2019年高考数学总复习:事件与概率
高考数学总复习考点知识与题型专题讲解75 事件的相互独立性与条件概率 全概率公式

高考数学总复习考点知识与题型专题讲解§10.5事件的相互独立性与条件概率、全概率公式考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.知识梳理1.相互独立事件(1)概念:对任意两个事件A与B,如果P(AB)=P(A)·P(B)成立,则称事件A与事件B相互独立,简称为独立.(2)性质:若事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=n(AB) n(A);②概率的乘法公式:P(AB)=P(A)P(B|A).3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i =1nP (A i )P (B |A i ). 常用结论1.如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.贝叶斯公式:设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,P (B )>0,有P (A i |B )=P (A i )P (B |A i )P (B )=P (A i )P (B |A i )∑k =1n P (A k )P (B |A k ),i =1,2,…,n . 思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( √ )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( √ )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( √ ) 教材改编题1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为12,23,则谜题没被破解出的概率为( )A.16 B.13 C.56D.1答案 A解析设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,则P(A)=12,P(B)=23,故P(A)=12,P(B)=13,所以P(A B)=12×13=16,即谜题没被破解出的概率为1 6.2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是()A.128 B.110 C.19 D.27答案 D解析当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为2 7.3.智能化的社区食堂悄然出现,某社区有智能食堂A,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A食堂,那么第二天去A食堂的概率为0.6;如果第一天去B食堂,那么第二天去A食堂的概率为0.5,则居民甲第二天去A食堂用餐的概率为________.答案0.55解析由题意得,居民甲第二天去A食堂用餐的概率P=0.5×0.6+0.5×0.5=0.55.题型一相互独立事件的概率例1(1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案 B解析事件甲发生的概率P(甲)=16,事件乙发生的概率P(乙)=16,事件丙发生的概率P(丙)=56×6=536,事件丁发生的概率P(丁)=66×6=16.事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件甲与事件丁同时发生的概率为16×6=136,P(甲丁)=P(甲)P(丁),故B正确;事件乙与事件丙同时发生的概率为16×6=136,P(乙丙)≠P(乙)P(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为________.答案0.50.1解析记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),则P(X=2)=P(A1A2)+P(AA2)=P(A1)P(A2)+P(A1)P(A2)1=0.5×0.4+0.5×0.6=0.5.由乙先发球,得P(X=4且甲获胜)=P(A1A2A3A4)+P(A1A2A3A4)=P(A1)P(A2)P(A3)P(A4)+P(A1)P(A2)P(A3)·P(A4)=0.4×0.5×0.4×0.5+0.6×0.5×0.4×0.5=0.1.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;(2)这三列火车恰好有一列火车正点到达的概率;(3)这三列火车至少有一列火车正点到达的概率.解用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A)=0.2,P(B)=0.3,P(C)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A BC)+P(A B C)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)恰好有一列火车正点到达的概率为P2=P(A B C)+P(A B C)+P(A B C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)三列火车至少有一列火车正点到达的概率为P3=1-P(A B C)=1-P(A)P(B)P(C)=1-0.2×0.3×0.1=0.994.题型二条件概率例2(1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为()A.35B.25C.27D.15答案 D解析 设事件A 为“从七巧板中取出两块,取出的是三角形”,事件B 为“两块板恰好是全等三角形”,则P (AB )=2C 27=221,P (A )=C 25C 27=1021, 所以P (B |A )=P (AB )P (A )=2211021=15. (2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为( ) A.78 B.56 C.34 D.2021答案 A解析 记事件A :这人一次性饮酒4.8两未诱发这种疾病,事件B :这人一次性饮酒7.2两未诱发这种疾病,则事件B |A :这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病, 则B ⊆A ,AB =A ∩B =B ,P (A )=1-0.04=0.96,P (B )=1-0.16=0.84,故P (B |A )=P (AB )P (A )=P (B )P (A )=0.840.96=78. 思维升华 求条件概率的常用方法(1)定义法:P(B|A)=P(AB) P(A).(2)样本点法:P(B|A)=n(AB) n(A).(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2(1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为()A.14 B.25 C.12 D.35答案 C解析设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,所以P(A)=35,P(AB)=310,则P(B|A)=P(AB)P(A)=31035=12.