超级资源(16套)2019年高考数学(理)整套复习资料 超级资源(2017年后高考真题分类汇总)

合集下载

三年(2017-2019)高考语文真题分类汇总: 语言得体

三年(2017-2019)高考语文真题分类汇总: 语言得体

3年高考真题分类汇编(2017—2019)语文语言得体1.(2019·天津卷·T4)为纪念五四运动一百周年,某中学文学社团准备举办以某位作家为专题的展览。

以下是该展览的版块标题:①家道中落国势危②别求新声于异邦③横眉冷对千夫指④斯世当以同怀视之⑤万众同仰“民族魂”下列语句也可以作为该展览版块标题的一项是()A.凤凰涅槃,女神再生B.流亡南洋,坚持抗日C.我以我血荐轩辕D.当年海上惊雷雨【答案】C【解析】本题考查学生语言表达得体准确鲜明生动的能力。

解答本题,需要考生先分析题干所提供的板块标题,找到这些标题的共性,然后再进行选择。

题干说这是以某位作家为专题的展览,考生可以借助提供的板块标题判断出该人物是谁,然后再进行选择。

分析所提供的五个标题来看,应是与“鲁迅”有关,“家道中落国势危”是鲁迅所处的家国背景;”别求新声于异邦”是说鲁迅求学日本的经历;“横眉冷对千夫指”是鲁迅的诗作;“斯世当以同怀视之”是鲁迅所说;“万众同仰‘民族魂’”是肯定鲁迅的精神价值。

分析四个选项可以发现,A项,“凤凰涅槃,女神再生”应与郭沫若有关;B项,“流亡南洋”的应是郁达夫;D项,“当年海上惊雷雨”应是曹禺。

C项,“我以我血荐轩辕”鲁迅诗作《自题小像》中最后一句,也与鲁迅相关。

故选C。

2.(2019·上海卷·T2)学校举办诗词大赛,为激励选手,需张贴标语,以下内容合适的一项是()。

A.俱怀逸兴壮思飞,欲上青天揽明月。

B.花径不曾缘客扫,蓬门今始为君开。

C.三十功名尘与土,八千里路云和月。

D.羽扇纶巾,谈笑间,樯橹灰飞烟灭。

【答案】A【解析】首先要认真审读题目,明确题干要求-一新语境。

其次要理解名句的意思。

最后作出合理判断,A.是对高洁理想境界的向往追求。

B.是寂寞之中,佳客临门表欢迎之意。

C.表现作者渴望建立功名、岳飞悔恨自己没什么成就。

D.反映卓异不凡的周瑜谈笑自若地指挥水军抗御强敌的气势。

2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)

2010—2019“十年高考”数学真题分类汇总 复数部分  理数(附参考答案)

A.2+i 【答案】D.
B.2 i
C.5+i
D.5 i
40.(2013 安徽)设 i 是虚数单位, z 是复数 z 的共轭复数,若 z zi 2 2z ,则 z =
A.1+i
B.1 i
C. 1+i
D. 1 i
【答案】A.
41.(2013 广东)若复数 z 满足 iz 2 4i ,则在复平面内, z 对应的点的坐标是
【答案】D.
50.(2012 辽宁)复数 2-i = 2+i
A. 3 4 i 55
B. 3 + 4 i 55
C.1 4 i 5
D.1+ 3 i 5
【答案】A.
51.(2012 湖南)复数 z i(i 1) ( i 为虚数单位)的共轭复数是
A. 1 i
B. 1 i
C.1 i
【答案】A.
【答案】D.
D.1 2i
54.(2012 江西)若复数 z 1 i ( i 为虚数单位) z 是 z 的共轭复数 , 则 z2 z 2 的虚部为
A.0 【答案】A.
B. 1
C.1
D.-2
55.(2012 山东)若复数 z 满足 z2 i 11 7i ( i 为虚数单位),则 z 为
(A) 3
(B) 5
(C)3
(D)5
【答案】(D). 3.(2019 全国 III 理 2)若 z (1 i) 2i ,则 z
A. 1i
B. 1+i
C.1 i
D.1+i
【答案】D.
4.(2019 全国 I 理 2)设复数 z 满足 z i =1,z 在复平面内对应的点为(x,y),则

