人教新版七年级数学下学期 第7章 平面直角坐标系 单元练习卷 含答案

合集下载

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。

人教版七年级数学下册第七章 平面直角坐标系 单元测试卷(含答案)

人教版七年级数学下册第七章 平面直角坐标系 单元测试卷(含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试卷(含答案)一、选择题(毎小题3分,共30分)1.在平面直角坐标系中,下列各点在第二象限的是()A.(1,2)B.(-1,-2)C.(-1, 2)D.(1,-2)2.在平面直角坐标系中,点P(-3.,4)到x轴的距离为()A.3B.-3C.4D.-43.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置.如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,-1),表示点B的坐标为(3,2),则表示其他位置的点的坐标正确的是()A.C(-1,0)B.D(-3,1)C.E(-2,-5) D,F(5,2)4.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n-1)对应的点可能是()A.点AB.点BC.点CD.点D第3题图第4题图第7题图第8题图5.在平面直角坐标系的四个象限中,有一点A(m,m2+1),已知m为任意实数,则点A一定不在()A.第一、二象限B.第二、三象限C.第一、四象限D.第三、四象限6.点P(m+3,m+1)在平面直角坐标系的x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)7.如图,AD∥BC∥x轴,下列说法正确的是()A,A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同D.B与D的纵坐标相同8.如图,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+3,y0-1),将三角形ABC作同样的平移得到三角形A1B1C1,则点A1的坐标是()A.(-4,3)B.(-4,5)C.(2,3)D.(2,5)9.已知A(a,0)和B点(0,10)两点,且线段AB与坐标轴围成的三角形的面积等于20,则a的值为( )A.2B.4C.0或4D.4或-410.如图是8×8的“密码”图,若“今天考试”解密为“祝你成功”,则用此“钥匙”解密“遇水架桥”的意思是()A.一带一路B.中国崛起C.逢山开路D.中国声音二、填空题(毎小题3分,共24分)11.如图是小兰观看马戏表演的门票若小敏的座位是3排4座,简记为(3,4),则小兰的座位可简记为.12.点P(x,y)在第二象限,且x2=4,y=3.则点P的坐标为.13.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是.14.如图,在平面直角坐标系中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是.第13题图第14题图第16题图第18题图15.若第一象限的点P(m+1,3m-5)到x轴的距离与到y轴的距离相等,则m的值为.16.如图,将长为3的长方形ABCD放在平面直角坐标系中,若BC∥x轴,点D(6,3),则点A的坐标为.17.下列说法:①如果点P(a+b,ab)在第一象限,那么点Q(-a,b)在第二象限;②若点M(a-3,a+4)在x轴上,则点M的坐标是(-7,0);③过A(4,-2)和B(-2,-2)两点的直线与y轴相交但不平行于x轴;④将点P(1,-m)向右平移2个单位,再向上平移1个单位得到点Q(n,3),则mn=-6.其中正确结论的序号是.18.如图,将汉字“凸”放在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y 轴,点D、C、P、H在x轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2).把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-E-F-G-H-P-A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是.三、解答题(共66分)19.(8分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(-3,2)(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标: .(2)若中国人民大学的坐标为(-3,-4),请在坐标系中标出中国人民大学的位置.20.(8分)如图,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(-4,-1),B(-5,-4),C(-1,-3).已知三角形A’B’C’是三角形ABC经过平移得到的,且三角形ABC中任意一点P(x1,y1)经过平移后的对应点为P’(x1+6,y1+4).