性。
由于汽车行驶的路面条件是复杂多变的,且具有非常大的随机性,所以这种调节实际上是非常复杂的。
传统的机械式调节方法只能实现部分性能调节,随着计算机技术的发展,现代汽车普遍采用计算机系统来实现比传统主动悬架的更为复杂的高性能调节。
这种新的主动悬架系统通常也称为电子控制式主动悬架。
主动悬架系统按照是否包含动力源,可分为半主动悬架(无源主动悬架)和全主动悬架(有源主动悬架)两大类。
一、半主动悬架半主动悬架不考虑改变悬架的刚度,只考虑改变阻尼来调节的悬架的减振性能,因此其调节装置主要由无动力源的可控的阻尼元件(如图22-10所示的阻力可调式减振器)组成。
半主动悬架在被动悬架基础上增加的部件不多,工作时几乎不需要额外消耗车辆动力,但对汽车悬架的性能有明显的提高,因此这种系统具有较好的应用前景。
图22-59 别克君越采用的半主动悬架-CDC全时主动式稳定系统图22-59所示为别克君越汽车采用的半主动悬架系统,通用别克公司称其为CDC全时主动式稳定系统。
该系统采用计算机系统来实现对悬架功能的控制,属于电子控制式主动悬架。
系统中通过车身加速度传感器3和车轮加速度传感器4来采集汽车行驶状态的信息,并将信息传递给中央控制单元1(也称为汽车电脑,ECU)。
中央控制单元分析这些信息后作出调节指令,输出给CDC减振器上的CDC控制阀(参见图22-11),控制阀通过其中的电磁阀控制减振器中流通孔的大小,从而改变了减振液的阻尼值,实现对悬架状态的调节。
全主动悬架

汽车高度控制系统空气流通图
(5)抗“侧倾”:在急转弯时,电控单元根
据转动盘的角度和转速信号将刚度遇阻尼力 调到“高”状态。急转弯时→刚度、阻
尼增大
(6)抗“点头”:当车速高于60km/h紧急 制动时,电控单元自动将悬架的刚度与阻尼 调至“高”状态。汽车紧急制动时 →
刚、阻尼增大
(二)车身高度控制
低于设定高度→空气压缩机运转→ 高度控 制阀打开→压缩空气进入气压缸的主气室 →车身升高 高于设定目标→高度控制阀及排气阀打开 →压缩空气排到大气中→车身下降
主动悬架
黄莉 2011114120
根据是否能依据汽车行驶状态主动调节 车身状态可以将悬架分为主动悬架和被 动悬架
被动悬架:悬架刚度和阻尼特性不能根据汽车行 驶状态进行调节的悬架。 主动悬架:悬架的刚度和阻尼特性能根据汽车行 驶状态进行动态自适应调节,使悬架系统始终处 于最佳减震状态。
主动悬架系统分类:
(3)前、后轮相关控制:在汽车以30-80km/h的速度行驶 遇到障碍时,前车轮高速传感器的脉冲信号传给悬架电控 单元,电控单元将后车轮悬架的刚度和阻尼力调至”低 “状态,提高汽车乘坐舒适性。前轮遇凸起 →后轮刚度、 阻尼增大
(4)抗”俯仰“:当车速低于20km/h 且加速度较大时,悬 架电控单元将弹簧刚度和减震器阻尼力调到”高“状态, 以抑制汽车急起步时的车身“后仰”;当车速高于60km/h 紧急制动时,悬架电控单元将弹簧刚度和减震器阻尼力调 到”高“状态,以抵抗汽车紧急制动时的车身“前仰”。 突然起步或突然加速时 →刚度、阻尼增大。
主动悬架系统按其是否包含动力源,可分为全主 动悬架(有源主动悬架)和半主动悬架(无源主 动悬架)系统两大类。按其介质分为,油气式主动 悬架和空气式主动悬架。
浅析汽车底盘主动悬架控制方法

浅析汽车底盘主动悬架控制方法随着汽车技术的不断发展,汽车底盘主动悬架系统已经逐渐成为了一种常见的装备。
这种系统可以根据车辆当前的驾驶状态和路况来主动调节悬架硬度,提升行车舒适性和稳定性。
在本文中,我们将对汽车底盘主动悬架控制方法进行一个浅析。
一、主动悬架原理主动悬架是指车辆悬挂系统具备主动调节功能,通过传感器感知车身运动状态,再根据实时数据调节悬架系统的工作参数,实现对车身姿态和路面适应性的主动调节。
主动悬架主要包括主动减振和主动悬架控制两部分。
