各种膜的分类及特性
第七章 膜分离过程 第八章 液膜分离

第一节 膜和膜分离过程 的分类与特性
一、膜的分类 (1)对称膜:结构与方向无关的膜,孔经可一致,结构可不规则; (2)非对称膜:分离层很薄,较致密,为活性膜,孔径的大小和表 皮的性质决定分离特性,厚度决定传递速度,朝向待浓缩液; 多孔的支持层只起支撑作用,使膜具有必要的机械强度。 (3)复合膜:选择性膜层(活性膜层)沉积于具有微孔的底膜(支撑层) 表面上,表层与底层是不同的材料,膜的性能不仅取决于有选 择性的表面薄层而且受微孔支撑层的影响。 (4)荷电膜:离交膜,含有高度的溶胀胶载着固定电荷的对称膜。 (5)液膜:将在有关章节中讨论。 (6)微孔膜:孔径为0.05—20微米的膜。 (7)动态膜:在多孔介质(如陶瓷管)上沉积一层颗粒物(如氧化锆)作 为有选择作用的膜,此沉积层与溶液处于动态平衡。
(4)优先吸附——毛细管流动模型
溶解—扩散模型适合无机盐的反渗透过程,但对 有机物常不能适用。当压力升高对,某些有机物透过 液浓度反而升高。 膜的表面如对料液中某一组分(有机物)的吸附 能力较强,则该组分就在膜面上形成一层吸附层。在 压力下通过毛细管。 例如用醋酸纤维膜处理—氯酚溶液时,由于后 者的亲水性,使透过液中的浓度反而增大。
三、超滤
超滤:能截留相对分子质量在500以上的高分子的膜分离过程。 优点:相态不变.无需加热,所用设备简单,占地面积小,能量 消耗低。操作压力低,泵与管对材料要求不高等。 反渗透法必须施加较高的压力,而超滤的操作压力较小。 基本性能:水通量(cm3/cm2· h);截留率(%),合适的孔径尺寸,孔 径的均一性,孔隙率,及物理化学稳定性。 材料:主要有醋酸纤维、聚矾、芳香聚酰胺、聚丙烯、聚乙烯。 高分子物质极易粘附和沉积,造成严重的浓差极化和堵塞。 原液最好进行前处理,提高原液的流量,采用湍流促进器。 过滤方式:间歇和连续操作。间歇操作分浓缩模式和透析过滤。 问题:与反渗透法相比,水通量大得多,其动力费用较大。和 其他浓缩方法相比,通常只能浓缩到一定程度。
薄膜技术讲义

薄膜技术讲义薄膜基础知识一、光学图纸和技术文件中的常用术语及符号符号术语N 光圈数△N 光圈局部误差△R 标准样板精度B 表面疵病C 透镜偏心差d透镜中心厚度T透镜边缘厚度D零件直径D0(Dm)零件有效直径二、光学材料的基本知识1、光学材料的种类光学玻璃分为2大类:冕牌玻璃(K)和火石玻璃(F)2、光学性能:1)化学稳定性:玻璃抵抗水溶液、潮湿空气及其他侵蚀性介质如酸、碱、盐等破坏的能力;(DW DA)2)机械性能:比重、脆性、弹性、硬度(相对抗磨硬度FA);3)热性能:热稳定性:指玻璃经受急冷急热的性能。
三、光学薄膜的分类及设计§3-1光学薄膜的分类1.减反膜2.滤光膜 3 保护膜4 内反射5 外反射6 高反膜7 分束膜8 分色膜9 偏振膜10 导电膜§3-2光学薄膜的基本特性和内容基本特性序号基本特性主要内容1 光学性能膜层在某一光谱范围内的反射、透射、吸收、散射等特性,同时包括折射率和消光系数等光学常数2 表面质量包括麻点、脱膜、擦痕、印迹、膜色不匀等3 力学性质主要包括附着力、硬度和应力4 环境适应性主要包括膜层的化学稳定性和热稳定性§3-3 光学薄膜的设计§3-3-1 减反射膜减反射膜是用来减少光能在光学元件表面的反射损失.可见光的光谱区域通常认为是400nm~760nm.1、单层减反射膜:当光线从折射率为n0的介质射入折射率为n1的介质时,在分界面上会产生光的反射,根据费涅尔定律,反射率R=(n0-n1)2/(n0+n1)2= (1-n1)2/(1+n1)2 当介质为空气时,认为n0=1 单层膜在中心波长λ0处的反射率R= (1- n12/ nS )2 / (1+ n12/ nS )2 其中nS是玻璃基底的折射率,n1是所镀膜料的折射率。