(1)画出三角形A’B’C’.(2)写出点A’,C’的坐标.21.(8分)在平面直角坐标系中,点B ,D 的位置如图所示.已知A(3,-5),C(3,5).(1)写出点B ,D 的坐标:B(2,0),D(3,-5)(2)在坐标系中描出点A ,C.点A 在第四象限,将点A 向左平移6个单位长度,它与点D 重合;(3)连接AC ,则直线AC 与y 轴是什么关系?AB C PBD22.(10分)在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线1与直线垂直,且交直线于点C,求交点C的坐标.23.(10分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0.1),B(5,1),C(7,3),D(2,5).(1)四边形ABCD内(边界点除外)一共有个整点(即横坐标和纵坐标都是整数的点)(2)求四边形ABCD的面积.24.(10分)在平面直角坐标系中.已知点A(1,2),B(4,1),O(0,0)(1)将点A,B分别水平向左移动2个单位长度到达点M,N处,求三角形MON 的面积;(2)过点B作y轴的垂线,垂足为E,若点F在y轴上,且S三角形AEF=1,求点F的坐标;(3)点Q为线段AB上ー动点(不含端点),连接QM,QN,试猜想∠AMQ,∠MQN 和∠BNQ之间的数量关系,并说明理由.25.(12分)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足()0+a.-b-12=3(1)填空:a=,b= .(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示三角形ABM的面积;3时,在y轴上有一点P,使得三角形BMP的面积与三角(3)在(2)的条件下,当m=-2形ABM的面积相等,请求出点P的坐标.参考答案一. 1.C 2.C 3.B 4.C 5.D 6.B 7.C 8.C 9.D 10.B二、11.(5,37)12.(-2,3)13.第四象限14.(1,-1)15.3 16.(3,3)17.①②④18.(1,2)三、19.(1)(3,1)(2)20.解:(1)如图所示(2)点A'的坐标为(2,3),点C’的坐标为(5,1) 21.解:(1)(2,0)(2)(-3,-5)(2)描点如图所示四 D(3)直线AC与y轴平行.22.解:(1)∵直线l∥x轴,点A,B都在l上,∴m+1=-4, ∴m=-5∴m+3=-2,即A(2,-4),B(-2,-4)∵2-(-2)=4,∴A,B两点间的距离为4. (2)∵l∥x轴,PC⊥l,∴PC⊥x轴.点C的横坐标为-1.又∵点C在l上,∴点C的纵坐标为-4,∴C(-1,-4)23.解:作如图所示的辅助线S 四边形ABCD =S 三角形ADE +S 三角形DFC +S 四边形BEFG =S 三角形BCG, S 三角形ADE =21×2×4=4, S 三角形DFC =21×2×5=5, S 四边形BEFG =2×3=6,S 三角形BCG =21×2×2=2∴S 四边形ABCD =4+5+6+2=17即四边形ABCD 的面积为1724.解:(1)∵A(1,2),B(4,1),将点A ,B 分别水平向左移动2个单位长度到达点M ,N 处,∴M(-1,2),N(2,1)∴S 三角形MON =21×(1+2)×(2+1)-21×2×1-21×1×2=25(2)由题意知点E(0,1),三角形AEF 的边EF 上的高为1.设点F 坐标为(0,y)则EF=1-y ,S △AEF =211-y =1,1-y =2,即,y-1=-2,或y-1=2 ∴y =-1,或y=3∴点F 的坐标为(0,-1)或(0,3)(3)∠AMQ+∠BNQ =∠MQN ,理由如下:如图,过点Q 向左作QH ∥AM由题意知AM ∥NB ∥x 轴,∴AM ∥QH ∥NB. ∴∠AMQ =∠MQH ,∠BNQ =∠NQH. ∴∠AMQ+∠BNQ =∠MQH+∠NQH =∠MQN. 25.(1)-1 3解:(2)如图a ,过点M 作MN ⊥x 轴于点N∵A(-1,0),B(3,0), ∴AB =3-(-1)=4. 又∵点M(-2,m)在第三象限, ∴MN =m =-m. ∴S 三角形AEM =21AB ・MN =21×4×(-m)=-2m (3)当m =-23时,点M 的坐标为(-2,-23) ∴S 三角形AEM =-2×(-23)=3点P 有两种情况:①如图b ,当点P 在y 轴正半轴上时,作如图所示的辅助线,设点P 的坐标为(0,k),则S 三角形BMP =5(23+k)-21×2(23+k)-21×5×23-21×3k=25k+49. ∵S 三角形BMP =S 三角形ABM ,∴25k+49=3 解得k =103,即点P 的坐标为(0,103). ②如图c ,当点P 在y 轴负半轴上时,作如图所示的辅助线,设点P 的坐标为(0,n),则S 三角形BMP =-5n-21×2(-n-23)-21×5×23-21×3×(-n)=-25n-49.∵S 三角形BMP =S 三角形ABM ,∴-25n-49=3解得n=-1021,即点P 的坐标为(0,-1021) 综上所述点P 的坐标为(0,103)或(0,-1021).。

