(完整版)计算机在材料科学中的应用-文献上机WK
计算机技术在材料科学中的应用

计算机技术在材料科学中的应用随着科技的快速发展,计算机技术在各领域中得到了广泛应用,材料科学也不例外。
计算机技术在材料科学中的应用,主要体现在以下几个方面:材料模拟、结构设计、材料制备、性能评估和数据分析等。
一、材料模拟材料模拟是应用计算机技术模拟材料结构和性质的一种方法。
它是一种快速了解材料的结构和性能的方式,通过计算模拟的结果,可以为材料制备和性能评估提供重要的参考依据。
材料模拟方法可以分为基于量子力学和分子力学的两大类。
其中,基于量子力学的方法计算精度较高,适用于材料内部原子结构细节的模拟,而基于分子力学的方法计算速度较快,适用于材料宏观性能的预测。
二、结构设计在材料设计方面,计算机技术已成为主流手段。
材料的结构设计包括对各种材料进行理论分析,通过计算机对材料进行优化设计,以达到提高材料性能的目的。
计算机通过建立复杂的多参数调节模型,对材料进行虚拟设计和计算分析,优化各项性能指标,使得材料上市前就达到了最优性能指标,这大大缩短了材料从实验室研发到商业化的时间。
三、材料制备材料制备是指利用不同的制备方法来获得具有特定结构和性质的材料。
计算机技术在材料制备中起到了重要的作用,可以通过控制材料的结构和形态,来实现制备出具有特定性质的材料。
例如,通过分子动力学模拟,可以模拟材料的制备过程,从而根据需要来优化材料的制备条件。
四、性能评估在材料性能评估方面,计算技术已成为一种不可替代的方法。
通过计算机对材料的性质进行模拟和预测,不仅可节省研发成本,缩短研发周期,而且还在一定程度上避免了不必要的实验过程的造成的材料浪费,是一种可持续发展的研发方式。
材料性能评估包括材料的力学性能、物理性能、化学性能、电学性能、热性能等各项性能指标的评估。
五、数据分析计算机技术在材料科学中还有一个重要领域,即数据分析。
材料科学是一个需要收集、分析大量数据的领域。
计算机技术的进步,不仅可以帮助研究人员快速处理数据量大的实验结果,而且还可以通过机器学习等技术来挖掘更多的信息,快速发现材料之间的关系,为材料设计和性能预测提供更为精准的数据支持。
计算机在材料科学中的应用-文献上机WK

第45卷 第2期 ISSN 1001-9154 CN51-1097/G8
全国中文核心期刊 CSSCI来源期刊 中国人文社会科学核心期刊 RCCSE中国科学学术期刊
中国知网页面
中国图书资料分类法
《中国图书资料分类法》,又叫《中图法》,依图书文献内容学科 属性和外部特征,分门别类组成分类表。下分22个大类(一级类 目),用22个汉语拼音字母(A-K、N-V、X、Z)列出,在字母后 用阿拉伯数字或字母表示下一级类目的划分。
T 工业技术下一级类目
万方数据库页面
维普数据库页面
专利 中国国家知识产权局专利检索系统和中国专利网提供 1985年以来的中国专利文献的全文免费检索,为会员单 位除提供基本检索外还提供高级检索,为非会员单位免 费提供基础检索。 中国专利信息网 /
科技文献的管理与传递
“读秀”是把所有的图书打碎,以章节为基础重新整合全文数据及资料 基本信息在一起的海量数据库。 最大的特点:文献传递功能,通过文献传递,使用者可以通过邮箱获取 没有订购的数据库资源。
科技文献的管理与传递
“百链”是超星公司继“读秀”中文学术检索工具之后推出的外文检索引擎。 “百链”对125种外文数据库的数据资源进行了整合,能够同时搜索外文图书、 外文期刊、外文论文等,并可实现与“读秀”中文资源搜索的自由切换, “百链”与“读秀”结合使用可完成中外文资源的一站式服务。
检索示例--- 根据作者检索文献