(2)某射击运动员每次击中目标的概率为45,现连续射击两次.①已知第一次击中,则第二次击中的概率是________;②在仅击中一次的条件下,第二次击中的概率是________.答案①45②12解析①设第一次击中为事件A,第二次击中为事件B,则P(A)=4 5,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是4 5.②设仅击中一次为事件C,则仅击中一次的概率为P(C)=C12×45×15=825,在仅击中一次的条件下,第二次击中的概率是P(B|C)=15×45825=12.题型三全概率公式的应用例3(1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为()A.79160 B.35 C.2132 D.58答案 C解析设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率P(A)=P(B)P(A|B)+P(B)P(A|B)=58×0.9+38×0.25=21 32.(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为()A.0.48 B.0.49 C.0.52 D.0.51答案 D解析设事件A=“发送的信号为0”,事件B=“接收的信号为1”,则P(A)=P(A)=0.5,P(B|A)=0.07,P(B|A)=0.95,因此P(B)=P(A)P(B|A)+P(A)P(B|A)=0.5×(0.07+0.95)=0.51.思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3(1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78 B.0.8 C.0.82 D.0.84答案 C解析设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=________,P(B)=________.答案1 2 9 28解析 P (B |A 2)=24=12,由题知P (A 1)=37,P (A 2)=27,P (A 3)=27,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=37×14+27×24+27×14=928.课时精练1.若P (AB )=19,P (A )=23,P (B )=13,则事件A 与B 的关系是( ) A .事件A 与B 互斥 B .事件A 与B 对立 C .事件A 与B 相互独立D .事件A 与B 既互斥又相互独立 答案 C解析 ∵P (A )=1-P (A )=1-23=13, ∴P (A )P (B )=19, ∴P (AB )=P (A )P (B )≠0,∴事件A 与B 相互独立,事件A 与B 不互斥也不对立.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是()A.0.819 2 B.0.972 8C.0.974 4 D.0.998 4答案 B解析4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8 B.0.625 C.0.5 D.0.1答案 A解析设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)=P(AB)P(A)=0.20.25=0.8.4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为()A.0.36 B.0.352C.0.288 D.0.648答案 D解析由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为C12×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为()A.0.625 B.0.75 C.0.5 D.0.25答案 A解析记事件A为“该考生答对题目”,事件B1为“该考生知道正确答案”,事件B2为“该考生不知道正确答案”,则P(A)=P(A|B1)·P(B1)+P(A|B2)·P(B2)=1×0.5+0.25×0.5=0.625.6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”;B表示事件“医生乙派往①村庄”;C表示事件“医生乙派往②村庄”,则()A.事件A与B相互独立B.事件A与C相互独立C.P(B|A)=5 12D.P(C|A)=5 12答案 D解析将甲、乙、丙、丁4名医生派往①,②,③三个村庄进行义诊包含C24A33=36(个)样本点,它们等可能,事件A含有的样本点个数为A33+C23A22=12,则P (A )=1236=13, 同理P (B )=P (C )=13,事件AB 含有的样本点个数为A 22=2,则P (AB )=236=118, 事件AC 含有的样本点个数为C 22+C 12C 12=5,则P (AC )=536, 对于A ,P (A )P (B )=19≠P (AB ),即事件A 与B 不相互独立,故A 不正确;对于B ,P (A )P (C )=19≠P (AC ),即事件A 与C 不相互独立,故B 不正确; 对于C ,P (B |A )=P (AB )P (A )=16,故C 不正确; 对于D ,P (C |A )=P (AC )P (A )=512,故D 正确. 7.(2022·石家庄模拟)某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得-20分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响,则该选手仅回答正确两个问题的概率是 ________;该选手闯关成功的概率是 ________. 答案 4912解析 该选手仅回答正确两个问题的概率是P 1=23×23×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12=49,该选手要闯关成功,则只有第3个问题回答正确或者第1,3两个问题回答正确或者第2,3两个问题回答正确或者三个问题都回答正确,所以闯关成功的概率为⎝ ⎛⎭⎪⎫1-232×12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12+23×23×12=12. 8.某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________. 答案 16解析 设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 16C 27=27,P (AB )=1C 27=121,故P (B |A )=P (AB )P (A )=16. 9.(2022·襄阳模拟)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率. 解 (1)该款芯片生产在进入第四道工序前的次品率P =1-⎝ ⎛⎭⎪⎫1-110×⎝ ⎛⎭⎪⎫1-19×⎝ ⎛⎭⎪⎫1-18=310.(2)设“该款智能自动检测合格”为事件A ,“人工抽检合格”为事件B , 则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.10.