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。

【3套精选】人教版七年级下册数学第七章平面直角坐标系单元测试卷(含答案)

【3套精选】人教版七年级下册数学第七章平面直角坐标系单元测试卷(含答案)

人教版七年级下册数学单元同步练习卷:第七章平面直角坐标系一、填空题1.如图,在平面直角坐标系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),现把一条长为2 018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(1,-1).2.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x =0;若点P为坐标原点,则x=0且y=0.3.如图是某学校的示意图,若综合楼在点(-2,-1),食堂在点(1,2),则教学楼在点(-4,1).4.如图,小刚在小明的北偏东60°方向的500 m处,则小明在小刚的南偏西60°方向的500 m处.(请用方向和距离描述小明相对于小刚的位置)5.将点A(1,1)先向左平移2个单位长度,再向下平移3个单位长度得到点B,则点B的坐标是(-1,-2).6.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2 019次运动后,动点P的坐标为(2__019,2).二、选择题7.用7和8组成一个有序数对,可以写成( D )A.(7,8) B.(8,7) C.7,8或8,7 D.(7,8)或(8,7)8.如图,一个方队正沿着箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置是( D )A.(4,5) B.(5,4) C.(4,2) D.(4,3)9.平面直角坐标系中,点(1,-2)在( D )A.第一象限B.第二象限C.第三象限D.第四象限10.如图是某游乐城的平面示意图,用(8,2)表示入口处的位置,用(6,-1)表示球幕电影的位置,那么坐标原点表示的位置是( D )A.太空秋千B.梦幻艺馆C.海底世界D.激光战车11.在平面直角坐标系中,将点P(3,-2)向下平移4个单位长度,得到点P的坐标为( B )A.(-1,-2) B.(3,-6) C.(7,-2) D.(3,-2)12.点N(-1,3)可以看作由点M(-1,-1)( A )A.向上平移4个单位长度所得到的B.向左平移4个单位长度所得到的C.向下平移4个单位长度所得到的D.向右平移4个单位长度所得到的13.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 018个点的坐标为( C )A.(45,9) B.(45,11) C.(45,7) D.(46,0)14.王宁在班里的座位号为(2,3),那么该同学所坐的位置是( D )A.第2排第3列B.第3排第2列C.第5排第5列D.不好确定15.在平面直角坐标系中,点(0,-10)在( D )A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上三、解答题16.五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:在15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙的对弈图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记作(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?解:甲必须在(1,7)或(5,3)处落子.因为若甲不首先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.17.在如图所示的平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4). 解:如图.18.如图,A(-1,0),C(1,4),点B 在x 轴上,且AB =3.(1)求点B 的坐标;(2)求三角形ABC 的面积;(3)在y 轴上是否存在点P ,使以A ,B ,P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 解:(1)当点B 在点A 的右边时,点B 的坐标为(2,0);当点B 在点A 的左边时,点B 的坐标为(-4,0).所以点B 的坐标为(2,0)或(-4,0).(2)三角形ABC 的面积为12×3×4=6. (3)设点P 到x 轴的距离为h ,则12×3h=10,解得h =203.①当点P 在y 轴正半轴时,点P 的坐标为(0,203); ②当点P 在y 轴负半轴时,点P 的坐标为(0,-203). 综上所述,点P 的坐标为(0,203)或(0,-203). 19.如图是某动物园平面示意图的一部分(图中小正方形的边长代表100米),请问:(1)在大门东南方向有哪些景点?(2)从大门向东走300米,再向北走200米,到达哪个景点?(3)以大门为坐标原点,向东方向为x 轴正方向,向北方向为y 轴正方向建立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.解:(1)猴山,大象馆.(2)蛇山.(3)如图,蛇山的坐标为(300,200),水族馆的坐标为(500,0),大象馆的坐标为(300,-300).20.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),试求a 2-2b 的值.解:∵A(1,0),A 1(2,a),B(0,2),B 1(b ,3),∴平移方法为向右平移1个单位长度,向上平移1个单位长度.∴a=0+1=1,b =0+1=1.∴a 2-2b =12-2×1=1-2=-1.21.如图,三角形ABC的三个顶点的坐标分别是A(4,0),B(-2,0),C(2,4),求三角形ABC的面积.人教版七年级下册数学第七章平面直角坐标系达标检测卷一、选择题(每题3分,共30分)1.如果(7,3)表示电影票上“7排3号”,那么3排7号就表示为() A.(7,3) B.(3,7)C.(-7,-3) D.(-3,-7)2.在平面直角坐标系中,点(5,-2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.将三角形ABC的三个顶点的纵坐标都加上3,横坐标不变,表示将该三角形()A.