中国: Li Hai-Ru Hai-Ru Li Li Hairu
国外: Nathan P. Guisinger (Guisinger NP) Alex I. Boldyrev ( Boldyrev AI)
检索示例--- 根据DOI号检索文献
被引参考文献检索 被引参考文献检索(Cited Reference Search): 通过参考文献即文献间的引证关系来展开检索, 通过作者所引用的参考文献发现论文间潜在的科 学关系,以获取相关的科学研究信息。
计算机在材料科学中的应用---完整版

计算机在材料科学中的应用1 材料:是人类生产和生活水平提高的物质基础,是人类文明的重要支柱和进步的里程碑。
20世纪下半叶形成的以新材料技术为基础:信息技术、新能源技术、生物工程技术、空间技术、海洋开发技术的新技术群,更使材料科学得到发展。
2 20世纪60年代,被称为当代文明的三大支柱:A材料;B能源;C信息。
3 70年代新技术革命的主要标志指:A新型材料;B信息技术;C生物技术。
4 材料的分类:根据组成与结构:A金属材料;B无机非金属材料;C有机高分子材料;D复合材料。
根据性能特征和作用:A结构材料;B功能材料。
根据用途:A建筑材料;B能源材料;C电子材料;D耐火材料;E医用材料;F耐蚀材料。
5 材料的性质:是材料对电、磁、光、热、机械载荷的反应,而这些性质终于要取决于材料的组成与结构。
材料科学与工程是研究:材料组成、结构、性能、制备工艺、使用性能以及它们之间相互关系的科学。
6 使用性能:是材料在使用状态下表现出来的行为。
7 材料的合成与制备过程的内容:A传统的冶炼、制粉、压力加工和焊接;B也包括各种新发展的真空溅射、气相沉积等新工艺。
8 材料科学飞速发展的重要原因之一:材料科学随着各种技术的更新而出现了高速发展的趋势,计算机在材料科学中的应用正是材料科学飞速发展的重要原因之一。
9 计算机在材料科学中的应用:A计算机用与新材料的设计;B材料科学研究中的计算机模拟;C材料工艺过程的优化及自动控制;D计算机用于数据和图像处理;E计算机网络在材料研究中的应用。
10材料设计:设想始于20世纪50年代,是指通过理论与计算机预报新材料的组分、结构与性能,或者是通过理论设计来“订做”具有特定性能的新材料。
按生产要求“设计”最佳的制备和加工方法。
11 材料制备技术:A急冷;B分子束外延(MBD);C有机金属化合物气相沉积;D离子注入;E微重力制备等。
12材料设计的有效方法之一:利用计算机对真实的系统进行模拟“实验”、提供实验结果、指导新材料研究,是材料设计的有效方法之一。
材料科学中计算机技术的应用

材料科学中计算机技术的应用材料科学是一门研究材料性能、结构和制备方法的学科。
随着计算机技术的发展和进步,计算机技术在材料科学中的应用越来越广泛,并且在科学研究、材料设计和制备、材料性能模拟等方面发挥着重要作用。
下面将详细介绍计算机技术在材料科学中的应用。
一、材料建模和模拟计算机技术在材料科学中广泛应用于材料的建模和模拟。
通过数学模型和计算方法,可以模拟并预测新材料的性能、结构以及制备过程,为材料设计和优化提供科学依据。
例如,材料科学家可以使用分子动力学模拟方法研究原子或分子的运动规律,以及宏观性质的变化规律;通过量子力学计算,可以探索材料的电子结构和能带特性;通过有限元分析,可以研究材料的力学性能和变形行为。
计算机技术有效地提高了材料模拟的精度和效率,为材料研究和设计提供有力支持。
二、材料数据分析和挖掘随着材料科学研究的深入,材料数据的量级和复杂性不断增加。
计算机技术在材料数据分析和挖掘中发挥着重要作用。