【高考冲刺】高考数学(文)真题专项汇编卷(2017-2019)知识点1:集合与常用逻辑用语

【高考冲刺】高考数学(文)真题专项汇编卷(2017-2019)知识点1:集合与常用逻辑用语

知识点1:集合与常用逻辑用语1、已知集合{}{}–12|,|1A x x B x x =<<=>,则A B ⋃=( )A.(1,1)-B.(1,2)C. (1,)-+∞D. (1,)+∞2、设集合{1,1,2,3,5},{2,3,4},{R |13}A B C x x =-==∈≤<,则()A C B ⋂⋃=( )A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,4 3、已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24、已知集合={|1}A x x >-,{|2}B x x =<,则A B ⋂=( )A .(1,)-+∞B .(,2)-∞C .(1,2)-D .∅5、已知集合{}{}{},1,2,3,4,5,6,72,3,4,52,36,,,7U A B ===,则U B A ⋂=ð( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,76、已知集合{}{}1,3,5,7,2,3,4,5A B ==,则A B ⋂= ( )A. {}3B. {}5C. {}3,5D. {}1,2,3,4,5,77、已知集合{}{}|10,0,1,2A x x B =-≥=,则A B ⋂= ( )A. {}0B. {}1C. {}1,2D. {}0,1,28、设集合{1,2,3,4}{1,0,2,3},{|12}A B C x x ==-=∈-≤<R ,,则()A B C ⋃⋂=( )A. {1,1}-B. {}0,1C. {1,0,1}-D. {}2,3,49、已知集合 {}{}|2,2,0,1,2A x x B =<=-,则A B ⋂= ( )A. {}0,1B. {}1,0,1-C. {}2,0,1,2-D. {}1,0,1,2-10、已知集合{}{}0,2,2,1,0,1,2A B ==--,则A B ⋂= ( )A. {}0,2B. {}1,2C. {}0D. {}2,1,0,1,2--11、设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C ⋃⋂=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}12、已知集合{}|2A x x =<,{}|320B x x =->,则( ) A. 3|2A B x x ⎧⎫⋂=<⎨⎬⎩⎭ B. A B ⋂=∅ C. 3|2A B x x ⎧⎫⋃=<⎨⎬⎩⎭ D. A B R ⋃=13、设集合{}|11M x x =-<,{}|2N x x =<则M N ⋂= ( )A. ()1,1-B. ()1,2-C. ()0,2D. ()1,214、已知全集U R =,集合{|2A x x =<-或2}x >,则U A =ð ( )A. ()2,2-B. ()(),22,-∞-⋃+∞C. []2,2-D. (][),22,-∞-+∞U15、设集合{}1,2,3A =,{}2,3,4B =则A B ⋃= ( )A. {}1,2,3,4B. {}1,2,3C. {}2,3,4D. {}1,3,416、已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B ⋂中元素的个数为()A.1B.2C.3D.4答案以及解析1答案及解析:答案:C解析:∵{|12},{|1}A x x B x =-<<=> ,∴(1,)A B ⋃=+∞ .故选C.2答案及解析:答案:D解析:因为{1,2}A C ⋂=,所以(){1,2,3,4}A C B ⋂⋃=.故选D3答案及解析:答案:A 解析:由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A .4答案及解析:答案:C解析:由题知,(1,2)A B =-I ,故选C .5答案及解析:答案:C解析:由已知得{}1,6,7U A =ð,所以U B A ⋂=ð{6,7},故选C .6答案及解析:答案:C解析:∵{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5A B ⋂=,故选C7答案及解析:答案:C解析:由A 得, 1x ≥,所以{}1,2A B ⋂=8答案及解析:答案:C解析:由并集的定义可得: {1,0,1,2,3,4}A B ⋃=-,结合交集的定义可知:(){1,0,1}A B C ⋃⋂=-.故选C.9答案及解析:答案:A解析:{|||2}{|22}A x x x x =<=-<<,{2,0,1,2}B =-{}0,1A B ⋂=,故选A.10答案及解析:答案:A解析:根据集合交集中元素的特征,可以求得{0,2}A B ⋂=,故选A.11答案及解析:答案:B解析:由题意可得(){1,2,4,6}A B ⋃=,(){1,2,4}A B C ∴⋃⋂=.故选B.12答案及解析:答案:A解析:由320x ->得32x <,所以{}33|2||22A B x x x x x x ⎧⎫⎧⎫⋂=<⋂<=<⎨⎬⎨⎬⎩⎭⎩⎭,故选A.13答案及解析:答案:C解析:由11x -<得02x <<,故{|02}{|2}{|02}M N x x x x x x ⋂=<<⋂<=<<,故选C.14答案及解析:答案:C解析:因为{|2A x x =<-或2}x >,所以{}|22U A x x =-≤≤ð,故选C.15答案及解析:答案:A解析:由题意{1,2,3,4}A B ⋃=.故选A.16答案及解析:答案:B解析:集合A 和集合B 有共同元素2,4,则{}2,4A B ⋂=,所以元素个数为2.故选B.。