沿x轴的正方向平移了3个单位长度B.沿x轴的负方向平移了3个单位长度C.沿y轴的正方向平移了3个单位长度D.沿y轴的负方向平移了3个单位长度4.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)(第4题)5.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为()A.(0,1) B.(1,0)C.(0,1)或(0,-1) D.(1,0)或(-1,0)6.在下列各点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(-2,4) C.(-4,2) D.(4,-2)7.已知点A(-3,2m-4)在x轴上,点B(n+3,4)在y轴上,则m+n的值是()A.1 B.0 C.-1 D.78.如图,长方形ABCD的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下列哪个点不在长方形上()A.(4,-2) B.(-2,4) C.(4,2) D.(0,-2)9.已知点A(1,0),B(0,2),点P在x轴上,且三角形P AB的面积为5,则点P 的坐标是()A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.(0,12)或(0,-8)10.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()(第8题) (第10题)A.2 B.3 C.4 D.5二、填空题(每题3分,共24分)11.点P(3,-4)到x轴的距离为________.12.若点P(a,b)在第四象限,则点Q(-a,-b)在第________象限.13.已知点M(x,y)与点N(-2,-3)关于x轴对称,则x+y=________.14.在平面直角坐标系中,点A(1,2a+3)在第一象限,且该点到x轴的距离与到y轴的距离相等,则a=________.15.已知A(a,-3),B(1,b),线段AB∥x轴,且AB=3.若a<1,则a+b=________.16.如图,点A,B的坐标分别为(1,2),(2,0),将三角形AOB沿x轴向右平移,得到三角形CDE,若DB=1,则点C的坐标为__________.(第16题)(第17题)(第18题)17.如图,在平面直角坐标系中,已知长方形ABCD的顶点坐标A(-1,-1),B(3,1.5),D(-2,0.5),则C点坐标为__________.18.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________.三、解答题(19,20,22题每题10分,21题8分,其余每题14分,共66分)19.如图,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标:B(____,____),B′(____,____).20.在如图所示的平面直角坐标系中,描出点A(-2,1),B(3,1),C(-2,-2),D(3,-2).(1)线段AB,CD有什么关系?并说明理由.(2)顺次连接A,B,C,D四点组成的图形,你认为它像什么?21.张超设计的广告模板草图如图所示(单位:m),张超想通过电话征求李强的意见.假如你是张超,你如何把这个草图告诉李强呢?(提示:建立平面直角坐标系)22.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.23.如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).(1)求四边形ABCO的面积;(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,画出得到的四边形A′B′C′O′,你能从中得到什么结论?(3)直接写出四边形A′B′C′O′的面积.24.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD各顶点的坐标.第7章达标测试卷参考答案一、1.B 2.D 3.C 4.D 5.D 6.B 7.C8B9.C10.B二、11.412.二13.114.-115.-516.(2,2)17.(2,3)18.(-505,505)点拨:由题图知,A4n的坐标为(-n,-n),A4n-1 人教版七年级数学下册第七章平面直角坐标系单元综合测试题及答案一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°2.点P(3,4)向上平移2个单位,向左平移3个单位,得到点P'的坐标是()A.(5,1)B.(5,7)C.(0,2)D.(0,6)3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为( )A.(1,2)B.(0,2)C.(2,1)D.(2,0)4.若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.过点A(-3,2)和点B(-3,5)作直线则直线AB()A. 平行于Y轴B. 平行于X轴 C .与Y轴相交 D. 与y轴垂直6.在坐标系中,已知A(2,0),B(−3,−4),C(0,0),则△ABC的面积为()A.4B.6C.8D.37.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为().A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)8.P点横坐标是-3,且到x轴的距离为5,则P点的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-5)9.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平面四边形,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,已知三角形ABC 在平面直角坐标系中的位置如图所示,将三角形ABC 先向下平移5个单位,再向左平移2个单位,则平移后C 点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在轴上的点有 个。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。