在光线垂直入射时,在中心波长λ0 出现零反射的条件为膜层的光学厚度n1d1等于λ0的1/4,即:n1d1= λ0/4,同时膜层的折射率n1等于基底折射率nS与入射介质折射率n0乘积的平方根,即n1=∨nsn02、双层减反膜(V形减反膜):λ/4—λ/4(W形膜): λ/4—λ/23、多层减反膜:四、镀膜技术§4-1 真空的基本知识1、定义:指在给定空间内,压强低于1标准大气压的气体状态。
量子膜 分类

量子膜分类量子膜是一种特殊的薄膜材料,具有量子效应的特性。
它在量子技术领域具有重要的应用价值,被广泛研究和开发。
本文将对量子膜进行分类和介绍。
一、基础概念量子膜是由一层或多层原子、分子或纳米尺度的材料组成的薄膜,其厚度一般在纳米级别。
由于其尺寸接近量子级别,因此展现出了量子效应的特性。
量子效应是指微观粒子在纳米尺度下出现的特殊现象,如量子隧穿效应、量子限域效应等。
二、分类根据不同的材料和应用,量子膜可以分为以下几类:1. 量子点膜量子点膜是由具有能带结构的半导体材料组成的薄膜。
量子点膜具有尺寸限制效应和能级分立效应,可以在光电子器件、光伏电池、量子计算等领域发挥重要作用。
2. 量子阱膜量子阱膜是由不同带隙的半导体材料交替堆叠而成的薄膜。
量子阱膜通过调节材料的能带结构,可以限制电子和空穴在某个方向上的运动,从而实现对电子态的控制。
量子阱膜广泛应用于激光器、光电二极管、太阳能电池等领域。
3. 量子井膜量子井膜是由同一种材料形成的多层薄膜结构。
量子井膜的厚度通常大于量子点膜,但小于量子阱膜。
量子井膜在太阳能电池、光电传感器等领域有着广泛的应用。
4. 量子膜传感器量子膜传感器是利用量子效应对外界信号进行检测和测量的一种传感器。
由于量子效应的高灵敏度和高分辨率,量子膜传感器在生物医学、环境监测、化学分析等领域具有重要的应用前景。
三、应用领域量子膜作为一种具有特殊性质的材料,被广泛应用于以下领域:1. 量子计算量子膜的量子效应使其在量子计算领域具有重要的应用潜力。
量子计算是一种基于量子力学原理的新型计算方式,可以在处理大规模并行计算和优化问题方面具有巨大的优势。
2. 光电子器件量子膜在光电子器件中的应用主要包括激光器、光电二极管、太阳能电池等。
通过调节量子膜的能带结构和电子态密度,可以实现对光电子器件性能的调控和优化。
3. 传感器技术量子膜传感器可以利用量子效应对温度、压力、湿度等物理量进行高精度的检测和测量。
透析器膜材

HFD
六、如何进行透析器对比
1、了解膜的材质,膜的材质决定了膜的生物相容性及清除率。 2、了解膜的结构及制造工艺,相同的膜材制造的透析器质量是不相同的。 3.根据EN1283(欧洲药典): Qd=500ml/min;Qf=0ml/min;t=37℃,获得体外性能参数。 采用人体血液Hct=32%,蛋白含量6%,测得超滤数。
透析器人工膜材
一、透析膜材料的分类 二、透析膜的功能 三、透析膜的结构 四、透析膜的制造工艺 五、透析器分类 六、如何进行透析器对比
什么是透析膜
一种以浓度差为推动力的分离膜。 根据分离的溶质的粒径, 要求透析膜上有相适应的孔径均匀的微孔。膜孔径在1μm以下的有机高聚物的均质膜, 是一类不带电荷的多孔膜, 目前主要用于人工肾的纤维素渗析膜。常用的制备材料有铜氨法再生纤维素、醋酸纤维素、聚丙烯晴、乙烯-乙烯醇共聚物以及聚甲基丙烯酸甲酯、聚砜、聚丙烯酰胺等。
*
HFD
尿毒症潴留的物质
小分子溶质 (< 500 D) 水溶性的 (不与蛋白结合) 尿素 (60 D), 肌酐 (113 D), 胍类, 草酸盐, 尿酸 与蛋白结合的 p-甲酚 (108 D), 硫酸吲哚酚 (251 D) 苯酚, 吲哚类, 马尿酸, 同型半胱氨酸 中分子溶质 (500 - 12 000 D) 甲状旁腺激素 (9 223 D) , ß2-微球蛋白 (11800 D) 肽链接的AGEs 大分子溶质 (> 12 000 D) 瘦素(16 kD), 补体因子 D (24 kD)
为什么非对称膜是理想的?