上海市2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(16套)-04填空题基础题②

上海市2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(16套)-04填空题基础题②

上海市2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(16套)-04填空题基础题②一.函数的最值及其几何意义(共1小题)..................................................................................1一十九.棱柱、棱锥、棱台的体积(共1小题)........................................................................15二十二.条件概率与独立事件(共2小题)................................................................................16二十五.二项式定理(共2小题). (18)一.函数的最值及其几何意义(共1小题)1.(2023•浦东新区二模)函数241log log (2)y x x =+在区间1(,)2+∞上的最小值为 .二.函数奇偶性的性质与判断(共1小题)2.(2023•静安区二模)已知函数()(0)21xxa f x a =>+为偶函数,则函数()f x 的值域为 .三.幂函数的概念、解析式、定义域、值域(共1小题)3.(2023•宝山区二模)若幂函数a y x =的图像经过点,则此幂函数的表达式为 .四.对数的运算性质(共1小题)4.(2023•静安区二模)若101010x y -=,其中x ,y R ∈,则2x y -的最小值为 .五.三角函数的最值(共1小题)5.(2023•松江区二模)已知(0,)2x π∈,则2214sin cos x x+的最小值为 .六.同角三角函数间的基本关系(共1小题)6.(2023•静安区二模)已知(0,)απ∈,且3cos 28cos 5αα-=,则cos α= .七.两角和与差的三角函数(共1小题)7.(2023•浦东新区二模)已知R ω∈,0ω>,函数cos y x x ωω=-在区间[0,2]上有唯一的最小值2-,则ω的取值范围为 .八.二倍角的三角函数(共1小题)8.(2023•松江区二模)已知2πθπ<<,且4cos 5θ=-,则tan 2θ= .九.等比数列的通项公式(共1小题)9.(2023•闵行区二模)已知在等比数列{}n a 中,3a 、7a 分别是函数32661y x x x =-+-的两个驻点,则5a = .一十.数列递推式(共1小题)10.(2023•宝山区二模)已知数列{}n a 的递推公式为1121(2)2n n a a n a -=+⎧⎨=⎩…,则该数列的通项公式n a = .一十一.极限及其运算(共1小题)11.(2023•闵行区二模)0(4)22limh ln h ln h→+-= .一十二.利用导数研究函数的单调性(共1小题)12.(2023•浦东新区二模)已知01a b <<<,设3()()()W x x a x b =--,()()()k W x W k f x x k -=-,其中k 是整数.若对一切k Z ∈,()k y f x =都是区间(,)k +∞上的严格增函数.则ba的取值范围是 .一十三.向量的概念与向量的模(共1小题)13.(2023•奉贤区二模)在集合{1,2,3,4}中任取一个偶数a 和一个奇数b 构成一个以原点为起点的向量(,)a b α=r,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,面积不超过4的平行四边形的个数是 .一十四.平面向量数量积的性质及其运算(共3小题)14.(2023•闵行区二模)平面上有一组互不相等的单位向量12,,,n OA OA OA ⋯u u u r u u u u r u u u u r,若存在单位向量OP u u u r 满足120n OP OA OP OA OP OA ⋅+⋅+⋯+⋅=u u u r u u u r u u u r u u u u r u u u r u u u u r ,则称OP u u u r是向量组12,,,n OA OA OA ⋯u u u r u u u u r u u u u r 的平衡向量.已知1OA 〈u u u r ,23OA π〉=u u u u r ,向量OP u u u r 是向量组123,,OA OA OA u u u r u u u u r u u u u r 的平衡向量,当3OP OA ⋅u u u r u u u u r 取得最大值时,13OA OA ⋅u u u r u u u u r的值为 .15.(2023•浦东新区二模)已知边长为2的菱形ABCD 中,120A ∠=︒,P 、Q 是菱形内切圆上的两个动点,且PQ BD ⊥,则AP CQ ⋅u u u r u u u r的最大值是 .16.(2023•松江区二模)已知点A 、B 是平面直角坐标系中关于y 轴对称的两点,且||2(0)OA a a =>u u u r .若存在m ,n R ∈,使得mAB OA +u u u r u u u r 与nAB OB +u u u r u u u r垂直,且|()()|mAB OA nAB OB a +-+=u u u r u u u r u u u r u u u r,则||AB 的最小值为 .一十五.投影向量(共1小题)17.(2023•静安区二模)已知向量a =r ,且a r,b r 的夹角为3π,()(23)4a b a b +⋅-=r r r r ,则b r 在a r方向上的投影向量等于 .一十六.余弦定理(共1小题)18.(2023•奉贤区二模)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C 等于 .一十七.虚数单位i 、复数(共1小题)19.(2023•宝山区二模)已知复数22(31)(56)3m m m m i --+--=(其中i 为虚数单位),则实数m = .一十八.棱柱、棱锥、棱台的侧面积和表面积(共1小题)20.(2023•奉贤区二模)已知圆柱的上、下底面的中心分别为1O 、2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的侧面积为 .一十九.棱柱、棱锥、棱台的体积(共1小题)21.(2023•松江区二模)将如图所示的圆锥形容器内的液体全部倒入底面半径为50mm 的直立的圆柱形容器内,则液面高度为 mm .二十.直线与平面所成的角(共1小题)22.(2023•静安区二模)如图,正方体1111ABCD A B C D -中,E 为AB 的中点,F 为正方形11BCC B 的中心,则直线EF 与侧面11BB C C 所成角的正切值是 .二十一.双曲线的性质(共1小题)23.(2023•浦东新区二模)双曲线22:124x y C -=的右焦点F 到其一条渐近线的距离为 .二十二.条件概率与独立事件(共2小题)24.(2023•奉贤区二模)设某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,它能活到25岁的概率是 .25.(2023•浦东新区二模)投掷一颗骰子,记事件{2A =,4,5},{1B =,2,4,6},则(|)P A B = .二十三.离散型随机变量的期望与方差(共1小题)26.(2023•奉贤区二模)已知随机变量X 的分布为123()111236,且3Y aX =+,若[]2E Y =-,则实数a = .