主动减振通过控制减振器的阻尼力来调节车辆的悬挂硬度;主动悬架控制则通过控制空气悬挂元件或电磁阻尼器来实现对车辆悬挂的主动调节。
二、主动悬架控制方法1. 传统悬架控制传统的悬架系统主要通过设置不同的弹簧和减振器来实现对车辆悬挂系统的调节。
这种悬架系统在工作过程中需要依靠车辆的行驶速度和路面情况来进行调节,无法实现主动的悬架控制。
因此在高速行驶和复杂路况下,传统悬架系统的性能会受到一定的限制。
主动悬架控制方法则是通过悬架系统内置的传感器和控制单元,实时感知车辆的运动状态和路面情况,并根据这些数据来主动调节悬架系统的工作参数。
目前主动悬架系统主要采用以下几种控制方法:(1)电子控制电子控制是主动悬架系统的核心技术之一,通过悬挂系统内置的控制单元收集和处理来自传感器的数据,并根据预设的悬架调节算法来控制悬挂系统的工作状态。
在电子控制技术的支持下,主动悬架系统可以根据车辆当前的行驶状态和路况主动调节悬架硬度,提升行车舒适性和稳定性。
(2)气动控制为了实现对悬架系统的精准控制,主动悬架系统还需要配备一套高效的控制算法。
主动悬架控制算法的设计主要考虑以下几点:姿态控制是主动悬架系统的重要功能之一,通过感知车辆的侧倾角和纵向加速度来调节悬架系统的工作状态,提升车辆的稳定性和操控性。
(2)路面适应(3)悬挂硬度调节主动悬架系统在汽车领域具有广泛的应用前景,目前已经成为了豪华车和高端车型的标配。
主动悬架技术

ZF减震技术
CDC(Continous Damping Control)
无级可变阻尼控制减振器
工作原理:ECU搜集整理各个传感器传回的行 车信息,判定适用于当下的悬架阻尼特性,下 达指令驱动电子控制阀门,通过阀门的不断开 闭调整减震筒液压油流量,从而改变阻尼特性, 保证不同工况下的车身稳定和驾乘舒适度。 应用车型:别克君威GS、君越、昂科威
Continental空气悬架
Conti电控空气悬架系统
针对纯电动汽车提供的电子空气悬架系统,主要是采用了带有高性能压缩机和电 磁阀体的封闭式供气系统。和开放供气系统相比,封闭系统使用高压储气罐,系统 内部的空气只需在空气弹簧和高压空气储气罐之间往返流动。这样,系统的充气和 放气时间就会大大缩短,有效提升了汽车能效水平。而且系统也不需要经常从周围 环境中往系统中储放空气。自备闭合式供气系统的压缩机包含电动机、干燥机和开 关阀门。与其他应用于开放式供气系统的压缩机相比,这个闭合压缩机在重量上具 有显著优势。
简介 传感器
电子控制 ECU
可实现
控制执行机 构
车高调节
阻尼力控制
弹簧刚度控制
简介
空气悬架—空气弹簧作为弹性元件的悬架
结构:主要由ECU、空气泵/空压机、储压罐、气动前后 减震器和空气分配器等部件构成,可调节车身水平高度 和悬架软硬程度。
原理:利用前后轮附近的离地距离传感器,控制电脑可 判断出车身高度变化,再控制空气泵和排气阀门,使空 气弹簧自动伸长或压缩,从而改变底盘离地间隙,进而 影响车身稳定型和通过性。空气悬挂工作压力在 600~1000kPa,压力由空压机或储压罐(1300~1600kPa) 提供
主动悬架名词解释

主动悬架名词解释主动悬架(Active Suspension)是指一种用于汽车悬挂系统的先进技术,通过使用多种传感器和控制单元来实时监测和调整车身姿态和悬挂系统的运动特性,以提供更高的稳定性、舒适性和操控性能。
主动悬架最早由汽车制造商奔驰于1980年代末引入,并在高端豪华车型上广泛采用。
它的出现旨在解决传统悬挂系统的不足之处,比如过硬的悬挂导致的不良路感、车身姿态变化、车身侧倾等问题。
主动悬架的运作原理是基于实时的电子控制系统,该系统通过传感器实时监测车身位置、车速、行驶道路的条件等参数,并将这些信息发送给控制单元。
控制单元根据这些参数进行计算,并调整每个悬挂单元的状况,以达到最佳的平稳性和操控性能。
主动悬架采用了多种技术和组件,例如可调节阻尼器、气动悬挂、主动稳定杆等。