(2023·佛山模拟)男子冰球比赛上演的是速度与激情的碰撞.2022北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛.比赛规则:12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段: 小组赛阶段各组采用单循环赛制(小组内任意两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组比赛成绩进行排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中相遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛.(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛? (2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲、乙、丙、丁队)实力相当,假设他们在接下来的四分之一决赛、半决赛、铜牌赛、金牌赛中取胜的概率都依次为34,12,12,12,且每支球队晋级后每场比赛相互独立.试求甲、乙、丙、丁队都没获得冠军的概率.解(1)根据赛制,小组赛共安排3×C24=18(场)比赛,附加赛共安排8÷2=4(场)比赛,四分之一决赛共安排8÷2=4(场)比赛,半决赛共安排4÷2=2(场)比赛,铜牌赛、金牌赛各比赛一场,共2场,故本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排18+4+4+2+2=30(场)比赛.(2)设甲、乙、丙、丁队获得冠军分别为事件A,B,C,D,都没有获得冠军为事件E,∵晋级后每场比赛相互独立,∴P(A)=34×12×12=316,∵四队实力相当,∴P(B)=P(C)=P(D)=P(A)=3 16,∵事件A,B,C,D互斥,∴甲、乙、丙、丁队都没获得冠军的概率为P(E)=1-P(A∪B∪C∪D)=1-[P(A)+P(B)+P(C)+P(D)]=1-4×316=14.故甲、乙、丙、丁队都没获得冠军的概率为1 4.11.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如图所示,其中编号为i的方框表示第i场比赛,方框中是进行该场比赛的两名棋手,第i场比赛的胜者称为“胜者i”,负者称为“负者i ”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为23,而乙、丙、丁之间相互比赛,每人胜负的可能性相同.则甲获得冠军的概率为( )A.827B.1627C.3281D.4081 答案 D解析 甲获得冠军,则甲参加的比赛结果有三种情况:1胜3胜6胜;1负4胜5胜6胜;1胜3负5胜6胜,故甲获得冠军的概率为⎝ ⎛⎭⎪⎫233+2×⎝ ⎛⎭⎪⎫233×13=4081.12.(多选)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是( ) A .P (B )=25 B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件 答案 BD解析 由题意知,A 1,A 2,A 3是两两互斥的事件,故D 正确;P (A 1)=510=12,P (A 2)=210=15,P(A3)=310,P(B|A1)=12×51112=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C不正确.13.(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大答案 D解析设该棋手在第二盘与甲比赛连胜两盘的概率为P甲,在第二盘与乙比赛连胜两盘的概率为P乙,在第二盘与丙比赛连胜两盘的概率为P丙,方法一由题意可知,P甲=2p1[p2(1-p3)+p3(1-p2)]=2p1p2+2p1p3-4p1p2p3,P乙=2p2[p1(1-p3)+p3(1-p1)]=2p1p2+2p2p3-4p1p2p3,P丙=2p3[p1(1-p2)+p2(1-p1)]=2p1p3+2p2p3-4p1p2p3.所以P丙-P甲=2p2(p3-p1)>0,P丙-P乙=2p1(p3-p2)>0,所以P丙最大.方法二(特殊值法)不妨设p1=0.4,p2=0.5,p3=0.6,则该棋手在第二盘与甲比赛连胜两盘的概率P甲=2p1[p2(1-p3)+p3(1-p2)]=0.4;在第二盘与乙比赛连胜两盘的概率P乙=2p2[p1(1-p3)+p3(1-p1)]=0.52;在第二盘与丙比赛连胜两盘的概率P丙=2p3[p1(1-p2)+p2(1-p1)]=0.6.所以P丙最大.14.(2023·舟山模拟)根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A 表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,P(A|C)=0.95,现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即P(C)=0.005,则P(C|A)=________.(精确到0.001)答案0.087解析∵P(A|C)=0.95,∴P(A|C)=1-P(A|C)=0.05,∵P(C)=0.005,∴P(C)=0.995,由全概率公式可得,P(A)=P(A|C)P(C)+P(A|C)P(C),∵P(AC)=P(C|A)P(A)=P(A|C)P(C),∴P(C|A)=P(A|C)P(C)P(A|C)P(C)+P(A|C)P(C)=0.95×0.0050.95×0.005+0.05×0.995=19218≈0.087.21 / 21。
事件的相互独立性、条件概率与全概率公式-高考数学复习

)
A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事
件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)
第9章 第3节 随机事件的概率-2023届高三一轮复习数学精品备课(新高考人教A版2019)

六月份这种酸奶一天的进货量为 450 瓶时,写出 Y 的所有可
能值,并估计 Y 大于零的概率.
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40]
天数
2
16
36
25
7
4
(1)估计六月份这种酸奶一天的需求量不超过 300 瓶的概率;
解析 (1)这种酸奶一天的需求量不超过 300 瓶, 当且仅当最高气温低于 25,由表格数据知, 最高气温低于 25 的频率为2+1960+36=0.6, 所以这种酸奶一天的需求量不超过 300 瓶的概率的估 计值为 0.6.
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140
50
300
200
800
510
好评率 0.4 0.2 0.15 0.25
0.2
0.1
(2)随机选取 1 部电影,估计这部电影没有获得好评的概率;
(2)由题意知,样本中获得好评的电影部数是 140 × 0.4 + 50×0.2 +300×0.15 +200×0.25 + 800×0.2 + 510×0.1=56+10+45+50+160+51=372. 故所求概率估计为 1-2307020=0.814.
