列表法就概率
用列举法求概率

解:由题意得两次抽取共有36种等可能出现的结果,
第二次取出的数字能够整除第一次取出的数字的结果
有14种,即有(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,2),
(4,4),(5,1),(5,5),(6,1),(6,2),(6,3),(6,6) ,
学时经过的每个路口都是绿灯,此事件发生的概率是
多少?
这个问题能用直接列表法和列表法解
决吗?有什么简单的解决办法吗?
解:根据题意画树状图如下:
黄
红
第1路口
第2路口
红
黄
绿 红
黄
绿
绿
红
黄
绿
第3路口 红 黄 绿 红 黄 绿红 黄 绿红 黄 绿红 黄 绿红 黄 绿 红 黄 绿红 黄 绿红 黄 绿
红 红 红红 红 红红 红 红黄 黄 黄黄 黄 黄黄 黄 黄 绿 绿 绿绿 绿 绿绿 绿 绿
3
.
关键是不重不漏地
解:由2, 3, 4这三个数字组成的无重复数字的所有三位数为234,
列举出由2,3,4组成
的无重复数字的所
243, 324, 342, 432, 423,共6种情况, 而“V”数有324和423,共2
有的三位数.
种情况,
故从2, 3, 4这三个数字组成的无重复数字的三位数中任意抽取一
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称
为“V数”, 如756, 326 , 那么从2, 3, 4这三个数字组成的无重复数
25.2.1列表法求概率课件

5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
当一次试验要涉及两个因素,并且可能出现
的结果数目较多时,为了不重不漏的列出所有可 能的结果,通常采用列表法.
列表法中表格构造特点: 一个因素所包含的可能情况
25.2. 用列举法求概率(一)
复习引入
1.概率的定义:
刻画事件A发生的可能性大小的数值, 称为事件A发生的概率,记作P(A).
2.概率的求法:
一般地,如果在一次试验中,有n种可能的结果,
并种且结它果们,发那生么的事可件能A发性生都的相概等率,为事P件(AA包) =含m其,中P的(Am)的
取值范围是0≤P(A) ≤1.
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
思考 将题中的“同时掷两个骰子”改为“把
一个骰子掷两次”,所得的结果有变化吗?
6
我们是把试验出现的各种可能结果一一列 举出来,然后求的概率 .
思考:小明和小丽都想
去看电影,但只有一张 电影票.小明提议:利用 这三张牌,洗匀后任意 抽一张,放回,再洗匀抽 一张牌.连续抽的两张 牌结果为一张5一张4 小明去,抽到两张5的小 丽去.小明的办法对双 方公平吗?
例1:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上。 (2)两枚硬币全部反面朝上。 (3)一枚硬币正面朝上,一枚反面朝上。
另一
个因素 所包含 的可能
列表法求概率

第第二一个个
1
2
4
5
6
= 1
2
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) P(点数相同)
6 1 36 6
3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
P(点数和是9)= 4 1
3、什么样的情况下用列表法求概率?
尝试解答:如图,甲转盘的三个等分区域分别写
有数字1、2、3,乙转盘的四个等分区域分别写有数 字4、5、6、7。现分别转动两个转盘,求指针所指数 字之和为偶数的概率。
用列表法求概率的步 骤是什么?
解:
甲
12 3
乙45 76
乙 甲
4
5
6
7
1 (1,4) (1,5) (1,6) (1,7)
“同时掷两个质地相同的骰子” 两个骰子各出现的点数为1~6点
“把一个骰子掷两次” 两次骰子各出现的点数仍为1~6点
归纳
随机事件“同时”与“先后”的关系:
“两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的。
课堂练习
一个口袋中有4个小球,这4个小球分别标记 为1,2,3,4.随机摸取一个小球然后放回, 再随机摸取一个小球,求两次摸取的小球的标 号的和为3的概率.
P(都为黄色)=
1 6
乙 甲
红
绿
黄
蓝
红
(红,红) (红,绿) (红,黄) (红,蓝)
黄1 (黄 1,红) (黄 1,绿) (黄 1,黄) (黄 1,蓝)
2 黄
(黄 2,红) (黄 2,绿) (黄 2,黄) (黄 2,蓝)
25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

B.
1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.
D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.
B.
C.
D.
随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.
B.
C.
D.
随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机
25.2.1 运用直接列举或列表法求概率