这些技术可以根据驾驶员的驾驶风格和道路条件进行实时调整,以提供最佳的驾驶体验。
主动悬架具有多项优点。
首先,它可以根据不同的驾驶条件和需求进行实时调整,提供更好的悬挂和稳定性能。
其次,它可以提供更高的舒适性,通过减少车身的颠簸和振动,带来更平顺的驾驶体验。
此外,主动悬架还可以提高车辆的操控性能,加强转弯和制动时的稳定性。
然而,主动悬架也存在一些缺点和挑战。
首先,与传统悬挂系统相比,主动悬架技术更加复杂和昂贵,增加了车辆的制造成本。
其次,悬挂系统的实时调整可能会对车辆的燃油经济性产生一定影响。
此外,主动悬架还需要精确的传感器和控制系统,并可能需要进行定期的维护和校准。
总体而言,主动悬架是一项重要的汽车技术创新,它通过实时调整悬挂系统来提供更高的稳定性、舒适性和操控性能。
虽然它存在一些挑战和限制,但随着技术的进一步发展和成本的降低,主动悬架将有望在更多汽车中得到应用。
车辆主动悬架最优控制

图 1. q1=3.35E5 ,q2 =40.5E5 的幅频特性图 由图 1 可以看出主动悬架的车身加速度、悬架动扰度、轮胎动载荷幅频特性图同被动悬架相 似,同样具有双峰,不同的是在低频固有频率附近,主动悬架的响应幅值明显减小,且变化 平缓, 主动悬架的减振性能较为突出; 在高频固有频率附近, 主动悬架的响应幅值变化较大 。 可知取该组权系数时,主动悬架的减振性能的改善程度不够理想; 2) 取 q1=3.35E8,q2 =40.5E8 时,由程序得 k1 =63640;k2=4863;k3 =-36146;k4 =-904;及 系统的传递函数和幅频特性,绘制幅频特性图 %主动悬架 q1=3.35e8;q2=40.5e8 时的仿真程序: m1=36;m2=240;kt=160000;q1=3.35e8;q2=40.5e8; A=[0 1 0 -1;0 0 0 0;0 0 0 -1;0 0 kt/m1 0]; B=[0;1/m2;0;-1/m1];D=[0;0;1;0]; C=[0 0 0 0;1 0 0 0;0 0 1 0]; E=[1/m2;0;0];H=[0;0;0]; Q=[q2 0 0 0;0 0 0 0;0 0 q1 0;0 0 0 0];R=[1]; [K,P,F]=lqr(A,B,Q,R) M=A-B*K; N=C-E*K; G=ss(M,D,N,H); G1=tf(G) i=1; for s=0:0.1:80 s=s*2*pi*j; G11=(150.6*s^3 + 1.673e004*s^2 + 1.179e006*s + 1.653e-008)/(s^4 + 45.36*s^3 + 5473*s^2 + 9.005e004*s + 1.179e006);
底盘部件主动悬架简析课件

02
03
04
提高乘坐舒适性
主动悬架能够有效地过滤路面不 平带来的振动,使乘坐更加舒适 。
主动悬架的缺点
01
成本较高
主动悬架需要使用更多的传感 器、执行机构和控制单元,导 致成本较高。
02
能耗较大
主动悬架需要持续供电以维持 工作状态,相对于被动悬架能 耗较大。
03
复杂度较高
主动悬架的结构和控制算法相 对复杂,维护和调试难度较大 。
它与传统的被动悬挂系统相比,具有更高的调节范围和适应性,能够更好地应对 复杂路况和行驶环境。
主动悬架的分类
根据调节方式的不同,主动悬架可以分为被动与半主动式、 主动式和混合式三种类型。
被动与半主动式主动悬架主要通过改变悬挂系统中的阻尼系 数来实现调节,而主动式和混合式主动悬架则具备独立的作 动器和控制单元,能够实现更加精准和灵活的调节。
主动悬架的控制算法
算法类型
用于处理传感器数据、计算控制指令 的算法,例如PID控制、模糊控制等 。
算法优化
针对不同路况和驾驶需求,对控制算 法进行优化,以提高主动悬架系统的 适应性和性能。
主动悬架的执行机构
执行机构类型