溶质通过半透膜需要克服自身的阻力 对称膜有着均一的膜孔大小, 因此降低阻力的唯一办法就是使得膜壁变薄或者增加膜孔的数量 非对称膜的主要阻力是最内层膜的壁厚, 其余的膜是起到支撑的作用 因此当膜的形状接近标准的圆形, 膜的本身阻力就非常小。
陶瓷膜技术手册

压力
在沉积过程中需要控制气体压力,以调节气 体流量和沉积速率。
时间
热处理时间和沉积时间对陶瓷膜的结构和性 能有重要影响。
气氛
控制制备过程中的气氛,如氧气、氮气、氢 气等,可以调节陶瓷膜的性质。
04
陶瓷膜的性能表征
渗透通量
总结词
渗透通量是衡量陶瓷膜在单位时间内通过膜的流体量的指标, 通常以升/平方米·小时(L/m²·h)表示。
详细描述
渗透通量受到膜孔径、孔隙率、膜厚度等因素影响,是评价 陶瓷膜性能的重要参数之一。在相同条件下,渗透通量越高 ,膜的分离效率也越高。
分离效率
总结词
分离效率是指陶瓷膜在分离过程 中对目标物质的截留效果,通常 以截留率或分离因子来表示。
详细描述
分离效率与膜孔径、表面电荷性 质、膜厚度等因素有关。高效的 陶瓷膜应具有较高的分离效率和 较低的渗透通量损失。
陶瓷膜技术手册
• 引言 • 陶瓷膜技术概述 • 陶瓷膜的制备工艺 • 陶瓷膜的性能表征 • 陶瓷膜的实际应用案例 • 陶瓷膜技术的挑战与前景 • 结论
01
引言
主题简介
陶瓷膜技术是一种先进的分离技术, 广泛应用于化工、环保、食品等领域 。
它利用陶瓷材料制成的膜进行物质分 离,具有高效、节能、环保等优点。
加强国际合作与交流,共 同推动陶瓷膜技术的发展 和创新。
THANKS
感谢观看
目的和目标
目的
本手册旨在全面介绍陶瓷膜技术的原 理、应用、操作和维护等方面的知识 ,为读者提供实用的指导和参考。
目标
帮助读者了解陶瓷膜技术的特点、优 势和应用范围,掌握其操作和维护方 法,提高分离效率,降低成本,促进 该技术在各领域的广泛应用。
薄膜材料

•
ɑ-Si:H/ɑ-C:H • 微晶硅μc-Si:H • 多晶硅poly-Si:H
6.
•
6.
1 硅基非晶态半导体薄膜
6.