二十四.正态分布曲线的特点及曲线所表示的意义(共3小题)27.(2023•静安区二模)今年是农历癸卯兔年,一种以兔子形象命名的牛奶糖深受顾客欢迎.标识质量为500g 的这种袋装奶糖的质量指标X 是服从正态分布(500N ,22.5)的随机变量.若质量指标介于495g (含)至505g (含)之间的产品包装为合格包装,则随意买一包这种袋装奶糖,是合格包装的可能性大小为 %.(结果保留一位小数)(已知Φ(1)0.8413≈,Φ(2)0.9772≈,Φ(3)0.9987≈.()x Φ表示标准正态分布的密度函数从-∞到x 的累计面积)28.(2023•浦东新区二模)设随机变量X 服从正态分布2(0,)N σ,且(2)0.9P X >-=,则(2)P X >= .29.(2023•松江区二模)已知随机变量X 服从正态分布(0,1)N ,若( 1.96)0.03P X <-=,则(|| 1.96)P X <= .二十五.二项式定理(共2小题)30.(2023•松江区二模)在二项式81(x x-的展开式中,含4x 的项的系数是 (结果用数字作答).31.(2023•宝山区二模)在62(x x+的展开式中,常数项为 .(结果用数字作答)上海市2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(16套)-04填空题基础题②参考答案与试题解析一.函数的最值及其几何意义(共1小题)1.(2023•浦东新区二模)函数241log log (2)y x x =+在区间1(,)2+∞上的最小值为1- .【答案】1-.【解答】解:42224444444(2)111111log 1log (2)112log (2)1(2)(2)(2)2(2)(2)log x y log x x x x log x log x log x log log x log x =+=++-=+-=+-=+-,1(2x ∈Q ,)+∞,2(1,)x ∴∈+∞,4log (2)0x ∴>,4412log (2)111(2)y x log x ∴=+-=-…,当且仅当4412log (2)(2)x log x =,即4log (2)x =即函数241log log (2)y x x =+在区间1(,)2+∞上的最小值为1-.故答案为:1-.二.函数奇偶性的性质与判断(共1小题)2.(2023•静安区二模)已知函数()(0)21xxa f x a =>+为偶函数,则函数()f x 的值域为 (0,1]2 .【答案】(0,1]2【解答】解:函数的定义域为R ,因为()f x 为偶函数,所以f (1)(1)f =-,即112121a a --=++,解得a =,所以1()2f x ===,当且仅当x =,即0x =时,等号成立,又0x >,所以()f x 的值域为(0,12.故答案为:(0,1]2.三.幂函数的概念、解析式、定义域、值域(共1小题)3.(2023•宝山区二模)若幂函数a y x =的图像经过点,则此幂函数的表达式为 3y x = .【答案】3y x =.【解答】解:Q 幂函数a y x =的图像经过点,∴3α=,3α∴=,则此幂函数的表达式为3y x =.故答案为:3y x =.四.对数的运算性质(共1小题)4.(2023•静安区二模)若101010x y -=,其中x ,y R ∈,则2x y -的最小值为 122lg + .【答案】122lg +.【解答】解:101010x y -=Q,101010x y ∴=+=…1010y =,即1y =时,等号成立,两边平方得:2110410x y +⨯…,∴2110410xy +…,即21104x y --…,214x y lg ∴--…,214122x y lg lg ∴-+=+…,当且仅当1y =,12x lg =+时,等号成立,即2x y -的最小值为122lg +.故答案为:122lg +.五.三角函数的最值(共1小题)5.(2023•松江区二模)已知(0,)2x π∈,则2214sin cos x x+的最小值为 9 .【答案】9.【解答】解:22222222221414cos 4sin ()(sin cos )559sin cos sin cos sin cos x x x x x x x x x x +=++=+++=…,当且仅当2222cos 4sin sin cos x x x x =,又22sin cos 1x x +=,(0,)2x π∈,即sin x =,cos x =时取等号,则2214sin cos x x+的最小值为9.故答案为:9.六.同角三角函数间的基本关系(共1小题)6.(2023•静安区二模)已知(0,)απ∈,且3cos 28cos 5αα-=,则cos α= 23- .【答案】23-.【解答】解:因为3cos 28cos 5αα-=,所以23(2cos 1)8cos 5αα--=,整理可得23cos 4cos 40αα--=,解得2cos 3α=-或2(舍去).故答案为:23-.七.两角和与差的三角函数(共1小题)7.(2023•浦东新区二模)已知R ω∈,0ω>,函数cos y x x ωω=-在区间[0,2]上有唯一的最小值2-,则ω的取值范围为 5[6π,116π .【答案】5[6π,116π.【解答】解:cos 2sin(6y x x x πωωω=-=-,由[0x ∈,2],知[66x ππω-∈-,2]6πω-,因为函数y 在区间[0,2]上有唯一的最小值2-,所以32[62ππω-∈,7)2π,解得5[6πω∈,11)6π.故答案为:5[6π,11)6π.八.二倍角的三角函数(共1小题)8.(2023•松江区二模)已知2πθπ<<,且4cos 5θ=-,则tan 2θ= 247- .【答案】247-.【解答】解:因为2πθπ<<,且4cos 5θ=-,所以3sin 5θ===,可得sin 3tan cos 4θθθ==-,则2232()2tan 244tan 23171()4tan θθθ⨯-===----.故答案为:247-.九.等比数列的通项公式(共1小题)9.(2023•闵行区二模)已知在等比数列{}n a 中,3a 、7a 分别是函数32661y x x x =-+-的两个驻点,则5a【解答】解:Q 等比数列{}n a 中,设公比为q ,3a Q 、7a 分别是函数32661y x x x =-+-的两个驻点,3a ∴、7a 分别是函数231260y x x '=-+=的两个实数根,374a a ∴+=23752a a a ⋅==,3a ∴与7a 都是正值.253aa q ∴=⋅也是正值,5a ∴=.一十.数列递推式(共1小题)10.(2023•宝山区二模)已知数列{}n a 的递推公式为1121(2)2n n a a n a -=+⎧⎨=⎩…,则该数列的通项公式n a = 1321n -⨯- .【答案】1321n -⨯-.【解答】解:当2n …时,121n n a a -=+,112(1)n n a a -∴+=+,即1121n n a a -+=+,又12a =Q ,113a ∴+=,∴数列{1}n a +是首项为3,公比为2的等比数列,1132n n a -∴+=⨯,1321n n a -∴=⨯-.故答案为:1321n -⨯-.一十一.极限及其运算(共1小题)11.(2023•闵行区二模)0(4)22lim h ln h ln h →+-= 14 .【答案】14.【解答】解:00(4)22(4)4lim lim44h h ln h ln ln h ln h h →→+-+-=+-,表示函数y lnx =在4x =处的导数,1y x '=Q ,∴0(4)221lim 4h ln h ln h →+-=.故答案为:14.一十二.利用导数研究函数的单调性(共1小题)12.