A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。

人教新版七年级数学下学期《平面直角坐标系》 单元试题 含答案

人教新版七年级数学下学期《平面直角坐标系》 单元试题  含答案

第7章平面直角坐标系一.选择题(共6小题)1.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)2.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴垂直,则L也会通过下列哪一点?()A.A B.B C.C D.D3.在平面直角坐标系中,将点P(﹣3,2)向右平移4个单位长度得到点P',则点P'所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.在A(﹣5,3)、B(﹣3,3)、C(﹣5,﹣3)、D(5,3)四个点中,有其中两个点确定的直线与y轴平行的是()A.点A、B B.点B、D C.点A、C D.点C、D 5.直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.以上都不对6.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)二.填空题(共5小题)7.点P(2,4)与点Q(﹣3,4)之间的距离是.8.无论m为何值,点A(m,5﹣2m)不可能在第象限.9.已知点A(2a+3,a﹣4)在二、四象限的角平分线上,则a=.10.A、B坐标分别A(1,0)、B(0,2),若将线段AB平移到CD,A与C对应,C、D的坐标分别为C(2,a),D(b,3),则a+b=.11.已知线段MN=5,MN∥y轴,若点M坐标为(﹣1,2),则点N的坐标为.三.解答题(共7小题)12.△ABC与△A′B′C′在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标:A′;B′;C′(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为.(3)求△ABC的面积.13.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y=0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.14.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x 轴.(1)求m的值;(2)求AB的长.15.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(﹣4,4),点B位于点(3,1),则“帅”所在点的坐标为;“马”所在点的坐标为;“兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.16.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.17.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.18.先阅读下列一段文字,再解答问题已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P 1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.参考答案一.选择题(共6小题)1.A.2.D.3.A.4.C.5.B.6.C.二.填空题(共5小题)7.5.8.三9..10.2.11.(﹣1,﹣3)或(﹣1,7),三.解答题(共7小题)12.解:(1)如图所示:A′(﹣3,﹣4),B′(0,﹣1)、C′(2,﹣3);(2)A(1,0)变换到点A′的坐标是(﹣3,﹣4),横坐标减4,纵坐标减4,∴点P的对应点P′的坐标是(m﹣4,n﹣4);(3)△ABC的面积为:3×5﹣×1×5﹣×2×2﹣×3×3=6.故答案为:(﹣3,﹣4),(0,﹣1)、(2,﹣3);(m﹣4,n ﹣4).13.解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限内两坐标轴夹角的平分线上.在二、四象限内两坐标轴夹角的平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).14.解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB ∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.15.解:(1)由点A位于点(﹣4,4),点B位于点(3,1)可知坐标系如图所示:则帅(1,0)、马(﹣2,1)、兵(2,3 ),故答案为:(1,0)、(﹣2,1)、(2,3 );(2)如图所示:A(﹣4,4)→(﹣2,3)→(0,2)→(2,3)→B(3,1).16.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).17.解:(1)∵点P(3m﹣6,m+1)在y轴上,∴3m﹣6=0,解得m=2,∴m+1=2+1=3,∴点P的坐标为(0,3);(2)点P(3m﹣6,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴3m﹣6=3×(﹣1)﹣6=﹣9,∴点P的坐标为(﹣9,0);(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,∴m+1﹣(3m﹣6)=5,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2);(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,∴m+1=2,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2).18.解:(1)依据两点间的距离公式,可得AB==13;(2)当点A,B在平行于y轴的直线上时,AB=|﹣1﹣5|=6;(3)AB与AC相等.理由:最新Word ∵AB==5;AC==5;BC=|3﹣(﹣3)|=6.∴AB=AC.。