通过数据挖掘和机器学习方法,可以从大量的材料数据中发现规律和趋势,并用于材料设计和高通量材料筛选。
例如,利用大数据技术,可以挖掘和分析材料的晶体结构数据库,发现新的材料组成和结构;通过分类和回归模型,可以预测材料的性能,并优化材料的配方。
计算机技术的应用使得材料数据分析更加高效和准确,为材料研究提供了新的途径和方法。
三、材料制备与工艺模拟材料制备是材料科学研究的关键环节之一,计算机技术在材料制备与工艺模拟中发挥着重要作用。
通过计算机模拟方法,可以模拟材料的制备过程和工艺参数的优化,为材料制备提供科学依据。
例如,利用计算流体动力学方法,可以模拟材料的熔体流动和凝固过程,优化工艺参数,改善材料的组织和性能;通过有限元分析,可以研究材料的热力学和力学行为,为材料制备提供优化方案。
计算机技术的应用使得材料制备与工艺模拟更加精确和可控,提高了材料的质量和性能。
四、材料设计和优化材料设计是将材料的性能和结构与目标进行匹配和优化的过程。
计算机在材料科学中的应用

计算机在材料科学中的应用引言计算机科学与材料科学的结合,为材料科学领域的研究和应用带来了巨大的影响和变革。
随着计算机技术的不断发展和突破,计算机在材料科学中的应用逐渐得到了广泛的认可和应用。
分子建模与模拟计算机在材料科学领域的一个重要应用是分子建模和模拟。
通过利用计算机建立分子的模型和进行模拟计算,可以预测材料的性质和行为。
这种方法在材料设计、催化剂研究、药物研发等领域中具有重要的应用价值。
通过在计算机上进行大规模的分子模拟,可以快速筛选出具有潜在应用价值的材料,从而加速材料科学的研究和应用过程。
材料结构预测另一个计算机在材料科学中的重要应用是材料结构预测。
传统的材料结构预测方法通常需要耗费大量的时间和人力,而计算机可以通过模拟和计算来快速预测材料的结构。
通过这种方式,可以找到新的材料结构,推动新材料的发现和应用。
这种方法在新能源材料、光电材料、储能材料等领域中具有重要的应用价值。
材料性能优化计算机在材料科学中的应用还可以用于材料性能优化。
通过利用计算机模拟和预测,可以优化材料的性能和特性。
例如,在涉及到材料的机械性能、导电性能、光学性能等方面,可以通过计算机模拟和优化来提高材料的性能。
这种方法不仅可以指导实验的设计和实施,还可以提高材料的应用性能,从而推动材料科学的发展和应用。
数据分析与挖掘计算机在材料科学中还可以用于数据分析与挖掘。
随着大数据时代的到来,材料科学领域也积累了大量的材料数据。
通过运用计算机技术,可以从这些数据中挖掘出有价值的信息和规律,指导材料的设计和研究。
例如,可以通过机器学习的算法来建立材料的结构-性能关联模型,从而加速材料的研发过程。
材料仿真与优化设计最后,计算机在材料科学中的应用还可以用于材料的仿真和优化设计。
通过在计算机上建立材料的模型,可以对材料进行仿真和优化。
例如,可以通过有限元分析方法对材料的力学行为进行仿真,帮助理解和预测材料的性能。
同时,也可以利用优化算法进行材料的优化设计,进一步提高材料的性能和特性。
(完整版)计算机在材料科学与工程中的应用-完整版20130918

第二章 实验数据处理
• 一、利用Microsoft Excel进行数据处理 • 二、利用Origin进行数据处理 • 三、实验曲线的数据拟合
一、 利用Microsoft Excel进行数据处理
要点: 1. 从文本文档中导入数据 2. 电子表格的显示调整(最合适行高、
材料设计专家系统
设计要求 性能指标
数据库:存储具体有关材料的数据值, 只能进行查询而不能推理。
知识库:存储的是规则,当从数据库 中查询不到相应的性能值时,能通过 推理机构以一定的可信度给出性能的 估算值,从而实现性能的预测功能。