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40]
天数
2
16
36
25
7
4
(2)设六月份一天销售这种酸奶的利润为 Y(单位:元).当六
月份这种酸奶一天的进货量为 450 瓶时,写出 Y 的所有可能值,
并估计 Y 大于零的概率. (2)当这种酸奶一天的进货量为 450 瓶时,
高考数学一轮复习知识点与练习随机事件的概率

第卜二章概率、随机变就及其概率分布§12.1随机事件的概率基础知识自主学习U知识梳理要覇讲解深层娈破1. 概率和频率(1) 在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A 为事件A出现的频数,称事件A出现的比例f n(A)= nA为事件A出现的频率.(2) 对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).2. 事件的关系与运算定义付号表示包含关系如果事件A发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B? A(或A? B)相等关系若B? A且A? B A = B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A U B(或A + B)父事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A n B(或AB)互斥事件若A A B为不可能事件(A n B= ?),则称事件A与事件B互斥A nB = ?对立事件若A n B为不可能事件,A U B为必然事件,那么称事件A与事件B互为对立事件P(A)+ P(B)=13. 概率的几个基本性质(1) 概率的取值范围:0W P(A)w 1.(2) 必然事件的概率P(E) = 1.⑶不可能事件的概率P( F) = 0.(4) 概率的加法公式如果事件A与事件B互斥,则P(A U B)= P(A) + P(B).(5) 对立事件的概率若事件A与事件B互为对立事件,则P(A) = 1 —P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确(请在括号中打“V”或“X”)(1) 事件发生频率与概率是相同的. ()(2) 随机事件和随机试验是一回事. ()(3) 在大量重复试验中,概率是频率的稳定值. ()(4) 两个事件的和事件是指两个事件都得发生. ()(5) 对立事件- -定是互斥事件,互斥事件不一定是对立事件. ()(6) 两互斥事件的概率和为 1.( )考点自测伏速解普自查自纠1. 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________ .①至多有一次中靶②两次都中靶③只有一次中靶④两次都不中靶2. 从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为_________ .3. (2015湖北改编)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为___________ 石.专注•专业•口碑•极致-2 -4. ___________________________________________ 给出下列三个命题,其中正确的命题有个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,3结果3次出现正面,因此正面出现的概率是7;③随机事件发生的频率就是这个随机事件发生的概率.5. _____________________________________ (教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为.题型分类深度剖析题型一事件关系的判断例1某城市有甲、乙两种报纸供居民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订” •判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.思维升华对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件•这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.W' 判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中①恰有1名男生和恰有2名男生;②至少有1名男生和至少有1名女生;③至少有1名男生和全是女生.题型二随机事件的频率与概率例2 (2015北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整专注•专业•口碑•极致⑴估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;⑶如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?思维升华(1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.」艮打.Ul.^. 2 某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1) 计算表中乒乓球优等品的频率;(2) 从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)题型三互斥事件、对立事件的概率命题点1互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是*得到黑球或黄球的概率是—,得到黄球或绿球的概率也是—,试求得到黑球、黄球和绿球的概率各是多12 12少?命题点2对立事件的概率例4某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个•设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:(1) P(A), P(B), P(C);(2) 1张奖券的中奖概率;(3) 1张奖券不中特等奖且不中一等奖的概率.思维升华求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A) = 1- P( A)求解•当题目涉及“至多”“至少”型问题时,多考虑间接法.比二"和"国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7〜10环的概率如下表所示:求该射击队员射击一次:(1) 射中9环或10环的概率;(2) 命中不足8环的概率.21 •用正难则反思想求互斥事件的概率典例(14分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示(1) 确定x, y的值,并估计顾客一次购物的结算时间的平均值;(2) 求一位顾客一次购物的结算时间不超过..2分钟的概率.(将频率视为概率)思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反思想求解.温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式. 易错提示(1)对统计表的信息不理解,错求x, y,难以用样本平均数估计总体. (2)不能正确地把事件A转化为几个互斥事件的和或对立事件,导致计算错误.