=
7
18
1.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社
会调查”其中一项那么两人同时选择“参加社会调查”的概率为( A )
1
A.
4
1
B.
3
1
C.
2
3
D.
4
2.有A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个
球上分别写了“细”、“致”的字样,B袋中的两个球上分别写了“信”、
“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概
率是( B )
1
A.
3
1
B.
4
2
C.
3
3
D.
4
3.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概
率为( A )
1
A.
2
3
B.
4
1
C.
3
1
D.
4
4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这
三辆车中任选一辆搭乘,小明与小红同车的概率是( C )
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
(3)一枚硬币正面向上,一枚硬币反面向上.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【适用范围】直接列举法比较适合用于最多涉及两个试验因素或分两步
进行的试验,且事件总结果的种数比较少的等可能性事件.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【点睛】当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现
11
所以P(C)=
36
用列表法求概率

答案
解:由题意列表得:
1 第1次
第2次
2
3456
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 由表可6知,所(1有,6)等(2可,6能) 的(3,结6) 果(4的,6)总(5数,6共) (有6,62)5个
这个游戏对小亮和小明公 平吗?怎样才算公平 ?
你能求出小亮得分的概率吗?
用表格表示
红桃 1
2
3
4
5
6
黑桃
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
①掷一枚质地均匀的硬币,观察向上一面的
情况,可能出现的结果有: 2
;
②掷一个质地均匀的骰子,观察向上一面的
点数,可能出现的结果有: 6
;
③同时掷两枚质地均匀的硬币,观察向上一
面的情况,可能出现的结有: 4 ;
④同时掷两个质地均匀的骰子,观察向上一
面的点数,所有可能出现的结果情况如何?请
你用简便的方法把所有可能结果不重不漏的表
答案,则该同学的 D. 1
4
2
用列举法求概率

3/4 3/4
5.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D三人 随机坐到其他三个座位上。求A与B不相邻而坐的概率为 .
3
A
6.如图,小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3 条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有 ________种
9
7.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色, 另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?
解:根据题意,我们可以画出如下的“树形图”: 这些结果出现的可能性相等。
例7.如图,是一个转盘,转盘被分成两个扇形,颜色分为红黄两种,红 色扇形的圆心角为120度,指针固定,转动转盘后任其自由停止,某个扇形 会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列 事件的概率。(1)指向红色;(2)指向黄色;
能否用不同 的方法来解?
解:红,红;
红,黑;
黑,红;
黑,黑.
画树状图
列表
枚举
第一次抽出一张 牌
红牌
黑牌
第牌可现概二能的率次产可都抽生能为出的性一结相张果等。共。各4个为第 出。每一 一。种即出次 张抽 牌
1
红牌 黑牌
14 4
红牌
红牌
黑牌 黑牌
第二次抽 出一张牌
红牌
黑牌
红牌
黑牌
9.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其 余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概 率为多少?
解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3, 4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种 结果,因此P
第2课时 用列表法求概率