(2023•浦东新区二模)已知01a b <<<,设3()()()W x x a x b =--,()()()k W x W k f x x k -=-,其中k 是整数.若对一切k Z ∈,()k y f x =都是区间(,)k +∞上的严格增函数.则ba的取值范围是 (1,3] .【答案】(1,3].【解答】解:33322232232()()()()()(3)[(3)33](3)(33)3k x a x b k a k b f x x k a b x k a b k a ab x k a b k a ab k a a bx k-----==+--+-++++-+++---,2222()32(3)(3)33k f x x k a b x k a b k a ab '=+--+-+++,则方程()0k f x '=满足△2234[2(3)3]8()(2a bk a b k b ab k b k -=-+++-=---,因为01a b <<<,所以312a bb -<<,①当3(2a b k -∈,)b 无解时,即302a b -…,(1ba∈,3]时,对于任意的k Z ∈都有△0…,即()0k f x '…恒成立,所以()k y f x =在(,)k +∞上严格增.②当3(2a b k -∈,)b 有解时,即302a b -<,(3,)ba∈+∞时,取0k =,则△0>,2()32(3)3()k f x x a b x a a b '=-+++,设()0k f x '=的两个根为1x ,212()x x x <,则12122(3)03()0a b x x x x a a b +⎧+=>⎪⎨⎪=+>⎩,所以1x ,2x 均为大于0,所以()k y f x =在1(0,)x ,2(x ,)+∞上严格递增,在1(x ,2)x 上严格递减,不满足条件,综上所述,ba的取值范围为(1,3],故答案为:(1,3].一十三.向量的概念与向量的模(共1小题)13.(2023•奉贤区二模)在集合{1,2,3,4}中任取一个偶数a 和一个奇数b 构成一个以原点为起点的向量(,)a b α=r,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,面积不超过4的平行四边形的个数是 3 .【答案】3.【解答】解:由题可得满足题意的向量有(2,1),(2,3),(4,1),(4,3),以向量,a b r r 为邻边的平行四边形的面积为:||||sin ,||||S a b a b a b =<>==r r r r r r ,∴以(2,1),(2,3)4=;以(2,1),(4,1)2=;以(2,1),(4,3)2=;以(2,3),(4,1)10=;以(2,3),(4,3)6=;以(4,1),(4,3)8=,综上可知面积不超过4的平行四边形个数是3.故答案为:3.一十四.平面向量数量积的性质及其运算(共3小题)14.(2023•闵行区二模)平面上有一组互不相等的单位向量12,,,n OA OA OA ⋯u u u r u u u u r u u u u r,若存在单位向量OP u u u r 满足120n OP OA OP OA OP OA ⋅+⋅+⋯+⋅=u u u r u u u r u u u r u u u u r u u u r u u u u r ,则称OP u u u r是向量组12,,,n OA OA OA ⋯u u u r u u u u r u u u u r 的平衡向量.已知1OA 〈u u u r ,23OA π〉=u u u u r ,向量OP u u u r 是向量组123,,OA OA OA u u u r u u u u r u u u u r 的平衡向量,当3OP OA ⋅u u u r u u u u r 取得最大值时,13OA OA ⋅u u u r u u u u r 的值为或【解答】解:3OP OA ⋅u u u r u u u u r 取最大值时,3OP OA =u u u r u u u u r ,且12,3OA OA π<>=u u u r u u u u r ,如图,12||OA OA +===u u u r u u u u r 设12OA OA OB +=u u u r u u u u r u u u r ,3,OA OB θ<>=u u u u r u u u r ,则:31233()10OA OA OA OA OA OB ⋅++=⋅+=u u u u r u u u r u u u u r u u u u r u u u u r u u u r,∴31OA OB θ⋅==-u u u u r u u u r ,cos θ=,sin θ=,且13,6OA OA πθ<>=-u u u r u u u u r 或6πθ+,∴131cos()cos cos sin sin 6662OA OA πππθθθ⋅=-=+==u u u r u u u u r131cos()cos cos sin sin 6662OA OA πππθθθ⋅=+=-==u u u r u u u u r或15.(2023•浦东新区二模)已知边长为2的菱形ABCD 中,120A ∠=︒,P 、Q 是菱形内切圆上的两个动点,且PQ BD ⊥,则AP CQ ⋅u u u r u u u r 的最大值是 14 .【答案】14.【解答】解:如图,连接BD ,AC ,设BD ,AC 交于点O ,则BD AC ⊥,以点O 为原点,BD ,CA 所在的直线分别为x ,y 轴,建立平面直角坐标系,则:(0,1)A ,(0,1)C -,PQ BD ⊥Q ,且P ,Q 点在内切圆上,∴设(,)P m n ,(,)Q m n -,,(m n ∈,∴(,1),(,1)AP m n CQ m n =-=-u u u r u u u r,∴22(1)AP CQ m n ⋅=--u u u r u u u r,Q 222m n +=,∴设,m n θθ==,∴22222233131(1)1)(cos 42424m n sin cos θθθθθ--=--=--=--+,∴cos θ=时,231(cos 24θ-+取最大值14,∴AP CQ ⋅u u u r u u u r 的最大值为14.故答案为:14.16.(2023•松江区二模)已知点A 、B 是平面直角坐标系中关于y 轴对称的两点,且||2(0)OA a a =>u u u r .若存在m ,n R ∈,使得mAB OA +u u u r u u u r 与nAB OB +u u u r u u u r垂直,且|()()|mAB OA nAB OB a +-+=u u u r u u u r u u u r u u u r,则||AB 的最小值为 ..【解答】解:设A ,B 在直线y t =上,又A ,B 是平面直角坐标系中关于y 轴对称的两点,||2(0)OA a a =>u u u r,∴||AB =;设,mAB AP nAB BQ ==u u u r u u u r u u u r u u u r ,则mAB OA OA AP OP +=+=u u u r u u u r u u u r u u u r u u u r,nAB OB OB BQ OQ +=+=u u u r u u u r u u u r u u u r u u u r ,∴|()()|||||mAB OA nAB OB OP OQ PQ a +-+=-==u u u r u u u r u u u r u u u r u u u r u u u r u u u r,不妨设P 在Q 的左侧,(,)P x t ,则(,)Q x a t +,Q mAB OA +u u u r u u u r 与nAB OB +u u u r u u u r垂直,∴0OP OQ ⋅=u u u r u u u r ,即2()0x x a t ++=有解,∴2222()(()224a a a t x x a x ax a =-+=-----⋅-=…,∴||AB ==,即||AB ..