1 硅基非晶态半导体薄膜
非晶态半导体薄膜材料在光电器件方面的独特性
性能如下:
• • • • •
能
非晶硅及硅基合金材料,对太阳光有很高的吸收系数,并产生最 佳的光电导值。 很容易实现高浓度可控掺杂,并能获得优良P-N结。 可以在很宽组分范围控制它的能隙变化。 很容易形成异质结,并有十分低的界面态。 沉积温度低。
湖南大学电子封装材料与薄膜技术研究所
Institute of Electronic Packaging Material & Thin Film Technology
薄膜与电子材料
硅、碳基 薄膜材料
2017-2018-2
主要内容
硅基非晶态半导体薄膜
多晶硅和微晶硅薄膜 碳基薄膜材料 导电薄膜
• • • •
可以部分实现连续的物性控制。当连续改变组成非晶半导体的化学组分 时,其密度、相变温度、电导率、禁带宽度等也随之而连续变化。 非晶半导体材料在热力学上处于亚稳态,在一定条件下可以转变为晶态
(退火),其主要原因是非晶态状态下具有更高的晶格位能。
非晶硅及其合金膜的结构、电学和光学性质,十分灵敏的依赖于制备条 件和制备方法,因此性能重复性相比于晶态材料要差得多。 非晶态半导体的物理性能往往是各向同性的,主要是因为其结构为共价 键无规则网络结构,不受周期性结构的约束。
生物膜

总 脂 量 鞘 磷 脂
磷 脂 酰 胆 碱
膜外层
生物膜的内层和外层 具有不同的脂组成。 具有不同的脂组成。
磷 脂 酰 丝 氨 酸
磷 脂 膜内层 酰 乙 醇 胺膜内层(二)膜分子结构的流动性
膜的流动性主要是指膜脂及膜蛋白流动性。 膜的流动性主要是指膜脂及膜蛋白流动性。 膜脂及膜蛋白流动性 合适的流动性对生物膜表现其正常功能十 分重要. 分重要.
简单扩散( 简单扩散(Simple diffusion):没有电荷或水 ) 溶性的小分子 小分子( 乙醇) 溶性的小分子(水、氧、CO2、乙醇)以自由 扩散的方式从浓度高的膜一侧进入低的一侧 的方式从浓度高的膜一侧进入低的一侧; 扩散的方式从浓度高的膜一侧进入低的一侧; 不需要能量供应,也没有膜蛋白的协助膜。 不需要能量供应,也没有膜蛋白的协助膜。 协助扩散( 协助扩散(Facilitated diffusion):与简单扩 ) 散类似,但有膜蛋白的协助, 散类似,但有膜蛋白的协助,特异性较强 离子通道( ):通道蛋白 离子通道(Ionic channel):通道蛋白形成有选择性开 ):通道蛋白形成有选择性开 关的跨膜通道,这个通道一般与离子的转运有关, 关的跨膜通道,这个通道一般与离子的转运有关,称 离子通道
鞘磷脂
H H O CH3 CH3C-(CH2)12-C C- C- C- CH2-O-P-O-CH2-CH2-N+-CH3 H OH N-H N鞘氨醇 OCH3 O C 胆碱鞘磷脂 R1
鞘氨醇作骨架 分子中有亲水的磷酸化的头部(胆碱或乙醇胺) 分子中有亲水的磷酸化的头部(胆碱或乙醇胺)和 疏水的两个碳氢链,其中一条来自鞘氨醇, 疏水的两个碳氢链,其中一条来自鞘氨醇,另一条 来自脂肪酸。 来自脂肪酸。 脂肪酸以酰胺键连在鞘氨醇上。 脂肪酸以酰胺键连在鞘氨醇上。
软包装材料的分类及其识别判定方法