七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。

人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)

人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。

人教版数学七年级下册第7章平面直角坐标系单元测试(Word版含答案)

人教版初中七年级数学下册第7章平面直角坐标系班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为()A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是()A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为()A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为()A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是()A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为()A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为()A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为.14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是.15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为.16.(东湖区期末)如果点P(x,y)的坐标满足x+y=xy,那么称点P 为“和谐点”,若某个“和谐点”到x轴的距离为3,则该点的坐标为.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A,B,C,D,E的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.25.(本题满分12分) 如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为;线段BC与线段AD的位置关系是;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D停止.若点P的速度为每秒1个单位长度,运动时间为t s,回答下列问题.①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,四边形ABCP的面积为4,求点P的坐标.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为(B)A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是(C)A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是(C)A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为(B)A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为(D)A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为(B)A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是(A)A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是(D)A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为(D)A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为(A)A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为(北偏东40°,47海里).14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是(5,-4).15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为(-2,0).16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x 轴的距离为3,则该点的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫34,-3. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A ,B ,C ,D ,E 的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.解:(1)A(3,3),B(-5,2),C(-4,-3),D(4,-3),E(5,0).(2)如图所示.点P 在第三象限,点Q 在第四象限,点S 在第一象限, 点T 在第二象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.解:(1)画坐标轴如图所示,火车站(0,0),体育场(-4,3),医院(-2,-2).(2)如图所示.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.