题型二
利用概率判断游戏公平性
例2 在一个不透明的口袋里有分别标注2,4,6的3个
小球(小球除数字不同外,其余都相同),另有3张背面
完全一样,正面分别写有数字6,7,8的卡片.现从口袋
中任意摸出一个小球,再从3张背面朝上的卡片中任
意摸出一张卡片.
(1)请你用列表的方法,表示出所有可能出现的结果;
解:(1)列表如下:
的方法,求恰好抽到2张卡片都是《辞海》的概率;
解:(1)先将《消防知识手册》《辞海》《辞海》分别记
作A,B1,B2,然后列表如下:
总共有6种结果,每种结果出现的可能性相同,而
2张卡片都是《辞海》的有2种:(B1,B2),(B2,B1),
∴P(2张卡片都是《辞海》)
2 1
= = .
6 3
(2)再添加几张和原来一样的《消防知识手册》卡片,
8 1
= = .
16 2
∵x+y为偶数的有8种情况,
∴P(乙获胜)
8 1
= = ,
16 2
∴P(甲获胜)=P(乙获胜),
∴这个游戏对双方公平.8源自12(2)从1~12这12个整数中,随机选取1个整数,
该数不是(1)中所填数字的概率为
1
3
.
跟踪训练
1.(2023·重庆B卷)有四张完全一样正面分别写有汉
字“清”“风”“朗”“月”的卡片,将其背面朝上
并洗匀,从中随机抽取一张,记下卡片正面上的汉字
后放回,洗匀后再从中随机抽取一张,则抽取的两张
卡片上的汉字相同的概率是1
胜.
(1)用列表法求(x,y)所有可能出现的结果总数;
解:(1)列表如下:
(x,y)所有可能出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2 《用列举法求概率》(第2课时)浠水县朱店中学黄胜各位评委,大家好!今天我说课的内容是:人教版九年级第二十五章第二节《用列举法求概率》(第2课时)。
下面,我将从教材分析、目标分析、过程分析、教法分析及评价分析五个方面来具体阐述对本节教材的理解和教学设计。
一、教材分析1、教材所处的地位与作用:概率在日常生活中、科学预测中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点,也是数学研究的一个重要分支。
本节内容是在学生已经对事件的可能性有了初步的认识,并能用直接列举法求简单事件的概率的基础上,再寻求两种更一般的列举方法求概率——列表法和画树形图求概率.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏。
又为今后进一步学习概率知识打下基础,起着承上启下的作用。
2、学情分析九年级的学生在日常生活中接触过一些有关概率的问题;对有限可能性事件概率的意义有了初步的认识,并能用直接列举法和列表法求简单事件的概率;因而,学生的学习是具有一定的数学基础和思维能力的。
再则,选用的问题是贴近学生的生活,学生易于理解和接受,学生有较强的探究兴趣和学习欲望,他们更希望通过一系列探究活动发现知识,体验知识的获得过程,感受合作学习的乐趣。
3、重难点分析:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
(1)教学重点:掌握用列表法和画树形图求简单事件概率的方法。
两步及两步以上实验事件过程较为复杂,直接列举实验的所有等可能结果常常会出现遗漏,而利用列表法和画树形图就可以有条理的列举出所有等可能结果,从而达到求解简单事件概率的目的。
因此我将掌握用列表法和画树形图求简单事件的概率的方法作为本节教学的重点。
(2)教学难点: 能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
概率实际问题背景丰富,呈现方式多种多样,所以当学生面对实际问题时,由于难以区分实验的操作次数,从而难以建立表格和画树形图得出实验的所有等可能结果。
因此我将概能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题做为本节课的教学难点。
二、目标分析根据数学课程标准,结合九年级学生认知基础和实际水平,本节课我确定了如下教学目标:1、知识与技能目标:在具体情景中进一步理解概率的意义,掌握用列表法、画树形图法求简单事件概率的方法。
2、过程与方法目标:通过用列表法、画树形图求概率的过程培养学生思维的条理性,提高学生分析问题、解决问题的能力.通过对不同列举方法的比较和探究,渗透数形结合,分类讨论,由特殊到一般的思想,进一步发展学生抽象概括的能力.3、情感与态度目标:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
三、教法分析:根据本节教学内容和学生年龄等特点,本节课将采用启发引导和探究相结合的教学方法。
在教学过程中“以情境创设为前提,以问题驱动为导向,以学生活动为阵地,以培养能力”为宗旨,体现数学知识的形成过程。
遵循学生认识规律,以自主探究为主,适时点拨为辅的方法进行学习,使学生轻松参与知识的形成过程和应用过程。
借助多媒体辅助教学,增强教学的直观性和启发性,增大教学容量,提高教学效益。
四、教学过程“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
”我将本节课的教学过程设定为以下五个环节:图1 教学过程五环节1.创设情景,发现新知问题:同时抛掷两枚硬币,请写出所有可能的结果。
①学生利用列举法写出所有的结果,教师请学生代表汇报。
②教师提问:同学们在列举所有结果时,很容易重复和遗漏,有没有更好的方法列举随机事件发生的可能性呢?使列举既直观又简洁?③学生讨论,教师引导学生运用列表的方法列举结果。
(课件动画逐一展示表格的建立过程)【设硬币为A,B两枚】【设计意图】利用第1课时的例2同时抛掷两枚硬币出现的正反的所有结果,是为了让学生先运用一般列举的方法列出所有的结果,然后教师引导学生分析在列举的过程中很容易遗漏、重复,列举不一定很方便,为了形象、直观、简洁列举结果,从而自然引出列表法,从而使学生认识到列表法的作用,激发学生的求知欲望。
问题:同时掷两枚硬币和将一枚硬币先后掷两次,所有可能情况是一样的。
若从“将一枚硬币先后掷两次”的角度考虑,还可以用分步列举的方法表示所有的结果。