软包装材料的分类及其识别判定⽅法软包装材料的分类及判定识别⽅法1、PVC (氯⼄烯薄膜)本⾊为⽩⾊或微黄⾊半透明状,有光泽、透⽤度优与PE,低于聚苯⼄烯透明材料有点蓝,软制品柔⽽韧,⼿感粘。
硬制品的硬度在LOPE和PP之间,在屈折处⽩化现象。
2、PET(涤纶):A.末着⾊时为⽩⾊,⽆⾊⽆味、⽆毒⽆臭,⼿感较硬、揉搓PET时有响。
B.燃烧特征:燃烧时⽕焰内黄外蓝⽕焰有跳⽕现象,⼩量⿊烟、微膨胀、有时开裂、有刺激酸味,燃烧后材料表⾯⿊⾊碳化,⼿指揉搓燃烧后的碳化物则显粉末状。
3、PS聚苯⼄烯:A末着⾊时为透明制品落地换货敲打有清脆的⾦属声,类似与玻璃脆易断裂、⽤指甲可在制品表⾯划出痕迹。
B 燃烧特征:易燃、离⽕后可继续燃烧、⽕焰呈橙黄⾊、内光、浓⿊烟有软化旗袍现象。
(⽤于包装容器,电视,仪表的外壳).4、PC聚碳酸酯薄膜:燃烧特征:燃烧的离⽕熄灭,燃烧时⽕机移除出现⼀点⽕茫的现象,⽕焰黄⾊、软化⽓泡、有⼩量⿊烟,有PC特殊⽓味,花果臭味。
5、PMMA(有机玻璃):燃烧特征:容易燃烧离⽕继续燃烧。
⽕焰呈浅蓝⾊,顶端⽩⾊⽕机烧过发⽣吱吱的响声,软化起泡,有点酸味,强烈花果及腐烂蔬菜臭,拉丝好。
建筑⾏业隔⾳门窗,⽇光灯外壳、摆放⼿的糖果。
6、PA:(尼龙)A本⾊半透明或不透明微黄或乳⽩⾊B燃烧特征:慢慢燃烧慢慢熄灭,点燃后⽆烟燃烧时冒泡、⽕焰蓝⾊上端黄⾊、熔融滴落、味特殊、有鸡⽑⽺⽑指甲燃烧的⽓味。
拉丝时,丝收缩的是PA6,不收缩的是PA66。
7、ABS本⾊(⽶黄⾊)最好、颜⾊多种多样、种类繁多;有新料、合⾦料、增强聊、阻燃料、喷漆料、镀⾦料等。
B.燃烧特征:燃烧后冒烟,新料ABS即纯ABS⽕均匀燃烧有丙⾹味,合⾦料燃烧起时⽕移去⾃灭。
8、POM燃烧特征:易燃烧离⽕后继续燃烧,⽕焰状态上黄下蓝、熔融滴落、燃时可见发泡状、不冒烟、⽕移去看不到灰,看到燃烧时很难灭,味呛⼈强烈刺激的甲醛味、鱼腥臭味、不可近⿐⼦闻,有剧毒、耐毒、耐磨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一)纯纯净水生产中膜分离技术及其特性 电渗析和离子交换树脂已经在原料水的处理过程详细介绍了。本节主要介绍纯净水生产过和程中膜也离(电渗析也是一种膜分离技术)的有关内容。用天然或人工合成的高分子膜,以外加压力或化学位差为推动力,对双组分或多组分溶液进行分离、分级、提纯和富集的方法,统称为膜分离法。纯净水生产过程中常使用的膜分为膜分离法。纯净水生产过程中常使用的膜分为4类,即微滤膜(Microfiltration MF)、超滤膜(Ultrafilrtaiton,UF)、反渗透膜(Reverse osmosis,RO)和纳滤膜(Nanofiltraiton,NF)。在膜分离发展史上,首先出现的是超滤和微滤,然后出反渗透和纳滤。这4种膜在分离过程中的动务是外加压力,在压力作用下溶济和定量的溶质能够透过膜,而其余组分被截留,四者组成了一可分离子到微粒有膜分离过程。MF能有效地去除菌,UF能去全部病毒和部分子高有机物,RO用于脱除盐份,近来开发的纳滤膜其分离径比UF更小,主要用于去除低分子有机物和盐类。 微滤(MF)的孔径为0.1~10υm,主要去除微粒和细粒物质,所用的膜一般为对称膜,操作压力0.01~0.2MPa。 