解:(1)四边形ABCD的面积为(5-2)×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?解:(1)北偏东40°方向上有两个目标:敌方舰艇B和小岛,要想确定敌方舰艇B的位置,还需知道敌方舰艇B距我方舰艇3号的距离.(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有两艘:敌方舰艇A和敌方舰艇C.(3)要确定每艘敌方舰艇的位置,各需要两个数据:距离和方位角.(如对我方舰艇3号来说,敌方舰艇A在正南方向,图上距离为0.6 cm 处;敌方舰艇B在北偏东40°方向,图上距离为1 cm处;敌方舰艇C在正东方向,图上距离为0.6 cm处)21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.解:(1)如图所示,△A1B1C1为所求.(2)如图所示.(3)点A1的坐标为(2,6).22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?解:(1)过点B 作BF ⊥x 轴于点F ,过点A 作AG ⊥x 轴于点G ,如图所示.∴S 四边形ABCO =S 三角形BCF +S 梯形ABFG +S 三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102 =2 500(m 2).(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,故所得到的四边形的面积与原四边形的面积相等,为2 500 m 2.23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.解:由点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4), 得D(-2,2),E(2,2).∵点D ,E 的纵坐标相等,且都不为0,∴DE ∥x 轴,又∵AB 在x 轴上,∴DE ∥AB.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.解:(1)∵MN∥y轴,∴点M的横坐标和点N的横坐标相同,∴m-6=5,得m=11,故点M的坐标为(5,25).(2)∵MN∥x轴,∴点M的纵坐标和点N的纵坐标相同,∴b=2,∵MN=3,∴|a-5|=3,解得a=8或a=2,故点M的坐标为(8,2)或(2,2).(3)∵点M到两坐标轴距离相等,点M的横坐标和纵坐标不能同时为0,∴点M不在原点上,分别在第一、三象限或第二、四象限,当在第一、三象限时,可知m-6=2m+3,得m=-9,点M的坐标为(-15,-15),当在第二、四象限时,可知m-6=-(2m+3),得m=1,点M的坐标为(-5,5),故点M的坐标为(-15,-15)或(-5,5).25.(本题满分12分)(官渡区月考)如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为(-4,2);线段BC与线段AD的位置关系是平行;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D 停止.若点P 的速度为每秒1个单位长度,运动时间为t s ,回答下列问题.①直接写出点P 在运动过程中的坐标(用含t 的式子表示); ②当5<t <7时,四边形ABCP 的面积为4,求点P 的坐标.解:(2)①当0≤t <2时,p(-1,t);当2≤t ≤5时,p(-t +1,2);当5<t ≤7时,p(-4,7-t).②由题意知AB =2,AD =3,PD =7-t ,∴S 四边形ABCP =S 四边形ABCD -S △ADP =4,∴2×3-12×3×(7-t)=4,解得t =173,∴7-t =7-173=43, ∴点P ⎝⎛⎭⎪⎫-4,43.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章平面直角坐标系
一.选择题(共10小题)
1.已知点P(x,y),若x+y<﹣2,xy>1,则点P所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限
2.已知点P(a,2a﹣1)在一、三象限的角平分线上,则a的值为()A.﹣1 B.0 C.1 D.2
3.若点A(n,2)在y轴上,则点B(2n﹣1,3n+1)位于()
A.第四象限.B.第三象限C.第二象限D.第一象限
4.已知点A(m,n),且有mn≤0,则点A一定不在()
A.第一象限B.第二象限C.第四象限D.坐标轴上
5.在坐标平面内,将点A(0,0)、B(2,4)、C(3,0)、D(5,4)、E(6,0)顺次连接起来,此图形是英文字母()
A.V B.E C.W D.M
6.若点M的坐标为(0,|b|+1),则下列说法中正确的是()
A.点M在x轴正半轴上B.点M在x轴负半轴上
C.点M在y轴正半轴上D.点M在y轴负半轴上
7.如图,在平面直角坐标系中,一动点从原点O出发,按一定的规律移动,依次得到点A1(0,1)A2(1,1)、A3(1,3)、A4(3,3)、A5(3,6)、A6(6,6)、A7(6,10)、A8(10,10)、……,根据这个规律,则点A2019的坐标是()
A.(510555,511565)B.(509545,511565)
C.(509545,510555)D.(51055,510555)
8.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()
A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)
9.平面直角坐标系内AB∥y轴,AB=5,点A的坐标为(﹣5,3),则点B的坐标为()A.(﹣5,8)B.(0,3)
C.(﹣5,8)或(﹣5,﹣2)D.(0,3)或(﹣10,3)