材料数据库 集
智能化 YES
优化结果
成
化
机器
材料知识库
知识获取
学习
推理机
快、好、省的研究方法。
用于材料工艺过程的优化及自动控制
在材料加工过程中应用计算机不仅能减轻劳动强度, 而且能改善产品的质量和精度,提高产量。
利用计算机可以对材料加工工艺过程进行优化控制, 例如:可以用计算机对渗碳(氮)全过程进行控制, 也可以利用计算机精密控制注塑机的注射速度。
计算机技术、微电子技术和自动控制技术相结合, 使工艺设备、检测手段的准确性和精确度等都获得了 大幅提高。
用于材料组成和微观结构的表征
目前,材料组成和结构表征研究主要采用各种大 型分析设备进行,如扫描电镜、透射电镜、扫描 探针显微镜、X射线衍射仪、中子衍射仪、拉曼光 谱仪、原子吸收光谱仪、等离子体发射光谱仪、 荧光光谱仪等,这些大型分析设备几乎无一例外 的是在计算机的控制之下完成分析工作的。这些 分析设备提供有不同的分析模拟软件以及相应的 数据库,而且软件的功能非常强大,大大减轻了 数据处理的工作量,并且可以给出各种图表。
[材料科学,计算机,技术]计算机技术在材料科学中的应用
计算机技术在材料科学中的应用摘要:现如今,我国各产业都朝向精细化和完整化的趋势发展,因此计算机技术的应用必不可少,且对其需求不断提高。
另一方面,应用于各领域的材料科学也逐渐引起人们的重视。
在此背景下,本文综合分析讨论了计算机在材料科学中的应用领域,及其实际应用的方向,以期进一步推进计算机在材料科学中的发展。
【关键词】计算机材料科学应用计算机作为电子信息时代的基本工具,在我们生活的各个领域均起着极为重要的作用,在材料科学的相关研究中发挥的作用也越来越重要,例如钢铁行业的测量高炉内的温度、监控高炉内流体的运动以及对高炉使用寿命的推测等都依赖于计算机的操控。
现如今我国各产业大多向精细化和完整化的趋势发展,对计算机的需求不断提高。
由此,不难看出计算机在材料科学中的应用有着广阔的前景。
那么,如何充分利用计算机使材料科学的研究发展达到一个新的高度呢?这就要求我们对计算机、材料科学以及二者关系有充分的认知,并认真分析探索计算机在材料科学研究领域的应用方向,结合计算机的优势,更好地发展材料科学。
1 计算机在材料科学中的应用领域1.1 计算机用于新材料的设计通常情况下,新材料的设计与制作是通过理论分析和计算,对新材料的组成成分、结构外观及性能等方面进行预报,然后结合材料设计方案制作具有特定性能或结构的新材料。
材料设计主要通过多次重复实验,进行大面积筛选的方式来完成的,时间周期较长,且大量消耗人力、物力。
因此,运用人工智能方法识别计算机中预先建立的知识库、数据库,归纳大批量的物理化学理论和实验资料,并以此作为理论辅助,再结合实验验证的手段进行材料设计的方法受到人们的青睐,是材料科学领域内进行研究探索的主要方向。
材料设计按照空间尺寸以及设计的对象,通常分为微观设计层次、介观设计层次、宏观设计层级三个层级。
其中,微观设计层次的尺度大致为1nm数量级,属于电子、原子或分子层次的微观结构设计;介观设计层次的尺度大致为1um数量级;宏观设计层级的尺度与宏观材料相对应。
计算机技术在材料科学中的应用
《计算机技术在材料科学中的应用》随着科学技术的不断发展,计算机技术在各个领域的应用也日益广泛,其中包括材料科学领域。
计算机技术的发展使得在材料科学研究中更加便捷和有效,为材料研发和设计提供了全新的途径和方法。
本文将通过全面的评估,探讨计算机技术在材料科学中的应用,帮助读者更深入地了解这一主题。
一、计算机模拟在材料科学中的应用1.原子层面的模拟计算机技术可以模拟原子层面的材料结构和性质,利用分子动力学模拟等方法,研究材料的结构、热力学性质、动力学行为等。