超滤(UF)的孔径为0.001~0.1μm,截留分子量大于500μ的大分子和胶全,操作压力0.1~0.001μm,主要脱去水中的盐分,对氯化钠去除率为95﹪以上,操作压力为1~10Mpa。 表1-6-8 反渗透、超滤、微滤3种膜的比较 项目 RO膜 UF膜 MF膜 膜的孔径/μm <0.001(<10A) 膜材料 醋酸纤维素膜、聚酰胺复合膜 醋酸纤维素模、聚砜膜、聚酰胺膜、聚丙烯腈膜 醋酸纤维素膜、复合膜、醋酸-硝酸纤维素混合膜、聚碳酸酯膜、聚酰胺膜 膜组件常用形式 卷式膜、中空纤维素膜 卷式膜、中空纤维素膜 板式、折叠筒式 去除杂质能力 无机盐 √ √ × 有机物相对分子质量>500 √ 去除能力极小 × 细菌 √ √ √ 病毒、热源 √ √ × 悬浊物粒径>0.1μm √ √ √ 胶体微粒粒径>0.1μm √ √ × 工作压力/Mpa 1.96~5.88 0.29~0.69 0.05~0.29 处量水流量/t·d-1·m2膜 50~75 90~95 100 PH 醋酸纤维维素膜4~6复合膜3~11 2~9 4~10 水温 20~30 5~40 5~40 出水电阻率变化 适用于除盐部分,出水口电阻率升高约10倍 应用精滤,出水溻阻率降低0.1~1MRΩ·cm(25℃) 应用精滤,出水阻率降低0.1~0.6MΩ·cm(25℃) 性能 不易者塞,可用水或药液清洗 不易堵塞,可用水或药液清洗 易堵塞,可用水液或药液清洗,但效果较差 寿命/年 3~5 1~3 <1 纳滤膜(NF)可以认为是由反渗透膜(RO)发展而来的一种超低压膜,分离范围介于反渗透膜和超滤膜之间,操作压力一般为0.5~2.0MPa,能耗较少,运行费用较低,对氯化钠的去除率为50﹪~70﹪,对有机物的去除率在90﹪以上。 1.微滤膜:微过滤是一种精密过滤技术,介于常规过滤和超过滤之间。过滤一般分深层过滤和筛网状过滤。常规过滤多属深层过滤,它所用的介质如纸、石棉、玻璃纤维、陶瓷、布、毡等,都是一些孔形极不整齐的多孔体,孔径分布范围较广,无法标明它的孔径大小,过滤时粒子是靠陷入介质内部曲折的通道而被截留。截留率则随压力的增加而下降,因介质厚,对颗粒的容纳量大,相应截留率也高,主要用于一般澄清过滤。而微滤所用的过滤介质具有类似筛网状的结构,由天然或合成高分子材料制成,具有形态较整齐的多孔结构,孔径分布较均匀。过滤时使所有直径大的粒子全部被拦截在滤膜表面上,压力的波动不会影响它的过滤效果。与一般深层过滤介质相比具有以下特性。 (1)孔径均匀,过滤精度高微孔滤膜能制成比较均匀的孔径,这是它最重要的特点之一。在过滤时,它能使比孔径大的颗粒和细菌全部被拦截在滤膜表面,所以经常被作为起保证作用的手段,有“绝对过滤”之称。 (2)孔隙率高,流速快微孔滤膜上有千百万个微孔,其微孔的体积约占膜总体积的70﹪一80﹪。由于孔隙率高,膜又薄,因而阻力甚小,对液体和气体的过滤速度可比同等截面积的其他常用介质快几十倍。 (3)微孔滤膜薄,吸附少微孔滤膜的厚度一般为0.1~0.15mm(或100~150μm)。滤膜对溶质的吸附量极小,因而适用于微量溶液及贵重物粒的过滤。 (4)无介质脱落微滤膜是均匀的连续的整体结构,没有碎屑脱落,而一般深层过滤介质有可能脱落碎屑或纤维而使滤液再次污染。 (5)颗粒容纳量小,易堵塞’微孔滤膜质地薄、孔径均匀,阻留只限于表面,所以极易被滤液中与孔径大小相仿的微粒或凝胶物质堵塞。