用于执行控制指令的机构,例如电磁阀、伺服电机等。
执行机构可靠性
高可靠性的执行机构能够确保主动悬架系统在各种工况下的稳定运行。
通过调整制动系统的响应特性,主动悬架可以优化车辆的制动性能和稳定性。
在紧急制动情况下,集成主动悬架的制动系统能够提供更加迅速和准确的制动效果 。
03
主动悬架的工作原理
主动悬架的传感器
传感器类型
用于监测车辆姿态、路面状况和 行驶状态的各种传感器,例如加 速度计、陀螺仪、激光雷达等。
主动悬架系统

主动悬架系统主动悬架是用一个有自身能源的力发生器来代替被动悬架中的弹簧和减振器。
根据作动器响应带宽的不同,主动悬架又分为宽带主动悬架和有限带宽主动悬架,也被叫做全主动悬架和慢主动悬架。
全主动悬架系统所采用的作动器具有较宽的响应频带,以便对车轮的高频共振也加以控制。
作动器多采用电液或液气伺服系统,控制带宽一般应至少覆盖0〜15Hz,有的作动器响应带宽甚至高达100Hz。
结构示意图见上图。
从减少能量消耗的角度考虑,也可保留一个与作动器并联的传统弹簧,以用来支持车身静载。
主动悬架的一个重要特点就是,它要求作动器所产生的力能够很好地跟踪任何力控制信号。
因此,它为控制律的选择提供了一个广泛的设计空间,即如何确定控制律以使系统能够让车辆达到最佳的总体性能。
近二十年来,有大量关于主动悬架的研究论文及专题回顾文献发表。
研究结果表明,主动悬架能够在不同路面情况及行驶条件下显著地提高车辆性能。
主动悬架的研制工作起始于八十年代。
Lotus 制造了第一辆装有主动悬架的样车。
其系统的响应可达30Hz,它可使乘坐舒适性和转弯及制动时的车身姿态控制提高约35%还有一些主动悬架实施的例子,如Lotus Turbo Esprit 、Damlar Benz的试验样机系统、BMW和Ford等。
然而,由于这些主动悬架系统具有的高成本、高能耗、增加的重量及复杂程度,使主动悬架仅限于样车及一些赛车等有限的应用上。
结构上,有限带宽主动悬架通常由作动器与一个普通弹簧串联后,再与一个被动阻尼器并联构成,见上图。
这种系统在低频时(一般小于5 或6 赫兹)采用主动控制,而高于这个频率时,控制阀不再响应,系统特性相当于传统的被动悬架,而被动悬架在高频时的效果也比较好。
由于有限带宽主动悬架作动器仅需在一窄带频率范围内工作,所以它降低了系统的成本及复杂程度,比全主动悬架便宜得多。
尽管如此,它的主动控制仍然覆盖了主要的车身振动,包括纵向、俯仰、侧倾以及转向控制等要求的频率范围,改善了车身共振频率附近的行驶性能,提高了对车身姿态的控制,性能可达到与全主动系统很接近的程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一 : 主动悬架简介
二:电子技术控制
三:主动控制技术——三类典型的液力主动控制系统。
1)A类由 Lotus(莲花 )公司开发
2)B类由 AP公司发展的气液悬架
3)C类液力主动控制系统由 Nissan公司开发四:主动悬架的最优控制方法
五:智能控制系统
六:作动器-蓄能式减震器
七:主动式液压悬架
八:主动式空气悬架
九:电机蓄能式主动悬架
十:双重控制空气悬架系统-奔驰公司研发
一:主动悬架
汽车的主动悬架系统是在普通悬架系统中附加一个可以控制阻尼作用力的装置,由执行机构、测量系统、反馈控制系统和能源系统四部分组成。
主动悬架能够根据汽车的运动状态和路面状况,适时地调节悬架的刚度和阻尼,使悬架系统处于最佳减振状态,使车辆在各种路面状况下都会有良好的舒适性。
主动悬架的关键部位是其执行机构,也就是可以调节的悬架阻尼系统。
主动悬架有作为直接力发生器的动作器,可以根据输入与输出进行最优的反馈控制,使悬架有最好的减震特性,以提高汽车的平顺性和操纵稳定性。
主动悬架的一个重要特点就是,它要求作动器所产生的力能够很好地跟踪任何力控制信号。