一十五.投影向量(共1小题)17.(2023•静安区二模)已知向量a =r ,且a r,b r 的夹角为3π,()(23)4a b a b +⋅-=r r r r ,则b r 在a r方向上的投影向量等于 14a r .【答案】14a r.【解答】解:向量a =r,则||2a =r,()(23)4a b a b +⋅-=r r r r,则22234a a b b -⋅-=rr r r ,即2182||3||42b b -⨯⨯-=r r ,解得||1b =r ,故b r 在a r方向上的投影向量等于1||cos 3||4a b a a π⨯=r r r r .故答案为:14a r.一十六.余弦定理(共1小题)18.(2023•奉贤区二模)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C 等于 45︒ .【解答】解:由余弦定理可知222cos 2a b c C ab +-=2222cos a b c ab C ∴+-=222111sin ()cos 242S ab C a b c ab C ==+-=Q sin cos C C ∴=0C π<<Q 45C ∴=︒故答案为:45︒一十七.虚数单位i 、复数(共1小题)19.(2023•宝山区二模)已知复数22(31)(56)3m m m m i --+--=(其中i 为虚数单位),则实数m = 1- .【答案】1-.【解答】解:复数22(31)(56)3m m m m i --+--=,则22313560m m m m ⎧--=⎨--=⎩,解得1m =-.故答案为:1-.一十八.棱柱、棱锥、棱台的侧面积和表面积(共1小题)20.(2023•奉贤区二模)已知圆柱的上、下底面的中心分别为1O 、2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的侧面积为 8π .【解答】解:如图所示,设圆柱的底面圆半径为r ,则高为2h r =,所以该圆柱的轴截面面积为2(2)8r =,解得r =∴该圆柱的侧面积为228S rh πππ===侧.故答案为:8π.一十九.棱柱、棱锥、棱台的体积(共1小题)21.(2023•松江区二模)将如图所示的圆锥形容器内的液体全部倒入底面半径为50mm 的直立的圆柱形容器内,则液面高度为 50 mm .【答案】50.【解答】解:设液面圆的半径为r ,由图形可得150100300r =,50r ∴=,23150150503V ππ∴=⨯⨯⨯=液,设圆柱形容器内液面的高度为h ,则235050h ππ⨯⨯=,解得50h =.故答案为:50.二十.直线与平面所成的角(共1小题)22.(2023•静安区二模)如图,正方体1111ABCD A B C D -中,E 为AB 的中点,F 为正方形11BCC B 的中心,则直线EF 与侧面11BB C C 所成角的正切值是 ..【解答】解:连接1BC ,EB ⊥Q 平面11BB C C ,则EFB ∠为直线EF 与侧面11BB C C 所成的角,设||2AB =,则||1BE =,||BF =,则||tan ||BE EFB BF ∠===,则直线EF 与侧面11BB C C ..二十一.双曲线的性质(共1小题)23.(2023•浦东新区二模)双曲线22:124x y C -=的右焦点F 到其一条渐近线的距离为 2 .【答案】2.【解答】解:Q 双曲线方程为22124x y -=,∴双曲线的右焦点F坐标为0),渐近线为y =0y ±=,可得焦点F到其渐近线的距离为2d ==.故答案为:2.二十二.条件概率与独立事件(共2小题)24.(2023•奉贤区二模)设某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,它能活到25岁的概率是 0.5 .【解答】解:设A = “能活到20岁”, B = “能活到25岁”,则P (A )0.8=,P (B )0.4=,而所求概率为(|)P B A ,由于B A ⊆,故A B B =I ,于是()()0.4(|)0.5()()0.8P A B P B P B A P A P A ====I ,所以这个动物能活到25岁的概率是0.5.故答案为:0.5.25.(2023•浦东新区二模)投掷一颗骰子,记事件{2A =,4,5},{1B =,2,4,6},则(|)P A B = 12 .【答案】12.【解答】解:21()63P AB ==,P (B )4263==,则1()13(|)2()23P AB P A B P B ===.故答案为:12.二十三.离散型随机变量的期望与方差(共1小题)26.(2023•奉贤区二模)已知随机变量X 的分布为123()111236,且3Y aX =+,若[]2E Y =-,则实数a = 3- .【答案】3-.【解答】解:随机变量X 的分布为123()111236,则1115[]1232363E X =⨯+⨯+⨯=,3Y aX =+,则5[][]3323E Y aE X a =+=+=-,解得3a =-.故答案为:3-.二十四.正态分布曲线的特点及曲线所表示的意义(共3小题)27.(2023•静安区二模)今年是农历癸卯兔年,一种以兔子形象命名的牛奶糖深受顾客欢迎.标识质量为500g 的这种袋装奶糖的质量指标X 是服从正态分布(500N ,22.5)的随机变量.若质量指标介于495g (含)至505g (含)之间的产品包装为合格包装,则随意买一包这种袋装奶糖,是合格包装的可能性大小为 95.4 %.(结果保留一位小数)(已知Φ(1)0.8413≈,Φ(2)0.9772≈,Φ(3)0.9987≈.()x Φ表示标准正态分布的密度函数从-∞到x 的累计面积)【答案】95.4.【解答】解:因为X 是服从正态分布(500N ,22.5),所以(505)(495)1P X P X >=<=-Φ(2)10.97720.0228≈-=,则(495505)120.02280.954495.4%P X <<=-⨯=≈.故答案为:95.4.28.(2023•浦东新区二模)设随机变量X 服从正态分布2(0,)N σ,且(2)0.9P X >-=,则(2)P X >= 0.1 .【答案】0.1.【解答】解:X 服从正态分布2(0,)N σ,其正态分布曲线关于y 轴对称,由对称性可知(2)(2)1(2)10.90.1P X P X P X >=<-=->-=-=.故答案为:0.1.29.(2023•松江区二模)已知随机变量X 服从正态分布(0,1)N ,若( 1.96)0.03P X <-=,则(|| 1.96)P X <= 0.94 .【答案】0.94.【解答】解:由正态分布的对称性得(|| 1.96)12( 1.96)0.94P x P X <=-<-=.故答案为:0.94.二十五.二项式定理(共2小题)30.(2023•松江区二模)在二项式81(x x-的展开式中,含4x 的项的系数是 28 (结果用数字作答).【答案】28.【解答】解:二项式81()x x-的展开式的通项为8218(1)r r r r T C x -+=-,令824r -=,得2r =,故含4x 的项的系数是228(1)28C -=.故答案为:28.31.(2023•宝山区二模)在62(x x+的展开式中,常数项为 160 .(结果用数字作答)【答案】160.【解答】解:二项式62()x x +的展开式的通项为6621662(2r r r r r r r T C x C x x--+==,令620r -=,得3r =,故常数项是3362160C ⋅=.故答案为:160.。