开始第一枚正反第二枚正反正反①引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?②这个图形很像一棵树,所以称为树形图(在幻灯片上放映)。
③得出列举的一般方法:列表法和树形图法。
【设计意图】让学生初步学会两种列举的方法,分散难点,渗透分类计数和分步计数的思想。
2.自主分析,再探新知通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我依次从教材例3和例4两道例题开展教学。
例3同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。
①引导学生分析同时掷两个质地均匀的骰子,点数朝上的所有结果有多少种情况。
②得出一共有36种情况后,为了计算上述事件的概率,引导学生为逐一列举结果从而选用列表法.③学生小组合作探究,构造表格,列举结果。
教师根据学生小组合作的情况,分小组汇报演示列表结果,并点评表格设计的合理性和规范性,最后示范演示列表的过程(动画)。
④根据问题,学生逐一计算各随机事件的概率。
⑤教师引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。
运用列表法求概率的步骤如下:列表 通过表格计数,确定公式P(A)=m n 中m 和n 的值 利用公式P(A)=mn计算事件的概率。
⑥设问:有的随机事件的实验步骤三次或三次以上,用列表法表示结果也不一定方便,这时我们可以采用树形图法列举。
【设计意图】通过例3教学,使学生基本掌握列表法表示所有结果的一般方法,初步形成整理数据、分析数据、解决问题的一般能力,突破了教学的重点。
在教学过程中,教师发挥学生的主观能动性,让学生积极主动的构造不同的表格,体现了学生的主体作用,尊重了学生的创造精神,激发了学生创新思维,积累了解决实际问题的一般经验。
在环节⑥设疑过渡,起到了承上启下的作用,为下一环节的教学做好了铺垫。
例4: 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C 、D 和E ;丙口袋中2个相同的球,它们分别写有字母H 和I 。
从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少? (2)取出的三个球上全是辅音字母的概率是多少?①教师点拨:例4与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到3个因素,引导学生可以理解为实验步骤分3步,即同时拿3个球,可以看成分3次每次拿1个球。
②学生独立分析,尝试列出树形图,表示所有结果。
③学生代表演板,展示列举过程。
④ 教师根据学生演板情况,点拨、修正、点评。
⑤ 动画展示树形图列举结果。
如:从图形上可以看出所有可能出现的结果共有12个,即:甲 乙 丙(幻灯片上用颜色区分)⑥学生整理数据,分析数据,解答,解答问题,教师点评。
⑦小组讨论,小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。
运用树形图法 求概率的步骤如下:(幻灯片)画树形图 ; 列出结果,确定公式P(A)= mn中m 和n 的值;利用公式P(A)=mn计算事件概率。
⑧提问:到现在为止,我们所学过的用列举法求概率分为哪几种情况? 列表法和画树形图法求概率有什么优越性?什么时候使用“列表法”方便,什么时候使用“树形图法”更好呢?【设计意图】以发展思维过程为主线,把传授知识和发展思维有机结合起来,把问题逐步引向更高的深度和广度,让不同层次的学生得到不同程度的训练,很好地发挥了老师的主导作用。
通过对上述问题的思考,可以加深学生对新方法的理解,更好的认识到列表法和画树形图法求概率的优越性及其适用范围,有利于学生根据实际情况选择正确的方法。
3.应用新知,深化拓展为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力,在此我选择了教材P137课后练习作为随堂练习。
(1)在6张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?(2)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。
三辆汽车经过这个十字路口,求下列事件的概率:①三辆车全部继续前行; ②两辆车向右转,一辆车向左转; ③至少有两辆车向左转。
【设计意图】(2)是三步实验的事件,是让学生体会画树形图法的优势。
巩固画树形图求概率的知识,感受概率与生活的密切联系.虽然有27种可能的结果,比较复杂,但有练习1搭建的攀援之梯,大部分学生不会感到困难,在学生独立解答的基础上,有针对性的指导困难学生,保证全体学生共同进步.4.归纳总结,形成能力A C H A C I A D H A D I A E H A E IBC H BD H B D I BE H B E IB C I为了让学生对本节课有全面、系统的了解,教师引导学生共同总结本课知识。
问:这节课你学会了什么:知识方面:(1)用列表法或数形图法求概率时,应注意各种结果出现的可能性务必相同,其目的是保证列举的不重不漏.(2)当实验包含两步时,列表法较方便,当然也可以用树形图法(尤其是“抽取不放回”类问题),如果事件是三步或三步以上的实验时,采用树形图法较为方便,此时难以用列表法。
思想方法:列表法和画树形图求概率体现数形结合及分类的思想,我们常常借助分类的方法把复杂问题转化为简单问题来解决。
【设计意图】通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状况、因材施教提供了重要依据。
5.布置作业,巩固提高考虑到学生的个体差异,为促使每一个学生得到不同的发展,同时促进学生对自己的学习进行反思,在第五个环节“布置作业,巩固提高”里作如下安排:(1)必做题:书本P138/ 2,3,4,(2)选做题:①请设计一个游戏,并用列举法计算游戏者获胜的概率。
②研究性课题:通过调查学校周围道路的交通状况,为交通部门提出合理的建议等。
【设计意图】作业的布置有利于进一步落实知识和技能,巩固所学知识.通过教学实践作业和社会实践活动,引导学生灵活运用所学知识,体会数学与生活的密切联系,让学生把动脑、动口、动手三者结合起来,启发学生的创造性思维,培养协作精神和科学的态度。