因此,它为控制律的选择提供了一个广泛的设计空间,即如何确定控制律以使系统能够让车辆达到最佳的总体性能。
针对悬架系统的非线性特点,研究适宜的悬架系统电控技术是汽车悬架系统振动性能改进的方向。
悬架位于车身与轮胎之间,对车辆的运动性能、乘坐舒适性有重大的影响。
按照路面行驶工况最优控制,悬架性能以确保车辆行驶性能与乘坐舒适性,电子控制悬架将进一步向高性能方向发展。
作为实现这种对悬架的优化控制的方式之一,是利用“预知传感器”进行预知控制的“预知控制悬架”
二:电子控制技术
电子技术控制汽车悬架系统主要由(车高、转向角、加速度、路况预测)传感器、电子控制ECU、悬架控制的执行器等组成。
系统的控制功能通常有以下三个:
1)车高调整:当汽车在起伏不平的路面行驶时,可以使车身抬高,以便于通过;在良好路面高速行驶时,可以降低车身,以减少空气助
力,提高操纵稳定性。
2)阻尼力控制:用来提高汽车的操纵稳定性,在急转弯、急加速和紧急制动情况下,可以抑制车身姿态的变化。
3)弹簧刚度控制:改变弹簧刚度,使悬架满足运动或舒适的要求。
采用主动式悬架后,汽车对侧倾、俯仰、横摆跳动和车身的控制都能更加迅速、精确,汽车高速行驶和转弯的稳定性提高,车身侧倾减少。
制动时车身前俯小,启动和急加速可减少后仰。
即使在坏路面,车身的跳动也较少,轮胎对地面的附着力提高
三:主动控制技术
主动控制:通过输入外部能量施加一定控制力的悬架主动控制大多采用流体传动的控制系统。
主动控制的研究首先始于轨道车辆的悬架振动控制。
用于汽车的主动控制悬架的最初装置是由AP( Automotive Products)公司基于气液悬架发展的一种机械系统。
近年来 ,Nissan(日产 )和 Toyota(丰田 )公司宣布在轿车上成功地应用了液力主动悬架。
至今已发展了三类典型的液力主动控制系统。
A类由 Lotus(莲花 )公司开发 ,它由双作用油缸和高速响应液力控制阀直接耦合 ,这个系统的控制能力较强 ,但能耗很大 ,尤其是在粗糙路面上非悬挂质量共振时这一问题尤为突出。
B类由 AP公司发展的气液悬架 ,它通过一个流量控制阀把油液输送到单作用油缸和充填蓄能器执行主动控制 ,这种控制装置同样需要消耗较高的能量。
C类液力主动控制系统由 Nissan公司开发 ,它的主要特征之一是压力控制阀同小型蓄能器和液压油缸相结合 ,在不平路面上的振动输入被蓄能器吸收 ,从而减少整个系统所需要的流量 ,悬挂质量的振动控制由液力系统的主动阻尼和被动阻尼共同完成。
同 A,B类主动控制相比 ,该类主动控制的耗能较少。
目前 ,开
发主动液力减振器研究方向之一是采用复合减振方法减少外部能量的消耗。
四:主动悬架的最优控制方法
对主动悬架的研究目前主要集中两个方面:一个是控制策略;另一个是作动器。
最早的主动悬架控制策略是天棚原理,假设车身上方有一固定的惯性参考,在车身和惯性参考之间有一阻尼器,作动器模拟此阻尼器的作用力来衰减车身的振动。
这种控制算法简单,在国外某些车型上已经得到了应用。
随着现代控制理论的发展,提出了主动悬架的最优控制方法,它比天棚原理考虑了更多的变量,控制效果更好,
目前最优控制规律有三种:线性最优控制、HQ最优控制和最优预见控制。
由于实际悬架系统中有许多非线性的、时变的、高阶动力系统,使最优控制方法变得不稳定,为此又发展了自适应控制方法。
自适应控制方法具有参数识别功能,能适应悬架载荷和元件特性的变化,自动调整控制参数,保持性能最优。
自适应控制方法也有增益调度控制、模型参考自适应控制和自校正控制三类。
在德国大众汽车公司的底盘上应用了自适应控制规律。
五:智能控制
目前发展最迅速的控制策略是智能控制(模糊控制和神经网络控制)。
模糊控制方法具有制动调节输入变量的组合、隶属函数的参数和模糊规则数目等学习功能,计算机仿真结果表明该方法更有效。
神经网络是一个由大量处理单元组成的高度并行的非线性动力系统,它能进行数据融合、学习适应性和并行处理,研究表明它比传统控制有更好的性能。