——■ ■思想方法感悟提高[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A).2•从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A的对立事件~A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集. [失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2•需准确理解题意,特别留心“至多””“至少””“不少于”” 等语句的含义.练出高分A组专项基础训练(时间:45分钟)事件N: “只有一次出现反面”,1.下列命题:①将一枚硬币抛两次,设事件M : “两次出现正面”,-6 -专注•专业•口碑•极致则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B互为对立事件;④若事件A与B互为对立事件,则事件A U B为必然事件,其中,真命题是_________________ .1 122•围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为刁,都是白子的概率是35,则从中任意取出2粒恰好是同一色的概率是___________ •3. 从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C= {抽到三等品},且已知P(A)= 0.65, P(B)= 0.2 , P(C)= 0.1,则事件“抽到的产品不是一等品”的概率为4. 从存放的号码分别为1,2,3 , , , 10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到次数138576131810119则取到号码为奇数的卡片的频率是__________5•对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图•根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品•用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为 ________ .6. 在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________ 是必然事件;________ 是不可能事件; _________ 是随机事件.7. 已知某运动员每次投篮命中的概率都为40% ,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果•经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为 ____________ .&若随机事件A, B互斥,A, B发生的概率均不等于0,且P(A) = 2- a, P(B)= 4a —5,则实数a的取值范围是_______________9. (2014陕西)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1) 若额的概率;(2) 在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为 4 000元的概率.10. 从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为 4.(1)求第七组的频率;⑵估计该校的800名男生的身高的中位数以及身高在180 cm以上洽180 cm)的人数;(3) 若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x, y,事件E={|x—y|w5},事件 F = {|x—y|>15},求P(E U F).B组专项能力提升(时间:25分钟)11. 在一次随机试验中,彼此互斥的事件A, B, C, D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是_______________ .① A + B与C是互斥事件,也是对立事件;② B + C与D是互斥事件,也是对立事件;③ A + C与B+ D是互斥事件,但不是对立事件;④A与B+ C+ D是互斥事件,也是对立事件.12. 如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成均成绩超过乙的平均成绩的概率为__________甲乙9 £g 3 3 72 1 09■ 9绩,其中一个数字被污损,则甲的平4 113. 若A, B互为对立事件,其概率分别为P(A) = x,P(B)= y,且Q0,y>0,则X+ y的最小值为14. 如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查, 调查结果如下:选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;⑵分别求通过路径L i和L2所用时间落在上表中各时间段内的频率;⑶现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.15日期123456789101112131415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(2) 西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.。
[数学]高三文科数学概率复习课
![[数学]高三文科数学概率复习课](https://img.taocdn.com/s3/m/2ef50027cc17552707220829.png)
1. “一个骰子掷一次得到6的概率是
1 6
,这说明一个骰子掷6次会出现一
1
次6”,这种说法对吗?请说明你的理由. 解析:这种说法是不对的.虽然每次掷骰子出现6点的概率是 6,但连续
掷6次骰子不一定会1,2,3,4,5,6各出现一次,可能出现某个数的次数多
一些,其他的数少一些,这正好体现了随机事件发生的随机性.但随着试 验次数的增加,出现1,2,3,4,5,6各数的频率大约相等,即都为试验次数 的
1
女孩 P
2
2002
2003 2004 2005 2006 5年总计
0.516
0.518 0.515 0.518 0.516 0.517
0.484
0.482 0.485 0.482 0.484 0.483
2. 某批乒乓球产品质量检查结果如下表所示: 抽取球数n 50 100 200 500 1000 2000
题型二
随机事件的概率问题
例2某地区近5年出生婴儿的调查表如下:
出生数 出生年份 2002 男孩 m
1
共计n=
2
出生频率 男孩 P
1
女孩 m
m m
1
2
女孩 P
2
52807
49473
102280
2003
2004 2005 2006 5年总计
51365
49698 49654 48243 251767
47733
概率复习课
第三章
第1课时
基础梳理
1. 事件 (1)必然事件:
概率
随机事件的概率
在条件S下, 一定会发生的事件,叫做相对于条件S的必然事件. (2) 不可能事件: 在条件S下, 一定不会发生 的事件,叫做相对于条件S的不可能事件. (3) 确定事件: 必然事件与不可能事件 统称为相对于条件S的确定事件. (4) 随机事件 在条件S下, 可能发生也可能不发生 的事件,叫做相对于条件S的随机事件.