通过这些模拟可以更好地理解材料的微观结构和性能,为新材料的设计和研发提供重要的参考。
2.材料表征与成像计算机技术可以实现对材料的表征与成像,通过原子力显微镜、透射电子显微镜等技术,对材料的微观结构和表面形貌进行模拟和重建,帮助科研人员更好地理解材料的特性和表现形态。
3.晶体结构预测通过计算机模拟的方法,可以对晶体结构进行预测和优化,提高新材料的研发效率,并且发现一些在实验中难以获得的新材料结构。
二、材料设计和优化中的计算机辅助方法1.材料数据库与大数据分析计算机技术可以建立和维护大规模的材料数据库,通过对大数据的分析和挖掘,挖掘一些潜在的新材料组成和性能规律,提高新材料的发现效率。
2.晶体工程与材料优化计算机辅助的晶体工程和材料优化方法,可以通过高通量计算和机器学习等技术,实现对材料性能和构造的优化,提高材料的性能和可靠性。
三、个人观点和总结从上述内容可见,计算机技术在材料科学中的应用已经成为材料科学研究的重要手段。
通过计算机技术的应用,我们可以更加深入地理解材料的微观结构和性能,为新材料的设计和研发提供全新的途径和方法。
然而,在材料科学研究中,计算机技术的应用也面临一些挑战,比如模拟精度、数据挖掘的准确性等方面需要进一步完善。
计算机技术的应用为材料科学研究带来了巨大的推动力,相信随着技术的不断进步,计算机技术在材料科学中的应用将会有更加广阔的发展前景。
计算机在材料科学中的应用上机实验
计算机在材料科学中的应用上机实验计算机在材料科学领域的应用已经成为研究人员和工程师的重要工具。
使用计算机进行上机实验,可以帮助研究人员更好地理解材料性能和行为,并加速材料设计和开发的进程。
下面将介绍计算机在材料科学中的几个重要应用。
1.材料建模与仿真计算机可以用于材料建模和仿真,通过计算模拟材料性能的变化。
例如,分子动力学模拟可以用于研究原子或分子水平上的材料行为,从而揭示材料的力学性能和热力学性质。
此外,密度泛函理论计算可以用于预测材料的电子结构和光学性质。
这些模拟和计算能够帮助研究人员更好地理解材料的性质,在设计新材料时提供重要的指导。
2.材料性能优化通过计算机仿真,可以进行材料性能的优化。
使用材料属性数据库和机器学习算法,可以通过计算预测材料的性能,并为材料设计和优化提供指导。
例如,通过计算机辅助设计和优化,可以预测材料的力学性能、热电性能和光学性能等,并选择合适的工艺和材料组成来满足特定需求。
这种计算辅助的材料设计方法能够减少实验试错和成本,加快材料开发的速度。
3.界面与相互作用研究计算机模拟可以用于研究材料间的相互作用和界面性能。
例如,通过分子动力学模拟可以研究材料的界面结构和界面力学性能,为多相材料的设计和开发提供指导。
计算机还可以模拟材料的界面和表面反应,研究材料的腐蚀行为和氧化反应等。
通过计算机模拟的研究,可以深入了解材料的界面行为和相互作用机制,从而提高材料的表面性能和应用效果。
4.材料制备和工艺优化计算机在材料制备和工艺优化方面也有重要的应用。
通过计算机模拟可以预测材料在不同制备条件下的结构和性能变化,帮助工程师选择合适的制备工艺参数。
例如,通过计算机模拟可以优化材料的晶体生长过程,从而获得高质量的晶体。
此外,计算机还可以模拟材料的熔融过程、液滴形成和纳米颗粒的生长等,为材料的制备和工艺优化提供重要的指导。
综上所述,计算机在材料科学中的应用上机实验具有重要意义。
通过计算机模拟和计算,可以深入研究材料的性能和行为,加快材料设计和开发的进程。
计算机在材料科学中的应用
计算机在材料科学中的应用材料科学作为一门跨学科的科学,涉及物质的结构、性能和制备等方面,其发展对于人类社会的发展起着至关重要的作用。