因此,微孔滤膜主要用来进行精密过滤,对于含杂质较多的液体,必须结合深层过滤或其他预处理方法才能得到好的过滤效果,延长膜的使用寿命。目前在纯净水的生产中微滤是必需的,用作精滤,作为反渗透膜和灌装前的保安过滤。 2.超滤膜超滤膜过程曾被看作是一种单纯的物理筛分过程。但在膜分离中,反渗透(R0)、超滤(UF)和微滤(MF)之间,并不存在明显的界限,超滤膜的大孔径一端与微孔滤膜相重叠,其小孔径一端与反渗透膜相重叠,因此超滤过程不可能是单纯的物理筛分过程。特别是当超滤处理的是大分子有机物、胶体、蛋白质等,对于这些溶质与膜材料之间的相互作用所产生的物化影响更不能忽视。在这种情况下,超滤过程实际上同时存在着如下3种情形:①溶质在膜表面及微孔孔壁上产生吸附;②溶质的粒径大小与膜孔径相仿,溶质在孔中停留,引起阻塞;③溶质的粒径大于膜孔径,溶质在膜表面被机械截留。 理想的超滤筛分,应尽力避免溶质在膜表面和膜孔壁上的吸附与阻塞现象的发生。所以用超过滤技术分离大分子有机物质溶液时,除了选择适当的膜孔径外,必须选用与被分离溶质之间相互作用弱的超滤膜。超滤膜与微滤膜同是多孔膜,但在膜的结构和微孔孔径大小上不一样。微孔滤膜通常为均质膜、孔径较本,而超滤膜是不对称膜、孔径较小。而且他们的过滤方式也不同。微孔过滤为静态过滤,过滤时随着时间的延伸,溶液中的不溶物被微孔滤膜截留沉积在膜表面上和微孔中,引起水流阻力不断增大,透水速率不断下降,直到微孔全被阻塞,水通量变零为止。一般为了消除过滤过程中产生的浓度极化层,需搅拌溶液。超滤过程是动态过滤,在超滤进行时,由泵给予溶液的推动力在超滤膜的表面产生两个分力:一个是垂直于膜面的法向力,在它的作用下,水分子透过膜面与被截留物质分离;另一个是与膜面平行的切向力,在它的作用下,被截留在膜表面的物质被冲开,并随着液流被排出。这样在超滤膜的表面就不易产生浓度极化现象,不易形成吸附沉积层。因此超滤过程可以较长时间地运行,超滤膜的使用寿命要比微孔滤膜高出许多倍,这便是超过滤技术的优越性所在。但是超滤到了一定的运行时间之后,由于截留污物的积累或依差极化层扩展变厚,透水速率还是出现明显下降的趋势。这时,一般只要减小膜面的法向压力,增加溶液的切向流速,进行短时间的冲洗(3~5mm),即可使透水速率得到较好的恢复。如此周而复始地进行下去,直到这种冲洗方法失效再把超滤膜取下来进行化学清洗。上述这种冲洗方法称为等压冲洗,即在膜的两侧无压力差的情况下进行冲洗。若在超滤系统中能采取反冲洗(即冲洗液的流向与超滤操作相反,使膜表面的冲洗处在有压力差的情况下进行),效果会更好。但装置结构较复杂,投资较大。在纯净水的生产中,超滤也是作为精滤。 3.反渗透膜:有关反渗透的基本原理和反渗透膜的性能请参见第l章水处理相关内容。 4.纳滤膜:纳滤膜是在以超纯水制造为目的的研究中,为降低反渗透操作的能耗,开发的一种在低压下具有高截留率的反渗透膜,其分离性能介于超滤和反渗透之间。 纳滤膜通常被认为带负电荷。荷电膜的脱盐机理一般都用道南平衡理论来解释,因为膜带电后会产生道南(Donnan)效应。当荷电膜放人一种盐溶液时,就会出现动态平衡。靠近膜面处的反离子(和膜所带电荷相反的离子)浓度要比溶液中高,而同离子(和膜所带电荷浓度要比溶液中高,而同离子(和膜所带电荷相同的离子)浓度又比溶液中低一些,这就产生了道南电位。