历年(2019-2024)全国高考数学真题分类(事件与概率)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编考点01 古典概率一、单选题1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.133.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.234.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.235.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.236.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.87.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.128.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23 B.35C.25D.15二、填空题21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 .23.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= .26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .28.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 .30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为 ;已知乙选了A 活动,他再选择B 活动的概率为 .2.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8B .0.6C .0.5D .0.43.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等参考答案考点01 古典概率一、单选题 1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )6323【答案】A【详细分析】对6个主题编号,利用列举列出甲、乙抽取的所有结果,并求出抽到不同主题的结果,再利用古典概率求解作答.【答案详解】用1,2,3,4,5,6表示6个主题,甲、乙二人每人抽取1个主题的所有结果如下表:甲 1234 5 61 (1,1) (1,2) (1,3) (1,4)(1,5) (1,6) 2 (2,1)(2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3)(3,4) (3,5)(3,6) 4 (4,1)(4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3)(5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36个不同结果,它们等可能,其中甲乙抽到相同结果有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个, 因此甲、乙两位参赛同学抽到不同主题的结果有30个,概率305366P ==. 故选:A3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )5353【答案】C【详细分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【答案详解】[方法一]:【最优解】无序 从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=. [方法二]:有序从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为122305=. 故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解; 方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;5.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.6.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3 B .0.5C .0.6D .0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C.7.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14 C .13D .12【答案】D【解析】男女生人数相同可利用整体发详细分析出两位女生相邻的概率,进而得解.【答案详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【名师点评】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.8.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .15【答案】B【详细分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【答案详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105,选B . 【名师点评】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.二、填空题 21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 【答案】12/0.5 【详细分析】将每局的得分分别作为随机变量,然后详细分析其和随机变量即可. 【答案详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==. 从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==; 如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==. 而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==. 所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=. 故答案为:12.【名师点评】关键点名师点评:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 . 【答案】715【详细分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【答案详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种, 若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:71523.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .【答案】 24 112【详细分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【答案详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中, 则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选, 所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,ab c d ,,,分别表示第一、二、三、四列的数字, 则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=. 故答案为:24;112【名师点评】关键点名师点评:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 【答案】 0.0535/0.6 【详细分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空; 根据古典概型的概率公式可求出第二个空.【答案详解】设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 乙盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 丙盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==. 故答案为:0.05;35.25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= . 【答案】1635,127/517【详细分析】利用古典概型概率公式求(2)P ξ=,由条件求ξ分布列,再由期望公式求其期望.【答案详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===, 由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=, 故答案为:1635,127. 26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 【答案】635. 【详细分析】根据古典概型的概率公式即可求出.【答案详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 . 【答案】310/0.3 【详细分析】根据古典概型计算即可【答案详解】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法; 其中,甲、乙都入选的选法有3种,故所求概率310P =. 故答案为:310. 解法二:从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31028.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .【答案】 189【详细分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ. 【答案详解】2244224461(2)366m n m n m n C P C CCξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=.由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为:1;89.29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 【答案】19【详细分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可. 【答案详解】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 故答案为:19.【名师点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题. 30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710. 【详细分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【答案详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【名师点评】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E五种活动,甲、乙都要选择三个活动参加.甲选到A的概率为;已知乙选了A活动,他再选择B活动的概率为.【答案】 3512【详细分析】结合列举法或组合公式和概率公式可求甲选到A的概率;采用列举法或者条件概率公式可求乙选了A活动,他再选择B活动的概率.【答案详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE,共10种情况,其中甲选到A有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE,则甲选到A得概率为:63105P==;乙选A活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE, 其中再选则B有3种可能性:,,ABC ABD ABE,故乙选了A活动,他再选择B活动的概率为31 = 62.解法二:设甲、乙选到A为事件M,乙选到B为事件N,则甲选到A的概率为()2435C3 C5P M==;乙选了A活动,他再选择B活动的概率为()()()133524351C2CCP MN CP N MP M===故答案为:35;122.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8 B .0.6C .0.5D .0.4【答案】A【详细分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【答案详解】同时爱好两项的概率为0.50.60.70.4+-=, 记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==,所以()0.4()0.8()0.5P AB P B A P A ===∣. 故选:A .3.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为 【答案】1221 117【详细分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【答案详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C ,则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======. 故答案为:1221;117.考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .【答案】0.85【详细分析】求出各题库所占比,根据全概率公式即可得到答案. 【答案详解】由题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=.故答案为:0.85.(附加)2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详细分析】(1)根据全概率公式即可求出;(2)设()i i P A p =,由题意可得10.40.2i i p p +=+,根据数列知识,构造等比数列即可解出; (3)先求出两点分布的期望,再根据题中的结论以及等比数列的求和公式即可求出. 【答案详解】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B , 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+ ()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+, 构造等比数列{}i p λ+, 设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭, 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. (3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 【名师点评】本题第一问直接考查全概率公式的应用,后两问的解题关键是根据题意找到递推式,然后根据数列的基本知识求解.考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【答案】BC【详细分析】根据正态分布的3σ原则以及正态分布的对称性即可解出. 【答案详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误; 因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<, 而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误, 故选:BC .2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .【答案】0.14/750. 【详细分析】根据正态分布曲线的性质即可解出.【答案详解】因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D【详细分析】由正态分布密度曲线的特征逐项判断即可得解.【答案详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.。
高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

件 B:甲和乙选择的景点不同,则条件概率 P(B|A)=( D )
A.176
B.78
C.37
D.67
பைடு நூலகம்
[解析] 由题意知,事件 A:甲和乙至少一人选择庐山,共有 n(A)=C12·C13+1=7 种 情况,事件 AB:甲和乙选择的景点不同,且至少一人选择庐山,共有 n(AB)=C12·C13=6 种情况,P(B|A)=nnAAB=67.故选 D.
2
— 19 —
(新教材) 高三总复习•数学
— 返回 —
条件概率的 2 种求法 (1)利用定义,分别求 P(A)和 P(AB),得 P(B|A)=PPAAB,这是求条件概率的通法. (2)借助古典概型概率公式,先求事件 A 包含的基本事件数 n(A),再求事件 A 与事件 B 的交事件中包含的基本事件数 n(AB),得 P(B|A)=nnAAB.