随着计算机技术的不断发展,计算机在材料科学中的应用也日益广泛。
本文将就计算机在材料科学中的应用进行探讨。
首先,计算机在材料模拟方面发挥着重要作用。
材料的性能往往与其微观结构密切相关,而材料的微观结构又往往十分复杂,难以直接观测和理解。
通过计算机模拟,可以对材料的微观结构进行精确的建模和仿真,从而揭示材料的性能与结构之间的内在联系。
这种基于计算机的模拟方法,为材料科学的研究提供了全新的思路和手段。
其次,计算机在材料设计方面也发挥着重要作用。
传统的材料设计往往是基于试验和经验进行的,这种方法存在着成本高、周期长、效率低等问题。
而借助计算机的强大计算能力和智能算法,可以对材料的组成、结构和性能进行精确的计算和预测,从而加快材料设计的速度,降低材料研发的成本,提高材料的性能。
另外,计算机在材料制备方面也发挥着越来越重要的作用。
现代材料制备往往涉及复杂的工艺和工程问题,而计算机辅助制造(CAM)技术的发展,使得材料的制备过程变得更加精确、高效和可控。
通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,可以实现对材料制备过程的精确控制和优化,从而提高材料制备的质量和效率。
最后,计算机在材料性能评价和预测方面也发挥着重要作用。
材料的性能评价往往需要进行大量的试验和测试工作,这不仅成本高昂,而且耗时耗力。
而通过计算机的数据处理和分析能力,可以对材料的性能进行快速、准确的评价和预测,为材料的选择和应用提供科学依据。
总之,计算机在材料科学中的应用,不仅为材料科学的研究提供了新的思路和手段,而且为材料的设计、制备、评价和预测等方面带来了革命性的变革。
随着计算机技术的不断发展和进步,相信计算机在材料科学中的应用将会发挥越来越重要的作用,推动材料科学的发展迈上一个新的台阶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T 工业技术下一级类目
万方数据库页面
维普数据库页面
专利 中国国家知识产权局专利检索系统和中国专利网提供 1985年以来的中国专利文献的全文免费检索,为会员单 位除提供基本检索外还提供高级检索,为非会员单位免 费提供基础检索。 中国专利信息网 /
检索示例--- 根据作者检索文献
中国: Li Hai-Ru Hai-Ru Li Li Hairu
国外: Nathan P. Guisinger (Guisinger NP) Alex I. Boldyrev ( Boldyrev AI)
检索示例--- 根据DOI号检索文献
ห้องสมุดไป่ตู้
被引参考文献检索 被引参考文献检索(Cited Reference Search): 通过参考文献即文献间的引证关系来展开检索, 通过作者所引用的参考文献发现论文间潜在的科 学关系,以获取相关的科学研究信息。
Web of Science检索示例
检索示例---根据主题进行检索
检索示例--- 根据主题检索文献
Chemistry/Analyses Materials Science Graphene/preparation method
检索示例--- 根据标题检索文献
根据标题检索,须明确标题
Q. Chen, W. L. Li, H. J. Zhai, S. D. Li, J. Li, L. S. Wang et al, Experimental and theoretical evidence of an axially chiral borospherene [J]. ACS Nano, 2015, 9, 754-760.