这个电位阻止了反离子从膜面扩散到溶液中以及同离子从溶液中扩散到膜面。道南电位将同离子排斥于膜面外,由于要保持电中性,反离子也被排斥。在压力梯度作用下,水通过膜时也会发生这种情况。阴、阳离子的去除率决定它们的电荷密度和离子浓度及膜上电行对它们排斥和屏蔽作用的大小。离子的去除率随低价态反离子增多而减小(因膜对其电荷屏蔽弱一些),随高价态同离子增多而增大(因其能更有效地被膜排斥)。高浓度电解质溶液中,膜上电荷能被反离子更有效地中和(或屏蔽),从而降低膜的选择性。表1-6-9各种纳滤膜的分离性能。纳滤膜是近年来开发的一种膜,已有用于纯净水的生产的报道。 (二)纯净水生产工艺流程:目前很多生产企业都采用二级反渗透系统,具体的生产工艺大同小异。典型的二级反渗透系统工艺流程图为:工艺过程主要包括水的预处理、反渗透、灭菌、终端过滤、灌装等工序。采用反渗透法生产纯净水,具有脱盐率高、产量大、劳动强度低、水质稳定、终端过滤器寿命较长的特点;缺点需要高压设备,原水利用率只有75﹪~80﹪,膜需要定期清洗。 除反渗透法外,还可采用蒸馏法,其纯水电导率比反渗透法制取的纯净水要低一些,但蒸馏法制纯净水能耗高、水的口感没有反渗透的好、不能有效降低水中低分子有机物,生产工艺流程为:原水→砂滤→炭滤→离子交换→级蒸馏→微滤→灌装→封盖。 (三)反渗透工艺要点 1.预处理:由于反渗透处理装置对进水水质有严格要求,因此水的预处理过程非常重要。一般纯净水的预处理过程包括三道过滤工序,先通过多介质过滤器截留水中的较大的悬浮物和一些胶体物质等,此过滤器需定期进行反冲洗,然后通过活性炭过滤器进行吸附脱臭和进一步截留水中的一些微粒物、重金属离子、小分子有机物等,此过滤器需定期进行反冲洗,最后通过保安过滤,是一道精密 过滤,为反渗透膜进水前的保安配置,生产中经常选用5vm精度的微滤,进一步去除水中的细小胶体及其他污染物,确保水质达到反渗透膜的进水指标。另外还必须根据需要添加絮凝剂如碱式氯化铝(PAC)或聚丙烯酰胺(PAM)等加速絮凝,添加还原剂亚硫酸氢钠(№HS03)还原水中多余的氯,添加六偏磷酸钠螯合一些铁、铝、钙、镁等离子等,提高预处理效果,减少或消除对反渗透膜的污染影响。另外水在进人反渗透系统之前,为了保证反渗透过程中使水温恒定在25℃,往往需要将水先通过热交换器。 2.反渗透:脱盐主要通过反渗透系统完成,经预处理后的水进入反渗透脱盐系统进行脱盐,主要去除水体中的无机离子及小分子有机物,反渗透处理可以根据水的情况采用一级或二级反渗透系统。在反渗透之前要检测水的pH值,使其在5.0~7.0,否则需要调整。 3.灭菌:和矿泉水一样可以通过紫外线、臭氧来完成,也有一些企业通过加热进行杀菌。灌装前的精滤工序一般采用0.2μm的微滤,可以滤除水中残存的菌体等。其灌装工艺、瓶与盖的消毒、生产设备消毒与灌装车间的净化与矿泉水基本相同。 (四)、瓶装纯净水生产实例 下面为我国某企业瓶装纯净水二级反渗透生产系统的的生产过程。原水首先进入板式热交换器,使原水温度恒定在25℃左右。然后添加NaCIO原水中,使原水残氯含量达到1.5mg/kg以上,对水消毒,同时添加ST絮凝剂,使水中胶体形成大颗粒,通过多介质过滤器将其除去。加入NaHSO3,还原水中的氯化剂。再经过活性碳吸附器,进行脱色、除臭和