满 2 局或 3 局,且在 11 分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”
模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立.
(1)求 4 局比赛决出胜负的概率;
(2)设在 24 分钟内,甲、乙比赛了 3 局,比赛结束时,甲乙总共进行 5 局的概率.
— 13 —
— 4—
(新教材) 高三总复习•数学
— 返回 —
2.条件概率 (1)概念:一般地,设
A,B
为两个随机事件,且
P(A)>0,我们称
P(B|A)=PPAAB
为
在事件 A 发生的条件下,事件 B 发生的条件概率,简称条件概率.
(2)两个公式
nAB
①利用古典概型,P(B|A)= nA .
②概率的乘法公式:P(AB)= P(A)P(B|A) .
高考总复习数学精品课件 第11章 第4节 事件的相互独立性与条件概率、全概率公式

3.全概率公式
一般地,设A1,A2,…,An是一组两两互斥的事件,A
1∪A2∪…∪An=Ω,且
P(B)= ∑ P(Ai)P(B|Ai)
P(A )>0, i=1,2,…,n,则对任意事件B⊆Ω,有____________________.我们称
i
=1
这个公式为全概率公式.
指的是对目标事件B有贡献的全部原因
20
20
摊集中点在销售旺季的某天接纳顾客量超过 1 万人次的条件下,随后一天接
纳顾客量超过 1 万人次的概率是( D )
7
9
4
7
A.10
B.10
C.5
D.9
解析 设“某天接纳顾客量超过 1 万人次”为事件 A,“随后一天的接纳顾客量超
7
9
7
()
7
20
过 1 万人次”为事件 B,则 P(A)= ,P(AB)= ,所以 P(B|A)=
1.事件的相互独立性
事件 A 与事件 对任意的两个事件 A 与 B,如果 P(AB)=P(A)P(B)成立,则
B 相互独立
称事件 A 与事件 B 相互独立,简称为独立
性质
若事件 A 与事件 B 相互独立,则 A 与, 与 B,与也都
相互独立
2.条件概率
条件概率
的定义
条件概率
的性质
当P(A)=0时,我们不定义条件概率
5.(人教B版选择性必修第二册4.1.3节练习A第5题)加工某一零件需经过三
道工序,设第一、二、三道工序的次品率分别为
1 1 1
, ,
70 69 68
3
影响,则加工出来的零件的次品率为__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学总复习:事件与概率1.将一个骰子抛掷一次,设事件A 表示向上的一面出现的点数不超过3,事件B 表示向上的一面出现的点数不小于4,事件C 表示向上的一面出现奇数点,则( ) A .A 与B 是对立事件 B .A 与B 是互斥而非对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件答案 A解析 由题意知,事件A 包含的基本事件为向上点数为1,2,3,事件B 包含的基本事件为向上的点数为4,5,6.事件C 包含的点数为1,3,5.A 与B 是对立事件,故选A. 2.从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件的是( )A .恰好有1件次品和恰好有2件次品B .至少有1件次品和全是次品C .至少有1件正品和至少有1件次品D .至少有1件次品和全是正品 答案 A解析 依据互斥和对立事件的定义知,B ,C 都不是互斥事件;D 不但是互斥事件而且是对立事件;只有A 是互斥事件但不是对立事件.3.(2018·广东茂名模拟)在{1,3,5}和{2,4}两个集合中各取一个数字组成一个两位数,则这个数能被4整除的概率是( ) A.13 B.12 C.16 D.14答案 D解析 符合条件的所有两位数为12,14,21,41,32,34,23,43,52,54,25,45,共12个,能被4整除的数为12,32,52,共3个,故所求概率P =312=14.4.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12 C.23 D.34 答案 C解析 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P =23.5.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A .0.53B .0.5C .0.47D .0.37答案 A解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53,故选A.6.(2016·天津改编)甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则甲获胜的概率和甲不输的概率分别为( ) A.16,16 B.12,23 C.16,23 D.23,12答案 C解析 “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=16.设事件A 为“甲不输”,则A 可看作是“甲胜”与“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23.(或设事件A 为“甲不输”,则A 可看作是“乙胜”的对立事件.所以P(A)=1-13=23)7.(2013·陕西文)对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45答案 D解析 由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.8.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为( ) A.1936 B.12 C.59 D.1736答案 A解析 若方程有实根,则Δ=b 2-4c ≥0,当有序实数对(b ,c)的取值为(6,6),(6,5),…,(6,1),(5,6),(5,5),…,(5,1),(4,4),…,(4,1),(3,2),(3,1),(2,1)时方程有实根,共19种情况,而(b ,c)等可能的取值共有36种情况,所以,方程有实根的概率为P =1936.9.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率是________. 答案112解析 本题基本事件共6×6个,点数和为4的有3个事件为(1,3),(2,2),(3,1),故P =36×6=112. 10.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.则该企业在一个月内被消费者投诉不超过1次的概率为________. 