五年(2018-22)高考数学真题分类汇编(全国卷新高考卷卷等)专题16 三角函数单选题(解析版)

五年(2018-22)高考数学真题分类汇编(全国卷新高考卷卷等)专题16  三角函数单选题(解析版)
A.0B.1C.2D.3
【答案】C解析:法1:由基本不等式有 ,
同理 , ,
故 ,故 不可能均大于 .
取 , , ,则 ,
故三式中大于 的个数的最大值为2,故选C.
法2:不妨设 ,则 ,
由排列不等式可得:

而 ,
故 不可能均大于 .
取 , , ,则 ,
故三式中大于 的个数的最大值为2,故选C.
【题目栏目】三角函数\三角恒等变换\三角恒等变换的综合应用
又因为函数图象关于点 对称,所以 ,且 ,
所以 ,所以 , ,
所以 .故选:A
【题目栏目】三角函数\三角函数的图像与性质\三角函数的图象
【题目来源】2022新高考全国I卷·第6题
6.(2022年高考全国乙卷数学(文)·第11题)函数 在区间 的最小值、最大值分别为( )
A. B. C. D.
【答案】D
2018-2022五年全国各省份高考数学真题分类汇编
专题16三角函数单选题
一、选择题
1.(2022高考北京卷·第5题)已知函数 ,则( )
A. 在 上单调递减B. 在 上单调递增
C. 在 上单调递减D. 在 上单调递增
【答案】C
解析:因为 .
对于A选项,当 时, ,则 在 上单调递增,A错;
对于B选项,当 时, ,则 在 上不单调,B错;
对于C选项,当 时, ,则 在 上单调递减,C对;
对于D选项,当 时, ,则 在 上不单调,D错.
故选,C.
【题目栏目】三角函数\三角函数的图像与性质\三角函数的单调性与周期性
【题目来源】2022高考北京卷·第5题
2.(2022年浙江省高考数学试题·第6题)为了得到函数 1年新高考Ⅰ卷·第4题

三年国三 高考真题分类汇编 数学理(作者主页附答案)

三年国三 高考真题分类汇编 数学理(作者主页附答案)
(Ⅰ)证明 平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值。
(2017)19.(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A. B. C. D.
9.等差数列 的首项为1,公差不为0.若a2,a3,a6成等比数列,则 前6项的和为
A.-24B.-3C.3D.8
10.已知椭圆C: ,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线 相切,则C的离心率为
(2018)18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
△ABC的内பைடு நூலகம்A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(1)求c;(2)设D为BC边上一点,且AD AC,求△ABD的面积.
(2018)17.(12分)
等比数列 中, .
(1)求 的通项公式;(2)记 为 的前项和.若 ,求 .
(2016)18.(本小题满分12分)
1.已知集合A= ,B= ,则A B中元素的个数为
A.3B.2C.1D.0
2.设复数z满足(1+i)z=2i,则∣z∣=

2017-2021年浙江省高考数学真题分类汇编:集合与常用逻辑用语(附答案解析)

2017-2021年浙江省高考数学真题分类汇编:集合与常用逻辑用语(附答案解析)

2017-2021年浙江省高考数学真题分类汇编:集合与常用逻辑用语一.选择题(共8小题)1.(2021•浙江)设集合A={x|x≥1},B={x|﹣1<x<2},则A∩B=()A.{x|x>﹣1}B.{x|x≥1}C.{x|﹣1<x<1}D.{x|1≤x<2} 2.(2020•浙江)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4} 3.(2019•浙江)已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3} 4.(2018•浙江)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5} 5.(2017•浙江)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)6.(2020•浙江)设集合S,T,S⊆N*,T⊆N*,S,T中至少有2个元素,且S,T满足:①对于任意的x,y∈S,若x≠y,则xy∈T;②对于任意的x,y∈T,若x<y ,则∈S.下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素7.(2020•浙江)已知空间中不过同一点的三条直线l,m,n.则“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2019•浙江)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第1页(共6页)。

2024高考数学真题分类汇编(解析)

2024高考数学真题分类汇编(解析)