10.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()
A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
二.填空题(共4小题)
11.在平面直角坐标系中,点A的坐标为(﹣1,3),线段AB∥x轴,且AB=4,则点B的坐标为.
12.如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“努力发挥”的真实意思是“今天考试”.若“努”所处的位置为(x,y),根据你找到的密码钥匙,破译“祝你成功”真实意思是.
13.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.
14.已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为.
三.解答题(共5小题)
15.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m 长)
(1)请你以火车站为原点建立平面直角坐标系.
(2)写出市场、超市、医院的坐标.
16.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;
(2)点P在x轴上;
(3)点P的纵坐标比横坐标大5;
(4)点P在过点A(﹣1,2),且与x轴平行的直线上.
17.如图,△A′B′C′是由△ABC平移得到的,已知△ABC中任意一点P(x0,y0)经平移后的对应点为点P′(x0+5,y0﹣2).
(1)已知点A(﹣1,2)、B(﹣4,5)、C(﹣3,0),请写出点A′、B′、C′的坐标;
(2)试说明△A′B′C′是如何由△ABC平移得到的?
18.如图,P(x0,y0)为△ABC内任意一点,若将△ABC作平移变换,使A点落在B点的位置上,已知A(3,4);B(﹣2,2);C(2,﹣2).
(1)请直接写出B点、C点、P点的对应点B1、C1、P1的坐标;
(2)求S△AOC.
19.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B、C、D等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A到B记为:A→B<+1,+3>,从B到A记为:B→A<﹣1,﹣3>,其中第一个数表示左右方向,第二个数表示上下方向.
填空:(1)图中A→C(,)C→(,)
(2)若这只蚂蚁从A处去M处的蚂蚁的行走路线依次为<+3,+3>,<+2,﹣1>,<﹣3,﹣3>,<+4,+2>,则点M的坐标为(,)
(3)若图中另有两个格点P、Q,且P→A<m+3,n+2>,P→Q<m+1,n﹣2>,则从Q 到A记为(,)
参考答案与试题解析
一.选择题(共10小题)
1. C.
2.C.
3. C.
4. A.
5. D.
6. C.
7. C.
8. D.
9. C.
10. A.
二.填空题(共4小题)
11.(﹣5,3)或(3,3).
12.正做数学.
13.2
14.1或﹣3.
三.解答题(共5小题)
15.解:(1)建立平面直角坐标系如图所示;
(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).
16.解:(1)∵点P(3m﹣6,m+1)在y轴上,
∴3m﹣6=0,
解得m=2,
∴m+1=2+1=3,
∴点P的坐标为(0,3);
(2)点P(3m﹣6,m+1)在x轴上,
∴m+1=0,
解得m=﹣1,
∴3m﹣6=3×(﹣1)﹣6=﹣9,
∴点P的坐标为(﹣9,0);
(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,
∴m+1﹣(3m﹣6)=5,
解得m=1,
∴3m﹣6=3×1﹣6=﹣3,
m+1=1+1=2,
∴点P的坐标为(﹣3,2);
(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,
∴m+1=2,
解得m=1,
∴3m﹣6=3×1﹣6=﹣3,
m+1=1+1=2,
∴点P的坐标为(﹣3,2).
17.解:(1)根据题意三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,则点A′的坐标为(﹣1+5,2﹣2)即(4,0),
点B′的坐标为(﹣4+5,5﹣2)即(1,3),
点C′的坐标为(﹣3+5,0﹣2)即(2,﹣2),
(2)根据对应点的坐标平移规律即可得出:△ABC向右平移5个单位,向下平移2个单位得到△A′B′C′.
18.解:(1)由点A(3,4)平移后的对应点的坐标为(﹣2,2),
所以需将△ABC向左平移5个单位、向下平移2个单位,
则点B(﹣2,2)的对应点B1的坐标为(﹣7,0),
点C(2,﹣2)的对应点C1的坐标为(﹣3,﹣4),
点P(x0,y0)的对应点P1的坐标为(x0﹣5,y0﹣2);
(2)如图所示,过点A作AD⊥y轴于点D,过点C作CE⊥y轴,
则AD=3、CE=2、OD=4、OE=2,
∴S△AOC=×(2+3)×6﹣×3×4﹣×2×2
=15﹣6﹣2
=7.
19.解:(1)∵规定:向上向右走为正,向下向左走为负,
∴A→C记为(+3,﹣1);C→D记为(1,+3);
故答案为:+3;﹣1;D,+1,+3;
(2)若这只蚂蚁从A处去M处的蚂蚁的行走路线依次为<+3,+3>,<+2,﹣1>,<﹣3,﹣3>,<+4,+2>,则点M的坐标为(7,3),
故答案为:(7,3);
(3)∵P→A<m+3,n+2>,P→Q<m+1,n﹣2>,
∴m+1﹣(m+3)=﹣2,n﹣2﹣(n+2)=﹣4,
∴点A向左走2个格点,向下走4个格点到点N,
∴Q→A应记为(2,4).
故答案为:2,4.。

相关文档
最新文档