答案 0.9解析 方法一:记“该食品企业在一个月内被消费者投诉的次数为0”为事件A ,“该食品企业在一个月内被消费者投诉的次数为1”为事件B ,“该食品企业在一个月内被消费者投诉的次数为2”为事件C ,“该食品企业在一个月内被消费者投诉的次数不超过1”为事件D ,而事件D 包含事件A 与B ,所以P(D)=P(A)+P(B)=0.4+0.5=0.9.方法二:记“该食品企业在一个月内被消费者投诉的次数为2”为事件C ,“该食品企业在一个月内被消费者投诉不超过一次”为事件D ,由题意知C 与D 是对立事件,所以P(D)=1-P(C)=1-0.1=0.9.11.(2018·江苏苏北四市调研)从1,2,3,4,5,6这六个数中一次随机地取两个数,则所取两个数的和能被3整除的概率为________. 答案 13解析 从六个数中一次随机地取两个数,有15种等可能的结果,而所取两个数的和能被3整除包含5种结果,即(1,2),(1,5),(2,4),(3,6),(4,5),∴所取两个数的和能被3整除的概率为515=1 3.12.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.答案(1)0.27(2)0.24解析(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.13.下表为某班的英语及数学成绩,全班共有学生50人,成绩分为1~5分五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的共5人.设x,y分别表示英语成绩和数学成绩.(1)x=4(2)x=2的概率是多少?a+b的值是多少?答案 (1)725,750,710 (2)15,3解析 (1)P(x =4)=1+0+7+5+150=725;P(x =4且y =3)=750,P(x ≥3)=P(x =3)+P(x =4)+P(x =5) =2+1+0+9+350+725+1+3+1+0+150=710.(2)P(x =2)=1-P(x =1)-P(x ≥3)=1-110-710=15.又∵P(x =2)=1+b +6+0+a 50=15,∴a +b =3.14.(2018·辽宁六盘山高级中学一模)某中学有初中学生1 800人,高中学生1 200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)写出a 的值;(2)试估计该校所有学生中,阅读时间不少于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率. 答案 (1)0.03 (2)870 (3)0.7 解析 (1)由题意得a =0.03.(2)∵初中生中,阅读时间不少于30个小时的学生频率为(0.020+0.005)×10=0.25. ∴所有初中生中,阅读时间不少于30个小时的学生约有0.25×1 800=450人. 同理,高中生中,阅读时间不少于30个小时的学生频率为(0.03+0.005)×10=0.35, ∴所有高中生中.阅读时间不少于30个小时的学生约有0.35×1 200=420人. ∴该校所有学生中,阅读时间不少于30个小时的学生人数约有450+420=870.(3)由分层抽样知,抽取的初中生有60名,高中生有40名.记“从阅读时间不足10个小时的样本学生中随机抽取2人,至少抽到1名高中生”为事件A.初中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×60=3.高中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×40=2.记这3名初中生为A 1,A 2,A 3,这2名高中生为B 1,B 2.则从阅读时间不足10个小时的样本学生中随机抽取2人,所有可能的情况有C 52=10种 其中至少有一名高中生的情况有C 52-C 32=7种 ∴所求概率为710=0.7.15.(2018·四川成都一诊)已知国家某5A 级大型景区对拥挤等级与每百游客数量n(单位:百人)的关系有如下规定:当n ∈[0,100)时,拥挤等级为“优”;当n ∈[100,200)时,拥挤等级为“良”;当n ∈[200,300)时,拥挤等级为“拥挤”;当n ≥300时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据.(1)下面是根据统计数据得到的频率分布表,求出a ,b 的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);(2)天遇到的游客拥挤等级均为“优”的概率. 答案 (1)15,12,120(百人) (2)310解析 (1)由题图知游客人数在[0,100)范围内共有15天,∴a =15,b =1530=12.游客人数的平均数为50×12+150×13+250×215+350×130=120(百人).(2)设A 表示事件“2天遇到的游客拥挤等级均为‘优’”.从5天中任选2天的选择方法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个基本事件,其中事件A 包括(1,4),(1,5),(4,5),共3个基本事件,∴P(A)=310.即他这2天遇到的游客拥挤等级均为“优”的概率为310. 16.(2017·课标全国Ⅲ,文)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 答案 (1)0.6 (2)0.8解析 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25 ℃.由表格数据知,最高气温低于25 ℃的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25 ℃,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2×(450-300)-4×450=300; 若最高气温低于20 ℃,则Y =6×200+2×(450-200)-4×450=-100. 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20 ℃,由表格数据知,最高气温不低于20 ℃的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球.中的哪几个( ) A .①② B .①③ C .②③ D .①②③答案 A解析 从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.2.(2013·江西)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.16答案 C解析 从A 、B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所求概率P =26=13,选C.。