六:作动器
目前主动悬架上应用的作动器主要是液力式结构。
尼桑公司则开发了蓄能式减震器,它将压力控制阀同小型蓄能器及液压缸结合起来,使路面不平度引起的振动被蓄能缸吸收,车身隔振由主动阻尼和被动阻尼共同完成,因而能耗有所降低。
不过液压动力系统尚有许多不足之处,比如对工作环境有一定要求;元件制造精度要求高、成本难以下降;处理小信号的数字运算,误差的检测与放大、测试与补偿、自动化与实现远距离等功能不如电气系统灵活准确等。
因此现在作动器的研究主要集中在直线伺服电机、电磁蓄能器的方向。
七:主动式液压悬架
电子控制的主动式液压悬架能根据悬架的质量和加速度等,利用液压部件主动地控制汽车的振动。
在汽车重心附近安装有纵向、横向加速度和横摆陀螺仪传感器,用来采集车身振动、车轮跳动、车身高度和倾斜状态等信号,这些信号被输入到控制单元ECU,ECU根据输入信号和预先设定的程序发出控制指令,控制伺服电机并操纵前后四个执行油缸工作。
主动式液压悬架在轿车上的布置如图所示
八:主动式空气悬架
在电子控制的主动式空气悬架系统中,微机根据传感器送来的信号和驾驶员给予的控制模式经过运算分析后向悬架发出指令,悬架可
以根据微机给出的指令改变悬架的刚度和阻尼系数,是车身在行驶过程中保持良好的稳定性能,并且将车身的振动响应控制在允许的范围内。
一般说来,主动式空气悬架的控制内容包括车身高度、减振器衰减力、弹簧弹性系数等三项;
空气悬架电子控制系统的工作原理:用空气压缩机形成压缩空气,并将压缩空气送给弹簧和减震器的空气室中,以此来改变车辆的高度。
在前轮和后轮的附近设有车高传感器,按车高传感器的输出信号,微机判断出车辆高度,再控制压缩机和排气阀,使弹簧压缩或伸长,从而控制车辆高度。
在减震器内设有电动机,电动机受微机的信号控制。
利用电动机可以改变通气孔的大小,从而改变了衰减力的大小。
÷
图所示为丰田汽车公司的空气悬架控制装置在车上的布置情况。
九:电机蓄能式主动悬架
一种采用电机作动器并具有电磁蓄能作用的电机蓄能式主动悬架。
它采用电机传动系统代替液压传动系统,改善了原有液力式主动悬架的诸多缺陷,使主动悬架的推广应用成为可能。
其工作原理是:将悬架动挠度传感器所得编码信号和电机转子位置传感器所得脉冲信号输入微处理器,经无刷电机换相逻辑、电磁蓄能控制算法和主动悬架控制律处理后,通过驱动及蓄能电路和车载电源电路,实时控制
电机作动器的电动、反接制动或再生制动状态,以主动缓冲和衰减由路面不平引起的、并由车轮传导至车身的冲击和振动,同时还将再生制动电能回收再利用
十:双重控制空气悬架系统
奔驰公司研发出了双重控制空气悬架系统(Airmatic DC System)。
Airmatic悬架系统不仅在电子控制方面有了更为明显的进步,更是把主动控制空气悬架系统和自适应阻尼悬架系统(ADS)整合到一起,实现了双重控制(Dual Control)。
Airmatic悬架系统作为奔驰新S系车
型的标准配备,它共拥有四种工作模
式:第一模式是柔软舒适的设定,用于
普通路面的行驶。
这个时候,悬架系统
是行车电脑自动控制的,通过测量系
统、反馈控制系统的帮助,电脑自动调
节悬架的阻尼,以保证车辆在不同路面
情况下,始终具备最佳的舒适性和操控
性。
第二模式和第三模式减振器分别采
取硬压缩、软回弹和软压缩、硬回弹两
种方式,这两种方式适合两种特殊路况,第二模式适合高速路况,在高速下保证了车辆的稳定性,第三模式是偏重于路面复杂的慢速行驶状况,在颠簸路面能够过缓和颠簸,自动调整弹簧的软硬度,驾驶员也可以根据自己的驾驶习惯手动固定某一种模式。
第四种模式是纯粹忽略了舒适性的极端运动模式,这种模式需要驾驶员通过控制菜单进行选择,这时驾驶奔驰新S系轿车与驾驶一辆跑车相差无几。
事业部:汽车工程研究院部门:底盘行驶系
姓名:张永强
工号:397485。