一.复数1.(2024年新课标全国Ⅰ卷)若1i 1zz =+-,则z =()A .1i --B .1i-+C .1i -D .1i+【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.(2024年新课标全国Ⅱ卷)已知1i z =--,则z =()A .0B .1C D .2【详解】若1i z =--,则z ==故选:C.3.(2024年高考全国甲卷数学(理))设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A二.集合1.(2024年新课标全国Ⅰ卷)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B ={}1,0-.故选:A.2.(2024年高考全国甲卷数学(理))集合{}{}1,2,3,4,5,9,A B A ==∈,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【详解】因为{}{}1,2,3,4,5,9,A B A ==∈,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D三.命题与逻辑1.(2024年新课标全国Ⅱ卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.2.(2024年高考全国甲卷数学(理))设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.四.向量1.(2024年新课标全国Ⅰ卷)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥- ,则x =()A .2-B .1-C .1D .2【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-= ,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.2.(2024年新课标全国Ⅱ卷)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B C D .1【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+= ,所以22144164a b b b +⋅+=+= ,从而2=b 故选:B.3.(2024年高考全国甲卷数学(理))已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-+”是“//a b ”的充分条件【详解】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.5.解三角形1.(2024年新课标全国Ⅰ卷)记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-(1)求B ;(2)若ABC 的面积为3c .【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin2C==,又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.(2)由(1)可得π3B=,cos2C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin124622224A⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c c==⋅=,由已知ABC的面积为32338c+=c=2.(2024年新课标全国Ⅱ卷)记ABC的内角A,B,C的对边分别为a,b,c,已知sin2A A+=.(1)求A.(2)若2a=sin sin2C c B=,求ABC的周长.【详解】(1)方法一:常规方法(辅助角公式)由sin2A A=可得1sin122A A+=,即sin()1π3A+=,由于ππ4π(0,π)(,333A A∈⇒+∈,故ππ32A+=,解得π6A=方法二:常规方法(同角三角函数的基本关系)由sin2A A=,又22sin cos1A A+=,消去sin A得到:24cos30(2cos0A A A-+=⇔-=,解得cos A=又(0,π)A∈,故π6A=方法三:利用极值点求解设()sin(0π)f x x x x=<<,则π()2sin(0π)3f x x x⎛⎫=+<<⎪⎝⎭,显然π6x=时,max()2f x=,注意到π()sin22sin(3f A A A A=+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅=+=,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔=又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21tA A t ==+整理可得,222(2(20((2t t t --+-==--,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC的周长为2+3.(2024年高考全国甲卷数学(理))在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.6.概率统计1.(2024年新课标全国Ⅰ卷)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .2.(2024年新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.3.(2024年新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.4.(2024年新课标全国Ⅱ卷)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;1125.(2024年高考全国甲卷数学(理))1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.6.(2024年高考全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:7157.(2024年高考全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +++⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.8.(2024年新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.7.立体几何1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高)A .B .C .D .【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r =即=,故3r =,故圆锥的体积为1π93⨯=.故选:B.2.(2024年新课标全国Ⅱ卷)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .3【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知11111662222ABC A B C S S =⨯⨯⨯==⨯⨯ 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA=DN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC AB C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则116618322P ABCV d-=⨯⨯⨯⨯,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为1r和2r,母线长分别为()212r r-和()213r r-,则两个圆台的体积之比=VV甲乙.【详解】由题可得两个圆台的高分别为)12h r r==-甲,)12h r r==-乙,所以((21211313S S h V h V h S S h ++-==++甲甲甲乙乙乙4.(2024年新课标全国Ⅰ卷)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB =.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【详解】(1)(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角ACP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC⊥,设AD x =,则CD=DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故22tan4DFEx∠==x=AD=5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,8AB=,3CD=,AD=,90ADC︒∠=,30BAD︒∠=,点E,F满足25AE AD=,12AF AB=,将AEF△沿EF对折至PEF!,使得PC=.(1)证明:EF PD⊥;(2)求面PCD与面PBF所成的二面角的正弦值.【详解】(1)由218,,52AB AD AE AD AF AB====,得4AE AF==,又30BAD︒∠=,在AEF△中,由余弦定理得2EF,所以222AE EF AF+=,则AE EF⊥,即EF AD⊥,所以,EF PE EF DE⊥⊥,又,PE DE E PE DE=⊂、平面PDE,所以EF⊥平面PDE,又PD⊂平面PDE,故EF⊥PD;(2)连接CE,由90,3ADC ED CD︒∠===,则22236CE ED CD=+=,在PEC中,6PC PE EC===,得222EC PE PC+=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,22(2,0,2PC PD PB PF =-===-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令122,y x =11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF所成角的正弦值为65.6.(2024年高考全国甲卷数学(理))如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【详解】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m = ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =故二面角F BM E --8.解析几何1.(2024年高考全国甲卷数学(理))已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D .2【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,()22164410PF =++=,()2226446PF =+-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.2.(2024年新课标全国Ⅰ卷)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O.且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+【详解】对于A :设曲线上的动点(),P x y ,则2x >-且()2224x y x a -+⨯-=,因为曲线过坐标原点,故()2202004a -+⨯-=,解得2a =-,故A 正确.对于B :又曲线方程为()22224x y x -+⨯+=,而2x >-,5.(2024年高考全国甲卷数学(理)22410++-=交于Ax y yA.2B.3C.4a b c成等差数列,所以【详解】因为,,++-=,即aax by b a20故选:C.(202427.(2024年新课标全国Ⅰ卷)已知(1)求C的离心率;(2)若过P的直线l交C于另一点⎧⎪⎪8.(2024年高考全国甲卷数学在C上,且MF x⊥轴.(1)求C的方程;由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+故()(42Δ102443464k k =-+23264k由已知有22549m =-=,故当12k =时,过()15,4P 且斜率为22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与9.函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B .C .D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A .1B .1C .2D .1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln 21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln201t t bt t +-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档