第45卷 第2期 ISSN 1001-9154 CN51-1097/G8
全国中文核心期刊 CSSCI来源期刊 中国人文社会科学核心期刊 RCCSE中国科学学术期刊
中国知网页面
中国图书资料分类法
《中国图书资料分类法》,又叫《中图法》,依图书文献内容学科 属性和外部特征,分门别类组成分类表。下分22个大类(一级类 目),用22个汉语拼音字母(A-K、N-V、X、Z)列出,在字母后 用阿拉伯数字或字母表示下一级类目的划分。
计算机在材料科学中的应用
李海茹
2019年9月
文献检索上机操作
SCI和EI检索系统
1、SCI(科学引文索引 ):(Science Citation Index, SCI)是由美国科学 信息研究所(Institute for Scientific Informantion,ISI)1961年创办出 版的引文数据库,其覆盖生命科学、临床医学、物理化学、农业、 生物、兽医学、工程技术等方面的综合性检索刊物。ISI通过它严 格的选刊标准和评估程序挑选刊源,而且每年略有增减,从而做到 其收录的文献能全面覆盖全世界最重要、最有影响力的研究成果。 2、EI(工程索引 ):(The Engineering Index, EI),1884年创刊,是美 国工程信息公司出版的著名工程技术类综合性检索工具,收录文献 几乎涉及工程技术各个领域。它具有综合性强、资料来源广、地理 覆盖面广、报道量大、报道质量高、权威性强等特点。
举例:论文作者 Hua-Jin Zhai
检索页面
窗口切换
免费资源
核心期刊体系
国内评选体系:
1. 北京大学图书馆“中文核心期刊” 2. 南京大学“中文社会科学引文索引(CSSCI)来源期刊” 3. 中国科学技术信息研究所“中国科技论文统计源期刊”(又
称“中国科技核心期刊”) 4. 中国社会科学院文献信息中心“中国人文社会科学核心期刊” 5. 中国科学院文献情报中心“中国科学引文数据库(CSCD)来
科技文献的管理与传递
“读秀”是把所有的图书打碎,以章节为基础重新整合全文数据及资料 基本信息在一起的海量数据库。 最大的特点:文献传递功能,通过文献传递,使用者可以通过邮箱获取 没有订购的数据库资源。
科技文献的管理与传递
“百链”是超星公司继“读秀”中文学术检索工具之后推出的外文检索引擎。 “百链”对125种外文数据库的数据资源进行了整合,能够同时搜索外文图书、 外文期刊、外文论文等,并可实现与“读秀”中文资源搜索的自由切换, “百链”与“读秀”结合使用可完成中外文资源的一站式服务。
源期刊” 6. 中国人文社会科学学报学会“中国人文社科学报核心期刊” 7. 万方数据股份有限公司正在建设中的“中国核心期刊遴选数
据库”
投稿与发表
公开出版的期刊都有国际连续出版物编号(ISSN:International Series Standard Number)和国内统一刊号。国际连续出版物编号 由8位数字组成,并以前后各4位分为两段。前7位为顺序号,最后1 位是校验位。如:《计算机学报》的国际连续出版物编号是 ISSN0254-4164,《计算机工程与应用》的国际连续出版物编号是: ISSN 1002-8331。 国内统一刊号由“CN”和6位数字加分类号组成。“CN”代表中国, 6位数字分两段,前2位表示地区,后4位表示登记号。如:《计算 机学报》的国内统一刊号是CN11-1826/TP,《计算机工程与应用》 的国内统一刊号是CN11-2127/TP。其中TP是我国的图书分类号, TP表示自动化技术和计算机技术,用斜杠与前面的统一刊号隔开。
A 马列毛邓; B 哲学、宗教; C 社会科学总论; D 政治、法律; E 军事; F 经济; G 文化、科学、教育、体育; H 语言、文字;
I 文学; J 艺术; K 历史、地理; N 自然科学总论; O 数理科学、化学; P 天文学、地球科学; Q 生物科学;R医药卫生; S 农业科学;
T 工业技术; U 交通运输; V 航空航天; X 环境科学、安全科学; Z 综合性图书